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Abstract 
A generalization of the Gibbs entropy postulate is proposed, based on the BBGKY 
hierarchy as the non-equilibrium entropy for a system of N interacting particles. This 
entropy satisfies the basic principles of thermodynamics in the sense that it reaches its 
maximum at equilibrium and is coherent with the second law. By using this entropy and the 
methods of non-equilibrium thermodynamics in the phase space, a generalization of the 
Liouville equation describing the evolution of the distribution vector in the form of a 
master equation is obtained. After neglecting correlations in this master equation, the 
Boltzmann equation was obtained. Moreover, this entropy remains constant in non-
equilibrium stationary states and leads to macroscopic hydrodynamics. Non-equilibrium 
Green-Kubo type relations and the probability for the non-equilibrium fluctuations are also 
derived 
Keywords: Non-equilibrium statistical mechanics, irreversible thermodynamics, stationary 

states 
1. Introduction 

According to the mechanistic interpretation 
of the physical world, the basic laws of nature 
are deterministic and time reversible. However, 
at the macroscopic level, we observe irreversible 
processes related to energy degradation which 
generate entropy. How do we reconcile the 
‘spontaneous production of entropy’ with the 
time reversibility of the microscopic equations of 
motion? At the end of the nineteenth century, 
Boltzmann tried to answer this question from a 
probabilistic point of view. According to him, 
entropy is a measure of the lack of knowledge of 
the precise state of matter and can be defined as a 
function of the probability of a given state of 
matter. This function associates a number 

B M(X)S (X) log= Γ  to each microstate X  of a 
macroscopic system, with MΓ  being the 
volume of the region of the phase space MΓ  
corresponding to the macrostate  M M(X)=  . 
The macrostate M  is all of a group of states Y  
such that M(Y) M(X) M= = . In this sense, the 
Boltzmann entropy is a function of the 
microstate which at equilibrium coincides with 
the thermodynamic entropy. All systems in their 
irreversible evolution tend to a state of maximum 
probability or maximum entropy -the state of 
equilibrium. 

In contrast to the Boltzmann entropy, the 
Gibbs entropy is not a function of the individual 
microstate but rather a function of the probability 
distribution in a statistical ensemble of systems 
with both entropies coinciding at equilibrium. As 
a consequence of the incompressible character of 
the flow of points representing the natural 
evolution of the statistical ensemble in phase 
space, the Gibbs entropy is a constant of motion. 
Thus, it has been argued that the relevant entropy 
for understanding thermodynamic irreversibility 
is the Boltzmann entropy and not the Gibbs 
entropy (Lebowitz, 1999a; Lebowitz, 1999b; 
Goldstein, 2001). 

In addition, the problem of the diverging 
character of the Gibbs entropy related to the 
negative sign of the entropy production in non-
equilibrium stationary states apparently excludes 
the use of the Gibbs entropy in the statistical 
description of non-equilibrium systems (Andrey, 
1985; Hoover, 1992). This raises the question as 
to how to define the non-equilibrium entropy and 
if possible, to give a thermodynamic description 
of non-equilibrium fluctuations. In other words: 
can thermodynamics describe systems far from 
equilibrium (Gallavotti, 2004; Ruelle, 1999)? 

Thus, from the moment when Gibbs first 
postulated his entropy formula, the definition of 
the non-equilibrium entropy, and its relation to 
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irreversibility, has been an outstanding problem, 
now compounded by the fact that the entropy 
production is negative in non-equilibrium 
stationary states in apparent violation of the 
second law of thermodynamics (Evans, 1994; 
Wang, 2002). This constitutes an open problem 
which must be solved. 

A huge amount of work has been done on 
this subject, trying to address the problem. On 
the one hand, there have been attempts to extend 
the equilibrium entropy (Rondoni, 2000; Ruelle, 
2003; Tuckerman, 1997; Gaspard, 1997) to non-
equilibrium situations in order to avoid the 
divergence of the Gibbs entropy. On the other 
hand, work has been done to establish fluctuation 
theorems for the probability of the entropy 
production fluctuations (Evans, 2002). In a 
previous work (Pérez-Madrid, 2004), we showed 
a way to circumvent the difficulty of reconciling 
the second law of thermodynamics with the 
reversible microscopic equations of motion in the 
framework of the BBGKY hierarchy. We 
proposed a functional of the set of s-particle 
reduced distribution functions as the entropy for 
a system of N interacting particles. This entropy 
does not enter into contradiction with 
thermodynamics, and as shown here, in addition 
to being time-dependent, it enables the 
performance of a thermodynamic analysis of the 
stationary non-equilibrium states. In this sense, 
our theory constitutes an extension of the scope 
of thermodynamics to systems away from 
equilibrium. 

