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Abstract 
Two competing directions in elementary chemical or transport steps are analyzed from the 
viewpoint of their contribution to the overall rates. Systems with nonlinear transport 
phenomena and chemical reactions are described by the equations of nonlinear kinetics of 
the Marcelin-Kohnstamm–de Donder type that contain terms exponential with respect to 
the Planck potentials and temperature reciprocal. Simultaneously these equations are 
analytical expressions characterizing the transport of the substance or energy through the 
energy barrier. They constitute potential representations of a generalized law of mass 
action that includes the effect of transfer phenomena and external fields. Important are the 
physical consequences of these kinetics near and far from equilibrium. In these 
developments nonlinear symmetries and generalized affinity are important. The affinity 
picture - new for transport phenomena - and the traditional Onsagerian picture are shown to 
constitute two equivalent representations for kinetics of chemical reactions and transfer 
processes. Correspondence with the Onsager’s theory is shown closely to the 
thermodynamic equilibrium. Yet, it can be shown that rates of transport processes and 
chemical reactions far-from-equilibrium cannot be determined uniquely in terms of their 
affinities since these rates depend on all state coordinates of the system. 
Keywords:Chemical kinetics, mass action, transport phenomena, generalised affinity 

 
1. Introduction 

The basic idea of the present work can 
easily be perceived after comparing rate 
equations describing microscopic and 
macroscopic processes. Tolman’s law of 
microscopic reversibility (Waldram, 1984) states 
that for elementary ("microscopic") interactions 
the constant parameters (the probability factors) 
in the rate equations of the reverse processes are 
equal: 

 Pi→k = Pk→i  (1) 
Consequently, when elementary processes with 
elastic collisions of molecules take place, the 
microscopic rate equations are identical for direct 
and reverse processes. The law of microscopic 
reversibility is thus equivalent with the statement 
that the rate coefficients of competing micro-
processes are the same, or that kf = kb, where 
indices f and b refer to forward and backward 

rates, so that the equilibrium constant equals to 
unity K = kf /kb =1.  

However, for macroscopic (e.g., chemical 
reaction) processes this property is no longer 
valid. The standard structure of the kinetic law of 
mass action (KMAL) treats the (net) rate of a 
reaction as the difference of two competing 
unidirectional fluxes, each flux being expressed 
in terms of the concentrations c and the 
temperature T. For a net chemical rate of a single 
reaction J = rf(cf) - rb(cb). The consequence of this 
description is that the ratio K = kf/kb or the 
equilibrium constant can assume very diverse 
values.  

To ensure the agreement between the 
descriptions of macroscopic and microscopic 
processes some researchers (Waldram, 1984; 
Lengyel and Gyarmati, 1986; Keizer, 1987; 
Lengyel, 1988; in particular Oláh, 1997a,b, 
1998), have proposed in a series of works that the 
familiar mass-action expressions for the net 



reaction rate, r = rf(cf) - rb(cb), should be replaced 
by the so-called potential-action laws (PA laws) 
where rate expressions are in terms of the 
potentials 1/T, -µi/T, etc., i.e. the quantities that 
equalize at equilibrium rather than concentrations 
c. Truncated forms of these expressions have 
proved its utility in the analysis of currents of 
photons and electrons in semiconductors as 
elements of solar cells. The idea of use of 
intensive variables in thermodynamic 
descriptions was extensively promoted by Callen 
(1985) in the fluctuation theory.  

Typically, potential-based equations contain 
exponential terms with Planck potentials and 
temperature reciprocal, and they can be related to 
analytical expressions characterizing the jump 
through the energy barrier as used in Eyring’s 
theory of rate processes (Glasstone et al., 1941). 

To show how potential-based equations 
appear we shall transform to the space of 
potentials the basic equations of chemical kinetics 
taken in their usual form. This usual form 
represents the so-called kinetic mass action law 
(KMAL) or the Guldberg and Waage (1867) 
kinetics, (Sieniutycz, 1987). As this classical 
formal structure of KMAL was confirmed by a 
very large number of experiments in chemical 
kinetics, it constitutes the suitable starting point 
to transformations and generalizations. Firstly, 
rate processes subject to the restriction of 
isothermal kinetics are considered. They will be 
transformed from the usual space of 
concentrations to the space of Planck potentials 
as thermodynamic intensities, as shown below. 

