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Abstract 
New mathematical functions, with the functional form of a fifth order logarithmic 
polynomial, have been developed. These polynomials have been used to describe gases’ 
thermodynamic properties, and have been utilized for combustion processes, with “frozen 
composition” and “shifting equilibrium composition” evaluation. The logarithmic 
polynomials present the advantage of covering a wide range of temperatures with only a 
single mathematical function. The logarithmic polynomial coefficients have been evaluated 
through the least squares fit on the basis of experimental measurements (taken from 
scientific literature). The set of logarithmic polynomials gives the possibility of studying 
the combustion phenomena and allows for the description of specific heat at constant 
pressure, enthalpy, entropy and equilibrium constants for gases’ dissociation. 
Keywords: Combustion, thermochemical dissociation, gases thermodynamic properties, 
fifth order logarithmic polynomials, internal combustion engine. 

1. Introduction 

Fifth order logarithmic polynomials have been 
implemented for the determination of gases’ 
thermodynamic properties. These functions have 
been used to evaluate “frozen composition”, 
“shifting equilibrium composition” and the 
dissociation equilibrium constants. 

The polynomials have been calculated for 
isobaric specific heat, enthalpy, entropy and 
equilibrium constants. The polynomial 
coefficients for the isobaric specific heat have 
been computed for each single gas through the 
least squares method, and the coefficients for 
enthalpy and entropy are expressed as a 
combination of the previous ones. 

The polynomial functions can be used in 
temperature ranges of practical interest (ICE 
applications, gas turbine applications, etc). 

Logarithmic polynomial coefficients have 
been obtained by matching the thermodynamic 
properties data taken from the JANAF 

Thermochemical Tables (1971), Chase (1998), 
Gordon and McBride (1999), Gurvich et al. 
(1978) and Gurvich et al. (1989). 

The isobaric specific heats have been 
calculated depending on temperature, and they 
have been compared with the experimental ones 
in order to evaluate the relative errors. 

The logarithmic polynomials pointed out an 
elevate interpolation accuracy, the possibility of 
utilizing a single logarithmic polynomial for a 
wide temperature range. 

Utilizing the logarithmic polynomials for 
the equilibrium constants, it is possible to 
evaluate the molar fraction of the gases 
constituting the products of combustion and the 
thermodynamic properties of the mixture. 

In this formulation the mixing entropy has 
been taken into account for a correct evaluation 
of the mixture entropy. It is also possible to take 
into account the heat occulted during the 
dissociation phenomenon and the great influence 



Int. J. of Thermodynamics, Vol. 9 (No. 2) 74

of thermochemical dissociation on mixture 
specific heat. 

2. Thermodynamic Properties for a Single 
Gas 

Logarithmic polynomials can be evaluated 
through the least squares method in order to 
reduce the percentage relative error, and to 
maximize the correlation factor (Milton, 1995). 

The logarithmic polynomial specific heat at 
constant pressure is reported in Equation (1): 
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Integrating Equation (1) with respect to the 
temperature yields the enthalpy (Equation (2)). 
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Substituting Equation (1) into Equation (2) 
and developing the integrals of Equation (2), it is 
possible to obtain the expression for the sensible 
enthalpy: 
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∆−  is equal to zero at 
the reference temperature K15.298TT 0 == . 

All the bi coefficients are expressed in 
Equation (4): 
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with 0a ji =+  if ( ) 5ji >+ . 
All the bi constants depend on the ai 

coefficients. So the least squares method is 
applied only once to the experimental data on 
specific heat at constant pressure. 

Managing the expressions of each bi it is 
possible to obtain: 
b0 = 
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Starting from the specific heat at constant 
pressure, it is possible to evaluate the entropy for 
each gas: 
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The integration yields: 
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where ( ) ( )1,1~,~ ** spTs −  is equal to zero at 
K15.298TT 0 ==  and Pa101325pp 0 == ; 

while the constants ic  for 6i1 ≤≤  are given in 
Equation (7) 
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also the ci constants are expressed in function of 
the ai coefficients. 