We begin this contribution introducing in 
Section 2 the representation of the state of the 
isolated system in terms of the hierarchy of 
reduced distribution functions. Afterwards in 
Section 3 we develop the thermodynamic 
analysis and derive the entropy production which 
enables us to draw kinetic equations, in particular 
the Boltzmann equation. Section 4 is devoted to 
the analysis of the non-equilibrium stationary 
states of the system. Finally in Section 5 we 
stress the main conclusions. 

2. Hamiltonian Dynamics 

Let's consider a dynamical system of N 
identical particles whose Hamiltonian  

{ }N N
NH ( , )q p   is given by  

 ( )
2N Nj

N j k
j 1 j k 1

1H  
2m 2= ≠ =

= + φ −∑ ∑
p

q q  (1) 

where m is the mass and ( )j k jkφ − ≡ φq q  is 
the interaction potential. The state of the system 
is completely specified at a given time by the N-
particle distribution function { }( )N NF , ; tq p   
which evolves in time according to the Liouville 

equation. Nonetheless, an alternative description 
of the state of the system can be given in terms 
of the distribution vector (Balescu, 1975) 

 {
}

0 1 1 2 2

N N

f , f ( ), f ( ),

........., f ( )  

≡f Γ Γ

Γ
 (2) 

 with  s 1 2, s(x , x ......, x ) =Γ  and 
j j jx ( , )≡ q p . Additionally, the set of 

quantities sΓ  can be grouped as the vector  
{ }1 2 N, ,.........,Γ Γ Γ Γ≡  , and 

correspondingly { }1 2 NH , H ,........., HΗ ≡  
can be defined with sH being the s-particle 
Hamiltonian. The distribution vector represents 
the set of all the s-particle reduced distribution 
functions  s sf ( )Γ    (s 0,...., N)= , defined 
through  

 s 1 s

s 1 N s 1 N

N!f F(x ,.., x ,
(N s)!

x ,.., x ) dx ...dx  + +

=
− ∫  (3) 

The evolution equations of these functions 
can be obtained by integrating the Liouville 
equation, thereby constituting a set of coupled 
equations: the BBGKY hierarchy which can be 
written in a compact way as a generalized 
Liouville equation (Pérez-Madrid, 2004)   

 (t) (t) 
t
∂ − = ∂ 

PL f QLf  (4) 

 with  

 
[ ]

s s
o

s, s j j, n
j 1 j n 1

s, s s P

s s L L  

H ,...

′
′

= < =

′

  ′〈 〉 = δ + 
  

= δ

∑ ∑PL
 (5) 

 and  

 
s

s , s 1 j, s 1 s 1
j 1

s s L dx  ′
′ + + +

=

  ′〈 〉 = δ  
  
∑∫QL  (6) 

where | s〉  represents the s-particle state defined 
through ( )s s ss f=Γ Γ and where the 
projection operators P  and Q , its complement 
with respect to the identity, give the diagonal and 
nondiagonal part of the generalized Liouvillian   
L , respectively. Here,  o o

j j P
L H ,... =    where 

[ ]P...,...  is the Poisson bracket, o 2
j jH 2m= p , 

and ' '
j, n j, n P

L H ,... =   , with '
j, n j, nH / 2= φ . In 

the next section we will show that irreversibility 
is manifested in the dynamics of the system 
when the adequate description, i.e. in terms of 
the distribution vector, is used. 

3. Non-Equilibrium Thermodynamics 

As the expression for the non-equilibrium 
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entropy, we propose 

 

( ){ }1
B eq eq

N

B n
n 1

n
1 n eq

eq, n

S k tr ln S

1k f
n!

f
ln dx .....dx  S  

f

−

=

= − +

= −

+

∑ ∫

f f f

 (7) 

a functional of f , analogous with the Gibbs 
entropy postulate (de Groot, 1984; van Kampen, 
1990), is based on the fact that the distribution 
vector determines the state of the system. Here, 

Bk   is the Boltzmann constant,  
{ }eq eq, 0 eq, 1 eq, 2f , f , f ,....=f   is assumed to be 

the equilibrium distribution vector which 
corresponds with the equilibrium entropy  

eq BS S= , satisfying eq 0=Lf  (i.e. the Ybon-
Born-Green hierarchy) whereas 1

eqf −  denotes the 
vector whose components are the inverse of the 
reduced equilibrium distribution functions,  

