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Abstract  
This work is a synthesizing approach in which a new methodology is analyzed in the 
thermodynamic modelling of thermal machines and traditional heat and mass exchang-
ers, where certain special control variables called the Carnot controls are suitable. With 
these controls, expressions describing the lost work and entropy production assume the 
same form in endoreversible thermal machines and in traditional processes of purely 
dissipative transport. Mathematical models of thermal machines and characteristics of 
endoreversible operations are particularly simple in terms of the Carnot controls. The 
efficiency decrease caused by the exergy dissipation and finite rate limits on mechanical 
energy yield or consumption are estimated in terms of maximum work released from an 
engine or minimum work added to a heat pump. Remarkable simplification in analysis 
of complex thermal machines is achieved when Carnot controls are applied. Generalized 
analyses include mass transfer and lead to finite time counterparts of classical available 
energy (exergy). For sequential-type equipment of a finite size, enhanced limits are ob-
tained for the energy production or consumption. Progress in the theory and its applica-
tions in the energy generation problems is achieved; examples of applications are dis-
cussed. 

Key words:  thermodynamic optimization, efficiency, endoreversible engines, heat 
pumps 

 
1.  Introduction 

1.1.  Thermodynamic optimization 
This research is a synthesizing approach 

that belongs in the field of thermodynamic opti-
mization (Berry et al. 2000, Feidt 1987), a spe-
cial branch of the process optimization that uses 
the thermodynamic performance criteria and 
models of constraints (Bejan et al. 1996, Sieni-
utycz 1991). Optimization itself is a general 
strategy of seeking best solutions for processes 
and operations in the presence of various con-
straints. Thermodynamic optimization uses, for 
example, the following performance criteria: 
a) fluxes of mechanical or electric energy, 
b) heat and work (generated or consumed), 
c) losses of mechanical energy or exergy, gen-

eration of entropy,   

d)  thermodynamic state parameters at the final 
stage of the process (they constitute the so-
called physicochemical criteria of optimiza-
tion), e.g. final concentration of a valuable 
product in a chemical reactor.  
Thermodynamic criteria are generally insuf-

ficient for economic purposes. Yet, they may 
sometimes be useful to assess the quality of the 
process economics as well. This is, for example, 
the case when the work flux from a thermal ma-
chine or the final concentration of the key re-
agent are main indicators of the profit. 

1.2.  Thermoeconomic optimization 
A broader field is thermoeconomic optimi-

zation (Bejan et al. 1996, Sieniutycz 1991). It 
applies economic performance criteria formu-
lated with the help of costs engineering and en-
gineering economics (Bejan et al. 1996, Sieni-
utycz 1991). Only seldom may these economic 



criteria be regarded as suitable generalizations of 
criteria encountered in thermodynamic optimiza-
tion. Yet, thermoeconomic optimization seldom 
uses the same models of constraints as thermo-
dynamic optimization especially when these con-
straints stem from thermodynamic balances. 
While formulations considered here refer to 
thermodynamic optimization only, possible ex-
tensions of ideas presented here to ther-
moeconomic optimization are not excluded. Such 
extensions are beyond the scope of the present 
paper. 

1.3.  Aims and scope 
This paper treats thermal machines in which 

the role of nonequilibrium transports and optimal 
control theory are essential. Control rules for 
processes of engine type and heat-pump type are 
considered, both with pure heat exchange and 
with simultaneous heat and mass exchange. 
Links with exergy analyses of nonequilibrium 
systems and the classical problem of maximum 
work are essential. Illustrative examples are se-
lected mainly from the didactic viewpoint, with-
out an attempt to give comprehensive presenta-
tion of applications. The most important new 
result is the notion of the so-called Carnot con-
trol variables in terms of which the expression 
for the lost work in a thermal machine has the 
same form as in a related traditional processes of 
purely dissipative transport. We show that a con-
siderable simplification in analysis of complex 
thermal machines (driven by mass fluxes) is 
achieved when these special controls are applied. 