2. Potential Representation of Classical 
Kinetics of Rate Processes 

Consider the system of chemical reactions:  
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 i =1, 2,...n  and j =1, 2,...N, involving the 
chemical components Bk (k=1,..n) and proceeding 
at the rates r1, ...rN. The unidirectional 
stoichiometric coefficients for forward and 
backward rates are always positive quantities. 
The reaction is the competition of forward and 
backward processes. Using the usual structure of 
chemical potentials 
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are substituted into the classical mass action 
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The result is the chemical rate equation in the 
Marcelin-de Donder form 
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This equation already has the typical (while still 
not the most general) nonlinear structure of 
macro-kinetic equations. Its virtue is the single 
(universal) reaction rate constant, representing the 
so-called exchange current, and the explicit 
satisfaction of the principle of microscopic 
reversibility at the state of thermodynamic 
equilibrium. The exchange current expressed by 
“usual” reaction rate constants has the form: 
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In the case of ionic systems, electrochemical 
potentials should replace chemical potentials. In 
all considered cases equations obtained are 
analytical expressions characterizing the transport 
of the substance or energy through the energy 
barrier. They constitute potential representations 
of a generalized law of mass action that includes 
the effect of transfer phenomena and external 
fields. 

Electrochemistry is, in fact, the realm where 
the notion of the exchange current is best known, 
Figures 1 and 2. Olah, in particular (1997a,b, 
1998), has given suitable pictures that interpret 
anodic and cathodic currents as well as the 
exchange current in terms of voltage or 
electrochemical potential. In fact, it is the 
condition of the vanishing electrochemical 
affinity at equilibrium that makes it possible to 
define the universal rate constant or the 

exchange current of electrochemistry.  

0
jr

In the case of isothermal electrochemistry, 
the result of the procedure involving potential 
descriptions of kinetics is the Butler-Volmer 
equation that describes the electric current J as 
the resulting difference between the anodic and 
cathodic currents. 
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Figure 1. Oláh’s interpretation of anodic 
and cathodic currents as well as of the exchange 
current in terms of voltage. Abscissa of crossing 
point of both currents describes the exchange 
current. 

The potential form of the Butler-Volmer 
equation is:  
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where tilde symbols refer to electrochemical 
rather than chemical potentials.  

 

Figure 2. Interpretation of logarithms of 
anodic and cathodic currents as well as of the 
exchange current in terms of electrochemical 
potential. 

Whereas the customary, equivalent form of 
the Butler-Volmer equation (Bockriss and Drazic, 
1972) describes the electric current of a cell in 
terms of the overvoltage η  

 ( ))T/Fexp()T/F)1exp((IJ 0
el RR ηα−−ηα−= (8) 

where Jel is electric current, α constant 
coefficient, η overvoltage and F universal 
Faraday’s constant. The coefficient α 

characterizes the symmetry of the energy barrier 
and is near to ½. Equation (8), commonly used to 
describe various electrochemical systems 
including fuel cells, has been investigated most 
recently. 

More information about the electrode 
kinetics can be found in references (Olah, 1997b; 
Bockriss and Drazic, 1972). A generalization of 
the above theoretical scheme using general 
principles of thermodynamics is now discussed. 