1
eq, nf − . Moreover, S  is maximum at equilibrium 

when eqf f=  giving eqS S= , which can be 
proven by taking the first and second variation of  
S with respect to f  while eqS and eqf remain 
fixed. This entropy is also coherent with the 
second law according to which S  increases in 
irreversible processes such as the relaxation to 
equilibrium from an initially non-equilibrium 
state. This expression based on the BBGKY 
hierarchy is different from other developments in 
the literature, such as the paper by Green and 
Nettleton (Nettleton, 1958). Therefore, the rate 
of change of S  which can be obtained by 
differentiating equation (7) with the help of 
equation (4) is 

 
( )

( ){ }

1
B eq

1
B eq

dS k tr ln
dt t

k tr ln 0  

−

−

∂ ≡ σ = −  ∂ 

= − ≥

f f f

Lf f f
 (8) 

where use has been made of the fact that 
+ =PL QL L . Thus, equation (8) constitutes the 

entropy production corresponding to the 
relaxation passing from a non-equilibrium state 
to equilibrium. 

The explicit expression of σ  can be 
obtained by using equations (5), (6) and (8). We 
get two contributions 

 ( )

N n

1 n j
n 1 j 1

j B eq, n 1 n

N n

n i ij 1 n
n 1 j i

1 1 f
T n!

k T ln f dx ....dx

1 1 f dx .....dx   
T n!

= =

= ≠

σ = − ⋅

∇ −

− ⋅

∑ ∑∫

∑ ∑∫

p

p F

 (9) 

 where ij i ij= −∇ φF  is the force on particle i  
due to particle j and 

 
N n

2 n j
n 1 j 1

j 1 n

1 1 f
T n!

dx .....dx   
= =

σ = − ⋅∑ ∑∫ F

p

 (10) 

where jF  is the force on particle j  pertaining to 
the  n th−    cluster from outside this cluster  

 n j j, n 1 n 1 n 1jf (q ) f dx  + + += ∫F F  (11) 

Both contributions, 1σ  and 2σ , vanish 
when the distribution function nf  coincides with 
its equilibrium value eq, nf . In any other case 
these should not necessarily be zero. One has, 
then 
 1 2  σ = σ + σ  (12) 
For small deviations from equilibrium, equation 
(8) becomes 

 Bk tr
t

∂ σ = −  
∂ 

f X  (13) 

where ( )1
eq eq  −= −X f f f  is the thermodynamic 

force conjugated with the current t∂ ∂f . 
Following the methods of non-equilibrium 
thermodynamics (de Groot, 1984; Bedeaux and 
Mazur, 2001) in the phase space, from equation 
(13) the linear relation  

  
t

∂
= −

∂
f MX  (14) 

 is inferred, where the master or mobility matrix  
M  acts on an arbitrary vector Y according to  

 
s 1 s 1 s

s s s | M(s | s )

Y (x ,...., x )dx .....dx  ′ ′ ′ ′
′ ′ ′

′ ′ ′〈 〉〈 ∫M Y =
 (15) 

Note that in view of the orthogonal 
character of the operators P  and Q , equation 
(14) leads to =QMX QLf  and =PMX PLf . 

Substituting the linear relation equation 
(14) into equation (13) and using the cyclic 
invariance of the trace, the entropy production is  

 ( )tr 0 ≥XMX  (16) 

according to the second law of thermodynamics. 
Therefore, M  is a positive semidefinite matrix. 
In addition, the master matrix should be 
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Hermitian  

 †M(s | s ) M (s | s )  M (s | s) ∗′ ′ ′= =  (17) 

as predicted by the Onsager symmetry relations. 
Here †  refers to the Hermitian conjugate and ∗  
stands for the complex conjugated. Furthermore, 
due to the fact that f  should be normalized, 
tr( )f is a constant quantity which is a function of 
N . It can be inferred from equation (14) that 
tr( ) 0=MX  which, when the Hermitian 
character of the master matrix is taken into 
account, leads to the following constraints  

 1 s
†

1 s

M(s | s )dx .....dx

M (s | s )dx .....dx 0 ′ ′
′

′ =

′ =

∫
∫

 (18) 

Hence, by using equation (14), the 
generalized Liouville equation. equation (4), can 
be written as 

  
t
∂ − = ∂ 

PL f QMX  (19) 

with 

 s , s 1

s 1 s s 1

s s s |

M(s 1| s )

X dx .....dx dx  

′ +

′ ′
′ ′ +

′ ′〈 〉〈

′= δ +∫
QM X

 (20) 

written in analogy with equation (6). It should be 
mentioned that the presence of the master matrix 
in equation (19) notably simplifies the BBGKY 
hierarchy. In fact, the master matrix introduces a 
relaxation time scale. Hence, our theory is 
equivalent to a relaxation time approach to the 
study of the BBGKY hierarchy valid when there 
is a broad separation between the hydrodynamic 
and microscopic scales. 