The three mathematical formulations for 
specific heat at constant pressure [ ( )*

p Tc~ ], 
enthalpy [ ( )*Th

~
] and entropy [ ( )** p,Ts~ ] are 

given in Equations (8), (9) and (10). 
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3. Evaluation of the Logarithmic Polynomials 
Performance 

By using the least squares method on the 
experimental measurements of gases’ pc~ , for 
each gas, it is possible to determine the six 
coefficients ia  of Equation (8). The following 
gases were considered as the main components 
of typical ICE products of combustion: O2, O, 
N2, N, H2, H, Ar, H2O, OH, CO2, CO, and NO. 
The six coefficients ia  for all the gases are 
reported in TABLE I. 

The fifth order logarithmic polynomial for 
the twelve gases is able to cover, with only one 
mathematical formulation, the temperature range 
from 100 K to 5000 K with a correlation factor 
R2 always greater than 0.99 (Lanzafame and 
Messina, 2000) (see TABLE I). The correlation 
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factor compares the predicted data from 
mathematical functions with the experimental 
ones, and it varies from 0 to 1. If it is equal to 1, 
it means that a perfect correlation between 
preview data and experimental data exists 
(Milton, 1995). The relative errors (shown in 
Equation (11)), between experimental and 
simulated data, are very low (see Figure 1), 
especially considering the wide temperature 
range of interpolation (see Figure 1).  
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If the range of temperatures is restricted to 
one of more practical interest (for example from 
273 K to 3500 K for application inside ICE), the 
errors are notably reduced (see Figure 2). 
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Figure 1. Oscillation of the relative errors 

for all the gases (temperature range of 
interpolation 100 ≤ T ≤ 5000 K). 
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Figure 2. Oscillation of the relative errors 

for all the gases (temperature range of 
interpolation 300 ≤ T ≤ 3500 K). 

For a complete description of all 
logarithmic polynomials, in TABLE II the 
enthalpy of formation and the entropy at the 
standard conditions (JANAF Thermochemical 
Tables, 1971) are reported. 

Fifth order logarithmic polynomials have 
evidenced the possibility of utilizing a single 

polynomial to cover a wide range of 
temperatures, furnishing great accuracy. In 
Figure 3 an example is shown for hydrogen. In 
this figure a comparison between a traditional 

fifth order polynomial ( ∑
=

=
5

0i

i
ip Ta)T(c~ ) and a 

fifth order logarithmic polynomial 

( ( )∑
=
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5
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i
ip Tlna)T(c~ ) has been performed. The 

comparison shows that a logarithmic polynomial 
represents the best fit. The fifth order logarithmic 
polynomial covers with good accuracy the 
experimental data on the entire temperature 
range, while the traditional fifth order 
polynomial does not fit well the experimental 
data after T=1500 K.  

The same trend shown for this gas is also 
valid for all the other gases considered in this 
paper, and for this reason, they are not exposed. 
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Figure 3. Comparison between a fifth order 

polynomial and a fifth order logarithmic 
polynomial. 
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Figure 4. Comparison for hydrogen 

between mathematical functions and 
experimental data. 

In Figure 4 the comparison is performed 
between the logarithmic polynomial (six terms), 
other mathematical functions (Gordon and 
McBride, 1971, Chase, 1998) and experimental 
data (Gurvich et al., 1978). In Gordon and 
McBride (1971) two polynomials (the functional 
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form is ∑
−=
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i
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been used to cover the temperature range from 
100 K to 5000 K (one from 100 K to 1000 K, 
and another from 1100 K to 5000 K), while, as 
reported by Chase (1998), three Shomate 
polynomials (the functional form is 
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five terms) have been used to cover the 
temperature range from 298 K to 5000 K (one 
from 298 K to 1000 K, another from 1100 K to 
2500 K, and the last from 2600 K to 5000 K). 
Although only one logarithmic polynomial has 
been used to cover the entire temperature range, 
the interpolation furnishes a very low error (see 
Figure 1), comparable with the errors from the 
other two interpolations. A direct comparison 
between the different polynomials used in Figure 
4 doesn't represent a significant confrontation. In 
fact, starting from the same experimental data, a 
correct comparison between different 
polynomials must be effected between 
polynomials with the same numbers of order 
(fifth order with fifth order, sixth order with sixth 
order, etc,), and the same number of terms, 
because the precision of the fit depends on the 
order of the polynomial and on the number of 
terms. 