3. Thermodynamic Generalization 

In the potential-action laws both 
unidirectional (absolute) rates are expressed as 
functions of the potentials Fi = (1/T, -µi/T), i=0, 
1…n, which are the thermodynamic conjugates of 
the extensive variables in the Gibbs equation for 
the system’s entropy 

CF d.dCFdcTdΕTdS i
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where C = (E, c) is a generalized state vector. 
Momentum terms are ignored and exchange 
processes of energy and substance at mechanical 
equilibrium are considered. The description used 
here is discrete, with finite driving forces, thus 
the continuous (field) description operating with 
gradients does not apply. The description that 
refers to the transport rather than rate processes is 
begun with. In this description the current 
associated with i-th degree of freedom is 
described by functions Ii

f(F0, F1,... Fs) and Ii
b(F0, 

F1,... Fs). By assumption the potentials Fi include 
effects of external fields. At thermal and diffusive 
equilibrium the two vector equalities are valid 

 (Ff)eq = (Fb)eq =(F)eq    (10) 

 If(F0, F1,... Fs)eq = Ib(F0, F1,... Fs)eq (11) 
These two equations can simultaneously be valid 
only if the rate vectors If and Ib describing the 
direct and reverse currents of the quantities 0, 1, 
2..s are of the same form in the directions f and b. 
(Still, the expressions describing the resulting 
rates can be quite diverse.) A corollary is valid: 
both unidirectional flows of a particular quantity 
k are described by the same function Ij(F0, F1,... 
Fs).  

Using the standard formalism elaborated for 
a set of chemical reactions 
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(i, k = 0. 1, 2…s and zero refers to the energy)  
here the s+1 exchange processes as peculiar 
chemical reactions described by quadratic 
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(generally non-symmetric) matrices of 
stoichiometric type  and  that satisfy the 
equality are considered: 

f
ikv b

ikv
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f
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Nothing can be said about the symmetry 
properties of this matrix. As in this case the 
resulting (net) coefficients  always 
vanish, we shall call  and  peculiar 
stoichiometric coefficients. The equality  
assures the thermodynamic equilibrium in 
exchange processes whenever all potentials F

f
ik

b
ikik vvv −=

f
ikv b

ikv
b
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f
ik vv =

k are 
the same at states f and b, i.e. for Ff

eq = Fb
eq. In 

genuine chemical reactions stoichiometric 
matrices  and  are in general not quadratic 
matrices, and they are unequal in states f and b, 
the property that ensures the uniqueness of 
chemical equilibria. It will soon be seen that the 
symmetry properties in the system (assuring 
satisfaction of the Onsager’s reciprocity relations) 
are represented by the following equality: 

f
ikv b
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Using the standard formalism of chemical 
reaction systems (Sieniutycz, 1987; Shiner, 
1987), for each exchange process a general 
affinity can be postulated that satisfies some 
essential relationships written out below.  

For an uncoupled process 
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where, in this case, trivially, . This 
means that any uncoupled kinetics represents, in 
fact, a first order kinetics. The same final 
expression holds true for a general coupled 
process 

1vv b
k

f
k ==

 

).I/Iln(

)Ck/()Ck(ln

FvFvA

b
k

f
k

s

0i

vb
i

b
k

s

0i

vf
i

f
k

f
i

i

f
ik

b
i

i

b
ik

s
k

b
ik

f
ik

R

R =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=−=

∏∏

∑∑

==
 (16) 

The quantity is the affinity of the k-
th exchange process in the entropy representation. 
Only in the first (uncoupled) are scheme 
exchange processes governed by a trivial kinetics; 
in the second scheme the kinetics is quite 
involved. Still the last expression of the above 
equations does apply to exchange processes of 
any order (it is also valid for genuine chemical 
reactions). The above formulae show that any 

finite affinity persisting in an irreversible process 
yields a constraint on forward and backward 
currents. The constraint means that in order to 
assure a positive net rate of exchange J

T/AA k
s
k =

k=If
k-Ik

b, 
the forward rate must exceed the backward one 
according to the formula 
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This formula is well known in the realm of 
chemical reactions, where it is usually presented 
in an equivalent form describing the net reaction 
rate (Prigogine, 1959)  
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Its advantage is that it shows the proportionality 
of the net rate Ik to the affinity in the regime close 
to equilibrium, where  becomes a constant 
(due to the constancy of C= C

b
kI

eq) and the affinity 
is small. Yet this formula also shows that far from 
equilibrium the transport rates cannot be 
determined uniquely in terms of their affinities 
because these rates depend on all state 
coordinates C.  