Here, equation (19) can be put into a more 
common form by introducing a new 
function W defined through (Meixner, 1957)  

 

( ) ( )

( ) ( )
( )

o, s

1 1 s s

s 1 s

f W s | s M s | s

x x ..... x x

x ,...., x  

′

′ ′
′

′ ′= −

+δ − δ −

ψ

 (21) 

where the auxiliary function sψ  is not arbitrarily 
selectable because of the constraints given by 
equation (18). Instead  

 
( )s 1 s o, s 1 s

1 s

x ,..., x f (x ,..., x )

W(s | s )dx ...dx  ′ ′
′

ψ =

′∫
 (22) 

can be applied. Thus, equation (19) may be 
written in terms of the transition matrix as 
follows  

 (t) (t) 
t
∂ − = ∂ 

PL f QWf  (23) 

 where 

 s , s 1 s 1 s

s 1 1 s 1

1 s s 1

s s s |

{f (x ,..., x )W(s | s 1)

f (x ,..., x )

W(s 1 | s )}dx ...dx dx  

′ ′
′ ′ ′+

+ +
′ ′

′ +

′ ′〈 〉〈

′δ +

−

′+

∫

QW f

=  (24) 

The introduction of the transition matrix 
enables us to write equation (19) as a master 
equation. 

A particularly interesting case corresponds 
to  s 1=   where equations (23) and (24) reduce 
to  

 

o
1 1 1

2 1 2 1 2 1 2

2 1 2

1 2 1 2 1 2 2

L f (x )
t

{f (x , x )W(x , x | x , x )

f (x , x )

W(x , x | x , x )}dx dx dx  

′ ′ ′ ′

′ ′ ′ ′

∂ − ∂ 

=

−
∫  (25) 

This is not yet a kinetic equation; however, its 
uncorrelated part can be written as  

 

o
1 1 1 1 1 1 2

1 2 1 2 1 1 1 2

1 2 1 2 1 2 2

L f (x ) {f (x )f (x )
t

W(x , x | x , x ) f (x )f (x )

W(x , x | x , x )}dx dx dx  

′ ′

′ ′

′ ′ ′ ′

∂ − = ∂ 

−

∫

 (26) 

which is the famous Boltzmann equation. 
Analogous procedure can be followed to obtain 
the kinetic equations for the correlations coming 
from the components of f  of an order higher 
than one. 

Although the generalized Liouville 
equation.(4) is reversible, the generalized Gibbs 
entropy (7) we propose is a monotonous 
functional of the distribution vector. We have 
shown that unlike the conventional belief an 
external manipulation of the system like coarse 
graining procedures is not necessary in order to 
obtain irreversibility. This is based on the fact 
that the generalized Gibbs entropy given by 
equation (7), which is formally analogous to the 
relative or Kullback entropy, is a concave 
functional of the distribution vector. In addition 
the generalized Liouville dynamics introduces a 
trace preserving linear transformation in the set 
of distribution vectors related to a compressible 
flow in Γ -space. Thus, in general, the 
compressible character of the flow associated to 
the generalized Liouville equation causes a non-
vanishing rate of change of the generalized 
entropy that will never decrease under a trace 
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preserving linear transformation (Schlögl, 1980; 
Wehrl, 1978). 