2.  Basic Definitions and Ideas 

2.1.  Driving a multistage process by pure 
heat transfer 

 
Figure 1.  A multistage CACN operation as 

a process with active heat exchange between two 
fluids (in the engine mode ∆T1 ≤ 0). 

Consider an arbitrary one-stage process of 
the multistage operation of Curzon-Ahlborn-
Chambadal-Novikov (CACN; Findeisen et al. 
1980, Novikov 1957), Figure 1. 

Our addressing of the multistage problem in 
Fig. 1should be proceeded by an explanation of 
how our work fits on the framework provided by 
the older work. Restricted to pure heat transfer, 
the problem of engine extracting the most exergy 
from a continuous hot stream was posed in the 
reversible limit by Bejan (1982). Whereas its 
endoreversible generalizations were solved a 
decade and half later (Sieniutycz 1997a, Sieni-
utycz 1999, Bejan and Errera 1998, Sieniutycz 
and von Spakovsky 1998), only the papers of 
Sieniutycz and Berry (2000), Sieniutycz (1999c) 
deal explicitly with cascades as genuine discrete 
systems with a small number of stages. The suit-
able mathematical structures related to the prob-
lem in Fig. 1 are difference rather than differen-
tial equations. Yet, each stage is the classical 
CACN process working with its own thermal 
parameters. Bejan and Errera’s (1998) paper is 
restricted to the pure heat transfer as the engine 
propelling process, thus a general theory involv-
ing the mass diffusion that is pursued in the pre-
sent paper cannot be built on its basis. On the 
other hand, the theory of the author’s 1999 paper 
(Sieniutycz 1999c) does involve both heat and 
mass diffusion as propelling processes. Conse-
quently, only the theory and results of Sieniutycz 
(1999c) constitute a sufficient basis to develop a 
general scheme of Carnot variables when both 
heat and mass fluxes are present.  

The notion that the Curzon-Ahlborn-
Chambadal-Novikov” idea is “well known” 
should be understood with care. Novikov (1957) 
work was unknown until Bejan discovered it in 
the engineering literature of the 1950s; he also 
discovered Chambadal (1957) and Chambadal 
(1963). This history is recounted in Bejan’s book 
(Bejan 1996) and in some of his papers. In the 
present work,  the new point is the systematic 
treatment of diverse irreversible operations in 
terms of particular quantities called the Carnot 
controls that were first proposed in the paper 
Sieniutycz (1999b). Yet that theory is restricted 
to the heat driven processes. This restriction is 
omitted in the present work.  

For the purposes of the present paper it is 
unimportant whether its main original task - in-
troduction and application of Carnot control 
variables - is illustrated with a known or an un-
known example. We have chosen the operations 
of single-stage and multistage CACN as they are 
familiar to many readers, thus most of them can 
easily grasp the main ideals. However, the nov-
elty of the present contribution lies on the side of 
methodology, not on the side of the system’s 
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choice. Our work fits on the framework provided 
by the older work by synthesizing the scientific 
information contained in the past work of various 
authors in the field (including Bejan (1982), Be-
jan (1996), de Vos (1992), the present author 
(Sieniutycz 1997b) and many others, as shown in 
references). 

The classical characteristics based on effi-
ciency as possible control are well known, Fig-
ure 2.  

 

CACN 

 
Figure 2.  Conventional characteristics of a 

single CACN stage: the efficiency η is the con-
trol variable. 

From the energy and entropy balance of the 
endoreversible CACN operation, a structural 
property of the system follows which is called 
here Carnot temperature T’. In our earlier work 
(Sieniutycz 1999b) T’ was also called the driving 
temperature due to its specific properties. In 
terms of upper and lower temperatures of the 
circulating medium T1' and T2’, Carnot tempera-
ture is defined as: 

'2

'1
2 T

T
TT =′  (1) 

When the second reservoir is the environ-
ment, T2= Te and Eq. (1) is used in an equivalent 
form: 

'2

'1e

T
T

TT =′   (2) 

The primary property of T’ is that in terms 
of T' and T2 the thermal efficiency of the endor-
eversible engine is given by the Carnot formula 
in which T' replaces T1: 

T
T

1
T
T

1 2

'1

'2

′
−=−=η   (3) 

A similar expression holds when the second 
reservoir is the environment i.e. T2= Te:  

 

 

 
Figure 3: Characteristics of a single CACN 

stage when the Carnot temperature ′ T  is the 
control variable. 