4. Thermodynamic Models for an Unburned 
Mixture 

In order to obtain the thermodynamic 
properties of the mixture for an unburned gas 
(Heywood, 1998), a summation of the 
thermodynamic properties of the gases 
constituting the mixture must be carried out, as 
shown (Bucker et al., 2003) in Equations (12) – 
(14): 
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with the entropy of mixing 
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In Equations (12) – (15) the subscript k 
denotes the single gas and xk indicates the molar 
fraction of the single gas. 

5. Dissociation and Equilibrium Constants 

The natural logarithm of the equilibrium 
constant (ln Kp) of a thermochemical 
dissociation reaction is defined as (Strehlow, 
1985) 
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the subscript “i” refers to the ith specie of the 
dissociation reaction, with the convention that νi 
is negative for the dissociation reaction reactant 
species (the species that appears on the left in the 
reactions of TABLE III). The Gibbs function 

)p,T(g~ **  is expressed in Equation (17). 
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Substituting Equations (9) and (10) in 
Equation (17) the Gibbs function assumes the 
functional form of Equation (18). 
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where gj (for 8j0 ≤≤ ) are the Gibbs function 
coefficients, defined below; 
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Considering Equations (4) and (7) the gj 
coefficients are valuable directly from the ai 
coefficients and from thermodynamic data at 
reference conditions. 

Evaluating the gj coefficients, Equation (16) 
has been applied for the reaction in TABLE III, 
and a comparison has been effected with the data 
present in JANAF Thermochemical Tables 
(1971), and shown in Figure 5. 

The comparison has evidenced the perfect 
matching between the logarithmic polynomial 
simulation and the data found in scientific 
literature (JANAF Thermochemical Tables, 
1971). 

6. Lean and Rich Combustion Applications 

In the combustion process, the xk can be 
evaluated applying the equilibrium 
thermodynamics equations (Olikara and Borman, 
1975), based on atomic balance and equilibrium 
constants. 
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Figure 5. Comparison between  log10 Kp 

evaluated with the 5th order logarithmic 
polynomial and the data present in scientific 
literature [1]. 

As an example of combustion phenomena, 
the oxidation of methane with technical air, with 
the following equivalence ratio Φ = 0.8, 1.0, 1.2, 
has been considered. Furthermore the following 
combustion pressures p = 1, 10 and 100 bar have 
been considered. 

The simulation results have been compared 
with those carried out from the CEA program 
(Chemical Equilibrium with Application), 
furnished by NASA (Gordon and McBride, 
1994). 

The enthalpy of mixture has been evaluated 
in Equation (20): 
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The molar fractions vary significantly with 
temperature (when it reaches high values about 
greater than 1500 K) and with pressure. 

In Figures 6 and 7 the comparison between 
the simulation with the logarithmic polynomials 
and the data carried out from the CEA-NASA 
program is shown. In these figures the mixture 
enthalpy is evaluated, and it is possible to notice 
the good agreement with the CEA-NASA results. 
For the evaluation of mixture isobaric specific 
heat, it is necessary to take into account the 
variability with the temperature of the molar 
fractions. Applying the specific heat at constant 
pressure definition, it is possible to obtain: 
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Figure 6. Mixture enthalpy at p = 100 bar 

andΦ= 0.8, 1.0 and 1.2. 
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Figure 7. Mixture enthalpy at Φ= 1.0 and p 

= 1 bar, 10 bar and 100 bar. 
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The shifting equilibrium value of e,mix,pc~  
may be expressed as the sum of a “frozen” 
contribution, f,mix,pc~ , and a “reaction” 
contribution r,mix,pc~  as follows: 
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The isobaric specific heat, represented in 
Figures 9 and 10, is shown in Equation (23) 
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The last term in Equations (21) and (22) is 
always equal to zero for frozen composition 
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(dxk/dT* = 0). The results are shown in Figures 8 
and 9.  
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Figure 8. Mixture cp at p = 1 bar and 

Φ=1.0 – frozen and shifting equilibrium 
composition. 