4. Properties of Generalized Exchange 
Equations 

Due to the logarithmic structure of Planck 
potentials with respect to concentrations, the 
mathematical structure of the absolute 
(unidirectional) rates in terms of potentials F = 
(1/T, -µi /T) also follows in an exponential form. 
The basic quantities of the rate theory are two 
unidirectional (absolute) currents If(Ff) and 
Ib(Fb), in fact I(Ff) and I(Fb),  and potentials F = 
(1/T, -µi/T). For 1, 2…s the subscript i refers to 
the species (charged or neutral), whereas the 0-th 
component refers to the energy. Unlike in 
Onsager’s description, the differences in Fk play a 
secondary role; the basis is a relation linking 
absolute fluxes Ik with transfer potentials Fi. For 
an i-th forward process the following relation 
holds 
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With appropriate indices the same is valid for the 
backward process. The exchange mechanism 
follows as the net result of the opposite effects.  
At the thermodynamic equilibrium both absolute 
rates and potentials Fk equalize, although they are 
different at nonequilibrium. The quantities Ik

o 
(“exchange current”) and  (peculiar 
stoichiometric coefficients) are common for both 
directions. The net exchange flux corresponding 
to equation (19) is 

*
ikv
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whereas the ratio of absolute fluxes is 
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In the considered case of  the 
last formula is equivalent to the affinity-flux 
relation jjj , equation (18), 
discussed earlier. For the genuine chemical 
reactions the formulas analogous to equations 
(20) and (21) are given by equations (45) and 
(17). equations (20) and (21) show that the 
unidirectional (forward and backward) kinetics of 
transport processes are governed by the forward 
and backward l components of the extended 
affinities. For forward rates 
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In relation to the energy barrier, these quantities 
are defined for initial and final states of the 
exchange process. In fact, in the transport 
kinetics, they play the same role as the 
temperature does in the heat exchange; each i-th 
elementary transport proceeds in the direction 
from higher to lower . Therefore and 

 are the “potentials of exchange”. An 
essential, interesting difference between 
equations (20) and (21) can now be stressed. 
Equation (20) proves that the resulting rate 
follows as the difference of (exponential) 
functions of Π

f
iΠ b
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k, whereas equation (21) shows 
that the ratio of unidirectional rates is governed 
by (exponential) function of the differences - 

. The distinction between the kinetics in terms 
of “difference of functions” and “functions of 
differences” is useful to explain the violation of 
uniformity of optimal driving forces in the 
nonlinear problems of finite time 
thermodynamics obeying the kinetics of 
“difference of functions”. See Figure 3. Here it is 
stressed that the conventional description of 
irreversible processes (Onsager, 1931) uses net 
thermodynamic fluxes J

f
kΠ

b
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i and (net) 
thermodynamic forces Xi which are the 
differences of potentials Fi. Namely, the 
traditional rate equations (for example, those of 
the Onsager’s theory) are postulated as the 
relations of the following structure [5]-[8] 
 J = f (X),   J= −∆I;     X= ∆F (22) 

In the Oscanger’s (1939) theory 

 Ji = ∑
k

LikXk (23) 

where Lik is an Onsagerian phenomenological 
coefficient. In the cases far from equilibrium this 
sort of equation is often non-unique. See the 
corresponding remark concerning the non-
uniqueness of the transport rates in terms of their 
affinities, at the end of Section 3. 

 

Figure 3. Interpretation of net fluxes J and 
classical driving forces X. 

In the nonlinear approach of the present 
work two competing directions of the rate or 
transport process are always considered. In fact, 
thermodynamic nonequilibrium systems are 
described by the generalized Marceline-de 
Donder equations of nonlinear kinetics as first 
stated by Keizer (1987) and Hungarian 
researchers (Lengyel and Gyarmati, 1981, 1986; 
Lengyel, 1988), in particular Olah (1997a,b, 
1998). These equations contain terms that are 
exponential with respect to Planck chemical 
potentials and T--1, and simultaneously are 
analytical expressions characterizing the motion 
through the energy barrier (Glasstone et al., 
1941).  