Whenever T1' = T2' ("short circuit"), the 
process is purely dissipative and: 

2TT =′   or  eTT =′    (4) 

Along with the efficiency formula (1), this 
describes an absence of mechanical energy pro-
duction at the short circuit point. Otherwise at 
the Carnot point (open circuit point, where the 
process is quasistatic): 

1TT =′   (5) 

This means that the engine efficiency Eq. 
(3) now equals η = ηc = 1-T2/T1 in accordance 
with the classical result of Carnot. The crucial 
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issue is, however, that the two forms of Eq. (3) 
hold for diverse irreversible processes, with vari-
ous contribution of dissipation, stretching 
through Newton-Fourier and Carnot regions, as 
shown in Figures 3 and 4. We use the name 
Newton-Fourier region as in this region the heat 
flux satisfies Newton’s cooling formula which is, 
in fact, the result of Fourier’s law of heat con-
duction 
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Figure 4.  Entropy production in a single 

CACN stage when Carnot temperature ′ T  is the 
control variable. In terms of Carnot variables 
classical thermodynamic formulae are extended 
to irreversible operations with work production 
or consumption. 

2.
m

Consid irst a power generation expres-
sion 

2.  Driving a single stage process by si-
ultaneous heat and mass transfer 

er f
and related quantities in terms of properties 

of circulating fluid. After combining energy and 
entropy balances, the power generated or con-
sumed in an endoreversible machine can be ob-
tained in the form (Sieniutycz 1999c): 

n)]ss(Thh[q)
T
T(1w '2'1'2'2'1'1

'1

'2 −−−+−=&

where n is the conserved mass flux. This

 (6) 

 equa-

n)n,q(

tion refers to the (primed) heat flux representa-
tion and corresponds with a general bilinear 
structure of power expressions with an efficiency 
vector (η, β’) in the equation: 

q)n,q(wp β′ '1'1'1 +η== &  (7) 

see, e.g., (de Vos 1992). Here the second co

pure heat transfer 

m-
ponent of power emerges which is associated 
with the work production (consumption) due to 
the mass transfer. Its interpretation is the 
product of mass flow n and an exergy-like 
function β'= h1’ –h2’ –T2’(s1’-s2’) whose structure 
follows from a combination of the energy and 
(conservative) entropy balances in terms of pure 
heat flux. For more details, see our earlier work 
Sieniutycz (1999c). The endoreversible thermal 
efficiency (i.e. that in terms of the properties of 
circulating fluid) is the same as in the process of 

'1

'2

T
T

1 −=η   (8) 

The thermal po-efficiency is the first com
nent of the 2D efficiency vector. It is important 
that t

 

he thermal component of efficiency, i.e. the 
quantity η, remains unchanged after passing to a 
suitable process description that involves the 
total energy flux ε  instead of the heat flux q. For 
the first fluid the quantity ε satisfies the defini-
tive expression ε1=q1+h1n1= q1’+h1’n1’=ε1’. 
Asimilar expression holds for the second fluid 
with the index 2. The virtue of the  flux ε is that 
the power production formula in terms of ε con-
tains the difference of the Planck potentials that 
are ratios of the chemical potentials and the abso-
lute temperature: 

1
'2'1

'2
'2 n)

TT
(T)

T
−+  (9) 

This makes the introduction of a
chemical potentials easy. The second component 
of th

'2'1'1
1

T
1(w

µµ
−ε=&

C rnot 

e efficiency is represented by the driving 
force: 

)(T '2'1
'2 −=′  (10) 

In this case the po n is in
energy flux representation”. Still it conforms 
with

TT '2'1

µµ
δ

wer expressio  “the 

 the general bilinear structure (de Vos 1992): 

n)n,()n,(wp '1'1'1 εδ′+εεη== &  (11) 