4. Non-Equilibrium Stationary States 

Let us assume that a nonconservative field 
oh  acts on the system, modifying the Hamilton 

equations of motion 

 
N

i i 1 N o
i

N
i i 1 N o

i

H
(x ,...x )h  

H
(x ,...x )h  

∂
= +

∂
∂

= − +
∂

&

&

q C
p

p D
q

 (27) 

where i j(x )C and i j(x )D are coupling functions. 
This drive introduces a compressible 
contribution to the flow in the phase space which 
is reflected in the Liouville equation 
characterizing the phase space flow 

 [ ] nc
N NP

N
F H , F F 

t
∂ ∂

− = − ⋅
∂ ∂

&Γ
Γ

 (28) 

where nc nc nc
N 1 N(x ,...., x )=& & &Γ , 

( )nc
i i j i j ox (x ), (x ) h=& C D  and F  is assumed 

to be an smooth function. To equation (28) 
corresponds  

 ( )  
t
∂ − − = ∂ 

P L G f QLf  (29) 

for the distribution vector, where 
ncf∂ ∂&Gf Γ Γ=  and 

nc
s, s s s ss | | s f′′〈 〉 = δ ∂ ∂&PGf Γ Γ . Equation (28) 

admits a stationary solution satisfying 

 [ ] nc
N st N stP

N
H , F F  ∂

= ⋅
∂

&Γ
Γ

 (30) 

or equivalently 

 nc
N st N

N N
ln F 0  ∂ ∂

⋅ − ⋅ =
∂ ∂

& &Γ Γ
Γ Γ

 (31) 

Up to order one with respect to the external 
force, equation (31) becomes 
[ ] nc

N st N NPH , ln F = ∂ ∂&Γ Γ . To this stationary 
distribution function stF , there is a corresponding 
stationary distribution vector stf which can be 
obtained as a solution of the stationary version of 
equation. (29) or computed directly from stF  by 
using equation (3), st eq≠f f . 

In this stationary state the rate of change of 
the internal energy N 1 NU H (x ,...x )= ∫  

1 N 1 NF(x ,...x )dx ....dx  , is given by 

 
st

N 1 N

st 1 N 1 N

dU
H (x ,.., x )

dt

F (x ,.., x )dx ...dx 0 
t

=

∂
× =
∂

∫
 (32) 

i.e. the energy is constant. Moreover, the total 
rate of change of the entropy is given by 

 

( )
{

( )}

1st st
B eq st

B st

1
eq st st

dS
k tr ln

dt t
k tr

ln 0 

−

−

∂ = −  ∂ 
=

+ σ =

f
f f

Gf

f f

 (33) 

which is also constant, showing that entropy does 
not diverge. Hence, the stationary state coincides 
with the state of constant internal energy and 
entropy. In fact, in general the stationary average 
of any phase function remains constant. 
According to equation (33), the entropy 
production (8) reduces to 

 
( ){ }

( )

1
st B st eq st

nc 1
B st eq st

k tr ln

k tr ln  

−

−

σ = −

∂ =  
∂ 

&

Gf f f

f Γ f f
Γ

 (34) 

Here in analogy with Brownian motion 
(Meixner, 1957) , the entropy production given 
by equation (34) describes a diffusion process in 
Γ -space for which nc

st
&f Γ  can be interpreted as 

the diffusion current J  and 
( )1

o st B stln k T− = µf f , µ  being the chemical 
potential and Tst  the stationary temperature in 
such a way that ∂µ ∂Γ  plays the role of  the 
corresponding thermodynamic force 

JX conjugated to the current J . Thus, the 
entropy production can be rewritten as  

 { }st J
st

1 tr
T

σ = JX  (35) 

>From this equation, the following pheno-
menological law can be inferred 

 JX J
st

1
T

=J L X  (36) 

where JXL  is a phenomenological coefficient. 
The phenomenological law (36) enables us to 
express the generalized velocity nc&Γ  as  

 ( )nc 1
B st eq stk T ln −∂

=
∂

&Γ B f f
Γ

 (37) 

where ( ) 1
st st JXT L−=B f  is a mobility matrix. 

Moreover, B stk T B  is a diffusion coefficient D . 
Thus,  

 ( )1 -1 nc
eq stln −∂

=
∂

&f f D Γ
Γ

 (38) 

and equation (34) becomes 

 { }nc -1 nc 2
st B st ok tr hσ = & & �f Γ D Γ  (39) 

Thus, we can assume that for small deviations 
from the stationary state  
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 { }nc -1 nc
B

dS k tr f
dt

σ ≡ −σ = −) & & Γ D Γ  (40) 

Therefore, following Boltzmann, the probability 
of the non-equilibrium fluctuations can be 
defined as 

 
( )

( { })
nc

nc -1 nc

P ( , t) exp

exp tr f  

τ ∼ στ =

−

)&

& &

Γ

 Γ D Γ
 (41) 

where τ  is a macroscopic time. This probability 
enables us to compute the average value of any 
phase function & ncψ(Γ ) , as for example the 
compressibility factor G . 