Cross symmetry property can be tested as 
the symmetry condition for the matrix of the 
partial derivatives of fluxes with respect to 
potentials. The derivatives are calcuted 
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The equality of these derivatives describes the 
general symmetry of nonlinear thermodynamics 
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Thus one can write the symmetry condition in the 
form 
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In particular, at equilibrium . In 
this formalism symmetric rate coefficients are 
partial derivatives of absolute process rates with 
respect to the potentials (Olah, 1997a). Because 
such symmetry is experimentally proved and 
there are also statistical mechanics examples that 
show its validity, it can be regarded as the 
evidence of the theory correctness. This 
symmetry is not confined to linear rate relations. 
At the linear approximation the considered 
derivatives are the negative Onsagerian 
phenomenological coefficients (-L
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ik = -Lki). On 
the other hand, the matrix of peculiar 
stoichiometric coefficients is not symmetric. 
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When the process runs close to the equilibrium it 
is suitable to use the general exchange equation in 
an equivalent and still general form 
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is the common value of both absolute currents at 
equilibrium. The first derivatives of the net flux 
with respect to equilibrium potentials 
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For small deviations of potentials Fk from 
equilibrium and for small ∆Fk/R, restricted to the 
first order small terms, Taylor expansion yields 
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ik ν≡ is the Onsager’s matrix at 

equilibrium. The general equality 

, discussed earlier, can be used to 
preserve Onsager’s symmetry close to 
equilibrium. On the reverse, as the Onsager’s 
symmetry is experimentally confirmed, it can 
constitute an argument for the validity of 
equality and general symmetry (26) 
within the present theoretical framework. 
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The expansion of the net flux in the Taylor 
series can be given an alternative form that uses 
the process affinity 
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Thus, in the equilibrium vicinity the rate of each 
exchange process is proportional to its own 
affinity. This means that the frame of affinities is 
the frame of particular forces where the 
coefficients are diagonal, R)/I(Ldiag eq
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ik = . The 

Onsager’s form for the net kinetic current  
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frame to the affinity form on the basis of the 
general symmetry condition satisfied by all 
nonlinear equations of thermokinetics. The 
affinity form (33) and Onsager’s form (34) 
constitute two equivalent complementary forms 
of linear equations of coupled exchange 
processes close to equilibrium.  

5. Properties of Generalized Chemical Kinetics 

Consider now the system of generalized 
chemical reactions 
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involving the energy B0 (k=0) and chemical 
components Bk (k=1,..s) that proceed at the rates 
r1, ...rN. This is the way to include heat effects in 
the formal description. Again we take into 
consideration of competition of forward and 
backward processes. Interestingly, the genuine 
chemical equilibrium is satisfied in a different 
way in this formalism than the equilibrium of 
exchange processes. As in the genuine chemical 
case the (unidirectional) stoichiometric 
coefficients are unequal, the chemical analogue of 
the expression (19) must be satisfied in both 
directions with different stoichiometric 
coefficients. This yields the equality 
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for each reaction j. Clearly, for the vanishing rate, 

 Int. J. of Thermodynamics, Vol. 8 (No. 3) 120 



this equality yields the classical condition of 
chemical equilibrium in the form 
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Consequently, as opposed to transport processes, 
absolute stoichiometric coefficients in genuine 
chemical reactions are unequal, whereas  
potentials Fk on both sides of the energy barrier in 
the kinetic regime are equal. The inequality of 
stoichiometric coefficients in states b and f 
ensures non-vanishing resulting coefficient νjk 
and makes the chemical equilibrium unique.  