In the original model the efficiency compo-
own nents (8) and (10) depend on two unkn

(prim

antities. The 
defin

'2'2'1'12'2

ed) temperatures and two unknown 
(primed) chemical potentials of circulating fluid, 
linked by a reversible entropy balance and a 
mass balance across the reversible part of the 
system. Thus these efficiencies are very difficult 
to use in their original form (8) and (10), and a 
method to overcome the difficulty should be de-
signed. We will show that the Carnot quantities 
play an essential role in this matter. 

We shall pass now to corresponding rela-
tionships in terms of the Carnot qu

ition of T' given in Sec. 2.1 applies without 
any changes when mass transfer accompanies 
heat transfer. Likewise the Carnot chemical po-
tential, µ', is defined, which is expressed by the 
parameters of circulating fluid (T1', T2', µ1' and 
µ2') as follows: 

))T/T/()T/T(T/(T 22 µ−µ+µ′=µ′  (12) 

When the second reservoir is the en iron-
ex 2 

v
ment, the quantities subscripted with the ind
are replaced by those superscripted by the index 
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e (th

nctions of state associated with 
Carn

e environment). In any process with mass 
transfer, the work production is characterized by 
the vector of thermal efficiencies (η, δ'), such 
that its first component has the Carnot structure 
of efficiency (3). 

We shall display now the corresponding 
relationships in terms of Carnot quantities. The 
thermodynamic fu

ot temperatures and chemical potentials are 
called Carnot functions. In this way we may deal 
with Carnot energy, enthalpy, entropy, etc. For 
an irreversible engine process, under the endor-
eversibility assumption, we obtain in terms of the 
Carnot intensive parameters of the fluid 1: 

T
Τ

T
Τ e

2
′

−1=
′

−1 =η  (13) 

and 

)(T 2µ
−

µ′
=δ′  

TT 2
2 ′

(14) 

so be given in terms o
reservoir's parameters. Thus in terms of C
thermodynamic properties, the reversible struc-
ture 

ponents of the efficiency vector (η, δ') 
vanis

Eq. (14) can al f the 
arnot 

of basic equations is preserved in irreversi-
ble cases, and prediction is possible of irreversi-
ble process equations on the basis of well-known 
or easily-derived equations of reversible proc-
esses. 

At the short circuit point the equalities T' = 
T2 and µ' = µ2 (or T' = Te and µ' = µe) hold and 
all com

h. On the other hand, at the Carnot point the 
efficiencies refer to the quasistatic process. In 
this case, the efficiency vector has the “reversi-
ble” components: 

1

2

T
T

1−=η  (15) 

and 

)
TT 2

2

1
2

µ  (16) 

 the above special cases
returning to the gene al problem, we can 
that a general optimization task is to seek optimal 
T' an

),,T, 1
'

1 µµ

potentials are independent variables 
power extremizing is with respect to these Car-
not variables. The reversible balances of entropy 

and 

)TT(g) 11 ′−=

(T 1 −
µ

=δ

Leaving aside  and 
r state 

d µ' which maximize power p in “Carnot 
variables representation”: 

T(n),,T,T('

),,T,T()T,T(wp
'

2
'

2
'

1
'

1
'

'12
'

µµδ+

+µµεη=≡ &
 (17) 

Here the Carnot temperature and chemical 
and the 

mass across the reversible thermal machine 
are already included; thus the extremizing proce-
dure works without constraints. In an alternative 
case, all working quantities may be expressed in 
terms of the fluxes in the system, of energy ε1 
and of mass n1. A procedure working with heat 
flux q (which is omitted here) can also be de-
signed. See some examples in the next section. In 
this case the extremizing takes place with respect 
to the fluxes q1 and n1.  