Finally, by approximating D  by its average 
value { }stD tr= f D  and using equation (8), we 
find  

 
{ }

( ){ }
nc nc

st

1
st eq st

tr
D

tr ln −
=
−

& &f Γ Γ

Lf f f
 (42) 

which constitutes a kind of Green-Kubo relation. 

5. Conclusions 

Here, we have proposed a generalization of 
the Gibbs entropy postulate based on the 
BBGKY-hierarchy as the non-equilibrium 
entropy for an N-body system. This entropy, 
which at equilibrium coincides with the 
thermodynamic entropy, is a concave functional 
of the distribution vector. In addition, the 
distribution vector representing the set of all the 
s-particle reduced distribution functions evolves 
according to the generalized Liouville equation, 
a compact way of writing the BBGKY hierarchy 
of equations which introduces a trace-preserving 
linear transformation in the set of distribution 
vectors. 

Our generalized Gibbs entropy is formally 
analogous to the relative or Kullback entropy. 
Thus, due to the compressible character of the 
flow in Γ -space induced by the generalized 
Liouville equation and to the fact that this 
equation is a trace-preserving linear 
transformation, the generalized Gibbs entropy 
will never decrease. This is crucial to show that 
our approach constitutes the most appropriate 
description leading to irreversibility at the 
macroscopic level. No coarse graining 
procedures are necessary in order to obtain 
irreversibility.  

On the other hand, by applying the methods 
of  non-equilibrium thermodynamics in phase 
space, i.e. in the framework of the mesoscopic 
non-equilibrium thermodynamics MNET, a 
theory which has been proved to be successful in 
deriving kinetic transport equations in some 

particular cases (Pérez-Madrid, 1994; Mayorga, 
2002), we obtain a linear relation between the 
irreversible rate of change of the distribution 
vector and the conjugated thermodynamic force 
which introduces a master matrix which should 
satisfy the properties required by the Onsager 
theory. This result simplifies the BBGKY 
hierarchy and enables us to break the hierarchy 
by neglecting higher order correlations, thus 
obtaining the Boltzmann equation for the one-
particle distribution function. This last result 
constitutes a test of our theory. Hence, based on 
the MNET, we have founded a way for deriving 
kinetic equations. 

Our approach enables us to describe 
macroscopic stationary states. In this sense we 
have also shown that the entropy defined in 
terms of the distribution vector remains constant 
in a non-equilibrium stationary state; hence, 
divergences reported in the recent literature are 
avoided and the second law is satisfied. Also a 
kind of Green-Kubo relation was derived for a 
transport coefficient that can be defined in the 
system relating the power supplied to the system 
with the entropy production with the aid of a 
stationary temperature. Finally, following the 
Boltzmann principle, we derive the expression of 
the probability for the non-equilibrium 
fluctuations. Therefore, the answer to the 
question raised at the beginning: can 
thermodynamics describe systems far from 
equilibrium? is obviously yes if one works at the 
adequate level of description, which corresponds 
to the distribution vector. 

Nomenclature 
jq  position vector of  the  j-th point particle 
jp  momentum of the j-th point particle 

j j jx ( , )≡ q p  
jkφ  interaction potential between the j-th 

and k-th particles 
F  full space distribution function  
f  distribution vector 

sΓ  6s-dimensional phase space 
sH  s-particle Hamiltonian 

sf  s-particle reduced distribution function 
L  generalized Liouvillian 
P  projection operator  onto the diagonal 

part of the generalized Liouvillian 
Q  projection operator  onto the non-

diagonal part of the generalized 
Liouvillian 

S  entropy 
eqS  equilibrium entropy 
BS  Boltzmann entropy 
eqf  equilibrium distribution vector 
eq, nf  equilibrium n-particle reduced 

distribution function 
σ  entropy production 
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T  temperature 
M  mobility matrix 
X  thermodynamic force 
M(s | s )′  s,s′  component of the mobility 

matrix 
W  transition matrix 
W(s | s )′  s,s′  component of the transition 

matrix 
oh  external field 
i j(x )C  and i j(x )D  coupling functions 

between  the external field and the 
system 

ncΓ&  non-conservative generalized velocity 
G  generalized gradient 

stF  stationary full space distribution 
function 

stS  stationary entropy 
stf  stationary distribution vector 
stσ  stationary entropy production 
stT  stationary temperature 
µ  generalized chemical potential 
J  thermodynamic current 

JX  thermodynamic force conjugated to the 
current J  

stT  stationary temperature 
JXL  phenomenological coefficient 

D  diffusion coefficient 
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