For j-th elementary chemical step in f 
direction the kinetic formula is: 
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With appropriate indices the same is valid for the 
backward reaction. The reaction rate is the net 
result of two opposite rates. At the chemical 
equilibrium both absolute rates equalize 
corresponding with the vanishing affinity as 
discussed above. The quantities rj

o (“exchange 
currents”) are common for both directions. The 
net reaction rate corresponding with (38) is 
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Whenever transports are fast, potentials Fi are 
equal at states f and b. If the transports are not 
fast, equations of the previous section should 
accompany the (non-simplified) equations of 
chemical kinetics with potentials Fi different at 
states f and b.  

As the total number of the system 
coordinates s comprises the energy (s=0) and n 
components, the extended affinity of the entropy 
representation can be written in the form: 
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In this equation generalized potentials Πj of states 
f and b appear; they are defined as: 
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The potentials Πj at states f and b are, 
respectively, unidirectional components of the 
extended affinity for reactants and products. 
When the classical part of the chemical reaction 
(governed by chemical potentials) is ignored the 
remaining term ∆Πtherm describes heat effects 
through the energy barrier, thus comprising the 
isothermal heat of reaction (at Tb, say) and the 
heat exchange: 
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According to equation (38) in terms of Πj 
the law of chemical kinetics for j-th elementary 
chemical step in f direction acquires the general 
structure  
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Consequently, an equation for the resulting rate 
of generalised rate process can be written as: 
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Thus, the f and b components of the extended 
affinity, and , play the same role in the 
chemical reaction kinetics as the temperature 
does in the heat exchange. In other words, 

and constitute potentials of the reaction 
because the j-th chemical reaction proceeds in the 
direction from a higher  to a lower . 
Interestingly both and  are state functions, 
so the reaction flow occurs from a higher to a 
lower Π in a similar way as the heat flow from a 
higher to a lower T. As the generalized 
expression for the forward potential  (and the 
analogous expression for ) shows 
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the classical counterparts of and  
involving chemical potentials exclusively can 
yield rigorous chemical forces −  only in 
the case of isothermal conditions (isothermal 
energy barrier). 

f
jΠ b

jΠ

f
jΠ b

jΠ

If reactions are independent, then the cross 
symmetry, understood as the equality of the 
derivatives of rates ri with respect to potential Πj, 
is satisfied trivially. 
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If the rank of stoichiometric matrices and 
is Q<N, the complete set of reactions (35) 

f
ikν

b
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will be linearly dependent and the maximum 
number of linearly independent chemical 
reactions will be Q. Let the set of generalized 
reactions (u=1, 2...Q)   
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be such an independent subset. In this case the 
relations 
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hold for u=1, 2….Q. The coefficients γju are small 
integers or zero. Substituting into the new 
(asterisk marked) rates, the expression 

of kinetic formula (44) and 
the linear expression , we 
obtain for u-th reaction 
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or, for w-th reaction 
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(u, w =1, 2….Q). The cross equality of the 
derivatives of independent rates with respect to 
potentials Πj is satisfied in a nontrivial way: 
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For more details see references (Lengyel and 
Gyarmati, 1981; Lengyel, 1992). Taking into 
account the basic expression for the absolute 
chemical rates 
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and the general symmetry presupposed by Li in 
1958 
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one could write down the following constraint on 
absolute rates k and j 
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and also analogous equalities for the backward 
reaction, b. Note the difference of these 
symmetries with well-known Onsager (1931) 

symmetries that refer to derivatives of resulting 
rates or fluxes with respect to driving forces, X, 
not the potentials F.  

6. Coupled Heat and Mass Exchange in 
Discontinuous Systems 

Applying the present model of nonlinear 
macrokinetics, the coupled  transfer of mass (m) 
and heat (h) is considered. This process is 
described by the general exchange equation  
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whose equivalent form is  
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as the common value of the absolute current at 
equilibrium. 