In the simplest case of pure linear heat 
transfer: 

,,T,T(q 1'11 µµ′′=ε  (18) 

ing 1/g = 1/g1 + 1/g2. This was, in fact, 
shown  many 
works, see, e.g., refs. Sieniutycz (1999b) and de 

nces of temperature reciprocals 
and 

 

where g is the overall conductance of heat trans-
fer satisfy

by elementary calculations in

Vos (1992). It follows from Eq. (17) that at the 
Carnot point, where T' = T1, the reversible heat 
flux equals zero, which means the quasistaticity 
property. On the other hand, at the short circuit 
point, where T' = Te, the usual Newton-Fourier 
formula describes the heat flow which drives the 
thermal engine.  

When the mass transfer is coupled with the 
heat transfer, an exact approach requires using 
Onsager's theory to evaluate the fluxes ε1 and n1 
in terms of differe

the ratios of chemical potentials and T. 
Whenever working with fluxes other than (ε,  n), 
the introduction of a suitable Carnot-like chemi-
cal potential may or may not be possible. Argu-
ing from a general standpoint this also refers to 
Carnot temperature T'. Apparently T' emerges as 
a quantity independent of transformation of 
thermodynamic fluxes, at least if one is restricted 
to fluxes common in irreversible thermodynam-
ics. In general, however, various definitions of T' 
or µ' may or may not be possible in various co-
ordinate systems. This means that neither T' nor 
µ' can be introduced on a purely formal basis, i.e. 
without reference to a specific coordinate sys-
tem. Yet, suitable approximations are allowed in 
equations with T' or µ'. The heat flux q1' can be 
evaluated as proportional to the difference in 
temperatures (or in temperature reciprocals for a 
suitably modified heat conductance), as in Eq. 
(18). Mass flux can be expressed as proportional 
to the difference in concentrations of the active 
component (Sieniutycz 1999c). In agreement 
with the Lewis analogy: 

)XX(cg),,T,T(n 1
1

11 ′−=µµ′

ansfer conductance. 

′ −  (19) 

Here c is the specific heat of the fluid and 
gc-1 is the overall mass tr



2.3.  Finite resources and work optimiza-
tion in dynamical problems 
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W
This case, w tage 
syste

e shall now pass to sequential processes. 
hich is derived from the multis

ms theory, involves differentials and work 
functionals. It is assumed that the second fluid 
constitutes an infinite constant reservoir whereas 
the first fluid changes its properties when it pro-
ceeds through stages in time. Enthalpy changes 
are attributed to the total energy flux ε. In the 
formulae below we use the symbol T for the 
variable temperature T1(t). For an endoreversible 
flow process, the specific work obtained in terms 
of the Carnot controls is: 

}dX)TT(dH)T1T1({T

}dX)T/T(TdH)
T
T1({

}dX)T/T(
T

Tf

Ti

e

eee
eTf

Ti

eee

Ti

µ−′µ′+′−−

µ−µ+−−=

µ−′µ′
′

∫

∫  (20) 

The expression in the first integral was split 
into the reversible or path-independent part 
whic

TdH)T1({G/PW
eTf

+−−=≡ ∫

h is independent on Carnot controls (the 
second integral) and an irreversible or path-
dependent part which depends on these controls  
(the third integral). The result (20) leads to a 
generalized or finite time exergy A= maxW sat-
isfying the formula: 

}dX)TT(dH)T1T1({minT

)XX()SS(THH

}dX)T/T(TdH)
T
T1({max

G/PmaxWmaxA
eT

≡=

Tf

Ti

e

fiefiefi

eee
f

Ti

µ−′µ′+′−−

−µ−−−−=

µ−′µ′−
′

−−=

∫

∫
 (21) 

Consequently the (maximum) work pro-
duced by the engine is equal to the change of the 
class

 the effect of entropy produc-
tion 

ical exergy reduced by the product of the 
reservoir's temperature and the (minimum) en-
tropy production.  