The corresponding kinetic set contains two 
equations. The first one describes the mass flux 
of an active component (e.g., moisture) 

 
]})

T
1()

T
(exp[

])
T
1()

T
({exp[IJ

b*
21

bm*
11

f*
21

fm*
11

0
11

RR

RR

−ν+
µ

ν−

−ν+
µ

ν=
 (59) 

and the second one- the heat flux q=I2  
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Conditions that must be satisfied in order to 
assure the Onsager symmetries in the above 
kinetic equations are determined. Applying the 
formula (57) and expanding both kinetic 
expressions in the Taylor series subject to the 
assumption that the deviations of potentials Fi 
from Fi

eq are small (which means small driving 
forces), obtained is: 
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and 
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The equilibrium fluxes are defined in equation 
(58) above. The Onsager’s matrix of this model is 
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These equations prove that for an occasionally 
symmetric matrix , both absolute equilibrium 
currents and  must be identical, so they 
must be replaced by a certain universal constant, 
I
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eq. If, however, as usual, the discussed matrix is 
not symmetric, then the requirement of 
Onsagerian symmetries imposes appropriate 
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namely, . 
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7. Coupled Thermal Fields 

The concept of the energy barrier contains a 
restrictive ingredient caused by its discrete 
nature: it is not capable of avoiding mean 
quantities characteristic of the whole barrier, 
connected with finite affinities or driving forces. 
To describe the state transformation as a motion 
through the energy barrier treated as a continuum, 
an effort can be made to replace a logarithmic 
resistance governing linear systems (a mean 
quantity associated with a finite affinity) by its 
local counterpart. The result is a continuous 
description governed by a principle of the Fermat 
type with an infinite number of infinitesimal 
refractions of the ray (Sieniutycz, 2003). The 
results show that the path of chemical complex 
bends into a direction that ensures its shape 
associated with the longest residence time in 
regions of lower resistance, a property that makes 
it possible to predict shapes of chemical paths. 
(See Figure 4.) 

The field counterpart of the theory implies 
that the diffusion coefficients D are not constants 
but are exponential functions of intensive state 
coordinates (temperature reciprocal and Planck 
potentials). The exponential dependence of D on 
1/T was confirmed in a large number of 
experiments, especially in those describing 
diffusion in metals and melts and drying of solids. 

For the thermal conduction process coupled 
with mass diffusion, a formula is obtained which 
is nonlinear with respect to the complete state 
vector C 

)T()(L)T()(L 1
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11q
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where L11 is the Onsager’s thermal 

conductivity connected with the usual one by the 
relation L11=λT2. Besides concentrations ck, 
vector C may include energy density or T. The 
equation of this sort holds also for the mass flux 
Jm.  

 
Figure 4. Illustration of Fermat-type 

principle for transport and rate processes. The 
motion is between two regions with different 
specific resistances ρ1 and ρ2. The path in the 
coordinates x and y highlights “a ray”. The area 
A0 tangent to the surface separating two regions 
of constant ρ is a system constant. Yet, the areas 
Ai = A0cosαi (i=1, 2) perpendicular to the 
chemical flux decrease with angle αi. The ray 
bends into a direction that ensures its shape 
associated with the longest residence time in 
regions of lowest resistance.  

As the result of the integration along the 
gradient direction of the vector relationship 
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a chemical Ohm’s law follows in the form Jj 
=ΛjAj. The integration of (65) is in the limits 
between  and . 
Replacing the usual scalar rate r

R/Q f
ij

f
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i by a vector 
chemical rate Ji , such that    Ji  = ri  , is operative 
in the physical space.This approach also includes 
electrochemistry whenever Fi is related to 
electrochemical potentials. 

It may be shown that the general expression 
for the equilibrium Onsager’s matrix of the 
related discrete model in terms of the pseudo-
stoichiometric coefficients is 
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8. Concluding Remarks 

• In comparison with earlier approaches 
(Olah, 1997a,b; Lengyel and Gyarmati, 1981; 
Sieniutycz, 2004) the present formalism has the 
virtue of greater consistency and simplicity due to 
its direct relation to the tensor representation of 
the involved physical quantities in affine spaces. 
With the formalism, kinetics of typical 
macroscopic processes with exchange of energy 
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and matter can effectively be described by 
methods known for chemical reactions.  