An analogous equation is obtained for the 
heat pump, but then

is added to the classical exergy change, i.e. 
an increase of the work input is necessary to as-
sure the required state change in a finite time. 
Eq. (21) expresses - in terms of Carnot controls - 
the Gouy-Stodola law for the endoreversible sys-
tem (Bejan 1982, Sieniutycz 1997b). The ther-
modynamic form of the entropy source (without 
kinetics incorporated) is classical in terms of the 
Carnot controls, and it is the sum of products of 
thermodynamic fluxes and forces:  

τµ−′µ′+′−= ∫σ d}X)TT(H)T1T1({S
Tf

Ti

&&  (22) 

The kinetic form of this source, w
corporates Onsager's relations, is classical as 
well,

hich in-

 i.e. it is the same as in processes without 
production or consumption of mechanical en-
ergy: 

τµ−′µ′+µ−′µ′

′−+′−=

τ++

∫

d})TT(g)TT(

)T1T1(g2)T1T1(g{

d}XrXHr2Hr{

2XX

2
HX2HH

Tf

Ti

2HX XX2HH

Ti

&&&&

 (22) 

This classical structure implies the con-
stancy of rates and forces along an optimal path, 
and 

ces of Flows  

stat bles are some 
oper

ton's heat exchange 
W

place on bot and the partial 
cond

11

whe
part of the engine) and g is the overall conduc-

= ∫σS
Tf

also the constancy of the entropy production 
(the so-called “equipartition of the entropy pro-
duction”, first systematically treated by Tondeur 
and Kvaalen 1887). Yet this property holds only 
for linear processes in which conductance coeffi-
cients are state-independent constants and no 
constraints are imposed on control variables. 
Examples are the Fourier heat exchange, linear 
mass diffusion, first-order chemical reactions, 
etc.  

3. Examples of Carnot Temperatures in 
Spa

In spaces of flows or time derivatives of 
e variables (rates) Carnot varia
ator expressions which depend on process 

state and flow or time derivative characterizing 
the process. Expressions given below show re-
spective formulae for processes recently treated 
in the literature. We restrict to the Carnot tem-
perature operator T’ and related thermal efficien-
cies. 

3.1.  Classical CACN process with New-

hen Fourier-Newton heat exchange takes 
h parts of the engine 

uctances are g1 and g2, then the Carnot tem-
perature:  

g/qTT −≡′  (23) 

re q1 is the driving heat flux (on the high-T 

tance which results as the reciprocity of the sum 
of the partial heat resistances, g= (1/g1 + 1/g2)-1 
or g1g2/(g1 + g2). The resulting thermal efficiency 
satisfies the well-known formula (de Vos 1992): 

g/qTT 1−

T1T1 22 −=
′

−≡η  (24) 
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power exponent α
Here 

exchan
Newtonian a ow-T fluid 
is Ne

3.2.  Non-Newtonian heat exchange with 
 

we deal with the case when the heat 
ge on the side of the high-T fluid is non-

nd that on the side of the l
wtonian. The respective formula for T’ is: 

22
a/1

111 g/q)g/q(TT −−=′   (25) 

Sieniutycz (2000) hence the efficiency: 

g/q)g/q(TT 2
a/1

111 −−′
T1T1 22 −=−≡η . 

1 is id
tical with energy flux ε. 

c) is: 

(26) 

Of course in these cases heat flux q en-

3.3.  Simultaneous heat and mass transfer 
The Carnot temperature evaluated from the 

results of (Sieniutycz 1999
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(27) 

where the partial conductances indexed by m 
refer to mass transfer. This result is in terms of 
the pure heat flux q1 rather than the energy flux 

 account the power and simplic-
basic 
 and 

math

-
Boltz
heat excha he radiation laws: 

y flux 
acros
form: 

ε. R is the gas constant, c1 and c2 are the specific 
heats of the first and second fluid, gm1 and gm2 are 
related conductances of mass transfer, and X1 and 
X2 are concentrations of the active component. 
Again, the thermal efficiency is calculated as 
η =1-T2/T'. Both results can contribute to the 
present theory of active drying processes (Sieni-
utycz 1999d).   

4.  Non-Typical Use of Carnot Variables 

Taking into
ity of models that use Carnot variables, a 
question can be asked about physical

ematical conditions that constraint defini-
tion and effective use of Carnot controls T' and  
µ'. The following test answers this question.  

4.1.  Application to endoreversible radia-
tive engine 

We consider the so-called Stefan
mann engine (de Vos 1992), where both 

nges satisfy t

)TT(gq 4
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4
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2
4
'222 −=  (28) 

The continuity condition for the entrop
s an endoreversible e has the radiative engin

T)TT(g '1
4
'1

4
11 − = T)TT(g '2

4
2

4
'22 −  (29) 

The substitution of Eq. (29) of the second 
prim
leads to the temperatures of the circulating fluids
in ter

ed temperature in t = The form T2' 1'T2/T’ 
 

ms of Τ1, Τ2 and: 

)T(
)T/T(])T/T(gg[

g

)T(
/T(gg

g
)T( 4

2 21

14
'1 +

=
)T

4
2

2
3

221

2

13

′′+
+

′  (30) 
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221

′
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+

The use of Eq. (30) in the first fo
8) yields: 

g

)T()T/T(
)T/T(gg

g
)T(

432

4
1

4
23

2 21

14
'2 ′

′+
=

 (31) 

rmula of 
Eq. (2

22 g)T/T( +′

this purpose the equality T'T"
used. The heat q  equals q (1- η) = q T /T', 
when

3
1

44
1

211 g
TTggq

′−
=  (32) 

Similarly an equation for q2 is obtained. For 
 = T1T2 can also be 

2 1 1 2
ce, in terms of the second Carnot control 

T": 

3
121 )T/T(gg ′′+

2', η = 1 - T2/T1,   

term
T" fo ations that are similar but 
not i

engine that the overall kinetics expressed in 

4
2

4

212
TTggq −′′

=  (33) 

At the Carnot point: 

T’= T1 = T1', T" = T2 = T
q1 = q2 = p = 0. 

In conclusion, heat fluxes expressed in 
s of their own Carnot controls (T’ for q1 and 
r q ) satisfy equ2

dentical with equations of a related process 
without work. This is caused by the nonlinearity 
of the transfer process in the case of radiation. 
Only at the short circuit point, where T’ = T2 and 
T" = T1 along with q1 = q2, Eqs. (32) and (33) 
yield the kinetics known from traditional proc-
esses: 

]TT[g]TT[gq 4
2

444
11 −′′=′−=  (34) 

5.  Concluding Remarks 

It follows from the analysis of the radiation 
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’  or T" is identical in 
opera

-
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terms of the temperatures T
tions with and without work only when 

involved transport processes are linear. In 
nonlinear cases, the overall kinetics differ in both 
kinds of operations. Yet, the benefits that result 
from describing thermal machines in terms of 
Carnot variables are preserved in all thermody-
namic relations. They follow from a common 
expression for the maximum work potential (or 
the entropy source), the same for operations with 
and without work. For processes without chemi-
cal reactions and those large numbers of trans-
ports in which linear approximations are accept-
able, the models and optimization results in both 
kinds of operations are identical. This offers a 
good opportunity to predict optimal controls and 
optimal trajectories for difficult processes in 
thermal machines with coupled heat and mass 
transfer by applying the well-elaborated optimi-
zation results obtained for classical heat and 
mass exchangers. Future research will include 
complex chemical processes with nonlinear re-
sistances (Grabert et al. 1983, Shiner 1987). 
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Nomenclature 

A generalized exergy 
A exchange area 
c specific heat 
G fluid flow 

 g overall conductance
sg1, g2  partial conductance

trolH enthalpy of con
n  molar mass flux 
P, p  total and local power 
q1'  heat flux at state 1' (Fig. 1) 

 r  overall resistance
S  entropy 
T absolute temperature 

   Sσ entropy production
 time t  physical

W  specific work 
ive comX  concentration of act

 coeffiα heat exchange
β' material efficie

flux 
γ cumulative conductance 
δ material efficiency in the frame with en-

ergy flux 
ε energy flux  
η  thermal efficiency 
µ  chemical potential 
τ  nondimension
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