• Generalized kinetic equations for 
exchange processes and chemical reactions are of 
similar structure. Yet, absolute (unidirectional) 
stoichiometric coefficients for forward and 
backward steps are equal in transport processes 
whereas they are not in chemical reactions. In all 
cases Onsager’s symmetries impose appropriate 
connections between absolute equilibrium 
currents. 

• Only in close vicinity to the 
thermodynamic are equilibrium rates of exchange 
processes or chemical reactions defined uniquely 
in terms of their affinities. The affinity picture - 
new for transport processes - and the traditional 
Onsagerian picture constitute two equivalent 
representations for the process kinetics. In the 
affinity picture both near and far from the 
thermodynamic equilibrium, the conductance 
matrix L is diagonal and each flux is proportional 
to its own affinity. Yet, far from the equilibrium 
both the conductance matrix and kinetics depend 
on all state coordinates of the system.   

• The distinction between kinetics 
expressed in terms of “difference of functions” 
and “functions of differences”, equations. (20) 
and (21) respectively, should be underlined. This 
difference is useful to explain the violation of 
uniformity of optimal driving forces in nonlinear 
problems of finite time thermodynamics 
(Badescu, 2004). It may be shown that the 
optimal affinity profiles can be constant along the 
optimal paths only in the case of unconstrained 
problems with kinetics governed by the 
“functions of differences”. 

• The field counterpart of the theory implies 
that the diffusion coefficients D are not constants 
but are exponential functions of intensive state 
coordinates (temperature reciprocal and Planck 
potentials). The exponential dependence of D on 
1/T was confirmed in a large number of 
experiments, especially in those describing 
diffusion in metals and melts and drying of solids 
(Olek et al., 2003). 

• Affinity frames have not yet been used for 
transport processes; in view of their interesting 
properties further investigations seem reasonable 
along this research line. A promising feature 
refers to simultaneous studies of invariance 
properties in chemical and transport processes 
(Gorban et al., 1994) that should be studied more 
easily in affinity frames than in the frames using 
traditional driving forces. 

• Generalizations of the theory are still 
possible to include finite propagation speeds. In 
particular, a simple method developed by Shter 

(1973) for a traditional description of coupled 
transport phenomena can be used.  
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Nomenclature 

As  vector of chemical affinities  
(entropy representation) 

s
jA

Aj, affinity of chemical reaction or a phase 
change 

ai (ci)  activity of i-th component in terms of its 
concentration ci 

Bk species participating in chemical 
reaction or transport process 

C generalized state vector including energy 
in non-isothermal process 

E total energy density in a reaction-
diffusion process 

Fi Gibbs potentials as partial derivatives of 
entropy with respect to extensive 
variables   

If absolute (unidirectional) flux vector in 
the forward direction 

b
kI  backward flux of k-th species in a 

transport process 
f
kI  forward flux of k-th species in a 

transport process 
Jk resulting vector of flux density of 

species k in a transport process 
Jel density of electric current (Section 2)  
Jj, resulting density of chemical flux of j-th 

reaction  
K=kf /kb chemical equilibrium constant 
Lik Onsager’s phenomenological coeffi-

cients 
N n, number of reactions and number of 

species, respectively 
q heat flux 
R universal gas constant 
rj volumetric rate of j-th reaction  
S entropy density in a reaction-diffusion 

process 
Sσ entropy production 
S number of state coordinates in the 

generalized system 
T temperature 
t time 
V volume 
X vector of classical thermodynamic forces 
Greek Symbols 
 νij stoichiometric matrix of j-th reaction 
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*
ikν  peculiar stoichiometric matrix for a 

coupled transport process 
µi molar chemical potential of i-th 

component 
Πf, Πb substrate and product part of chemical 

affinity 

Subscripts  

i,k ith and kth components 
j Elementary reaction number 
m Mass  
0 Energy as zero-th component 
q Sensible heat 
Superscripts 
B backward direction 
Eq thermodynamic equilibrium 
F forward direction 
Net resulting value 
0 exchange current 
s entropy representation 
* peculiar quantity 
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