In Figure 8 the difference between the 
isobaric specific heat for frozen composition and 
for shifting equilibrium composition is shown. In 
Figure 9 a comparison has been performed 
between logarithmic polynomial and CEA-
NASA results. 
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Figure 9. Mixture cp at p = 1 and 100 bar; 

Φ = 1.0. 
The comparisons are relative to CH4 

combustion at the pressure of 1 bar and 100 bar 
at the equivalence ratio Φ=1. For the evaluation 
of mixture entropy, the relationship in Equation 
(24) has been implemented. 
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In Figures 10 and 11 the entropy of the 
mixture has been evaluated, and it is possible to 
notice the good agreement between the fifth 
order logarithmic polynomial and the CEA – 
NASA program. 
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Figure 10. Mixture entropy at p = 1, 10 and 

100 bar and Φ=1.0. 
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Figure 11. Mixture entropy at p = 100 bar 

and Φ= 0.8, 1.0, 1.2. 

7. Conclusion 

Fifth order logarithmic polynomials have 
been implemented to study thermodynamic 
properties for unburned and burned mixtures. 
These polynomials have several advantages with 
respect to other models utilized in scientific 
literature. With one single polynomial it is 
possible to cover a wide range of temperatures; 
the logarithmic polynomial has very low errors 
in respect to experimental data. The logarithmic 
polynomials have been utilized to describe 
thermodynamic properties of gases, mixtures and 
equilibrium constants of practical interest for 
ICE combustion phenomena. The coefficients of 
the logarithmic polynomials have been evaluated 
through the least squares fit, on the basis of 
experimental data found in scientific literature. A 
comparison has been carried out between the 
simulated results and the most accredited CEA-
NASA equilibrium code. The comparison has 
shown a perfect matching between the CEA-
NASA program and the logarithmic polynomial 
simulation, and it has been implemented in the 
calculation of thermodynamic properties of the 
products of combustion of methane with 
technical air, at different fuel-to-air equivalence 
ratio and for different combustion pressures. 
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Nomenclature 

p0 reference pressure 101325 Pa 
P pressure [Pa] 
p* p/p0 

0T  reference temperature 298.15 K 
T temperature [K] 
T* T/T0 

ia  coefficients of ( )*
pc T%  

bi ( )*Th
~

 coefficients 
ci ( )** p,Ts~  coefficients 

pc%  molar specific heat at constant pressure  
[J mol-1 K-1] 

pc  specific heat at constant pressure  
[J kg-1 K-1] 

g~  Gibbs function [J mol-1] 
gj Gibbs function coefficients 

0h%  molar enthalpy at T= 0T  
h%  molar enthalpy [J mol-1] 
h enthalpy [J kg-1] 
ICE internal combustion engine 
Kp equilibrium constant 
n.gases number of gases present in the mixture 
M molecular weight 
R%  universal gas constant 8.314472  

[J mol-1K-1] 
R2 correlation factor 

0s%  molar entropy for p=p0 and T=T0 
s%  molar entropy [J mol-1 K-1] 
s entropy [J kg-1 K-1] 
x molar fraction 
 Φ  fuel to air equivalence ratio 

iv  dissociation reaction stoichiometric 
coefficient 

mixs∆%  entropy of mixing 
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TABLE I: LOGARITHMIC POLYNOMIAL COEFFICIENTS FOR pc~ (T*) ( pc~  =[J/(mol K)]) 

(100≤T≤5000 K). 
Species a5 a4 a3 a2 a1 a0 R2 

O2 0.06180721 -0.15731959 -0.46630845 1.94145005 2.70119522 29.51785250 0.99864 
O 0.07027490 -0.31136053 0.28282306 0.69409831 -1.70433174 21.93889086 0.99943 
N2 0.21448719 -1.19546050 1.08309312 2.86102669 -0.21824417 28.87396814 0.99941 
N 0.14239267 -0.47731848 0.14265183 0.65286173 -0.32933464 20.71144423 0.99447 
H2 -0.15719883 0.59756168 0.01975705 -0.16827168 1.14285222 28.45084504 0.99786 
H 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 20.78600000 1.00000 
Ar 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 20.78600000 1.00000 

H2O 0.14904476 -1.35853914 2.19675399 4.39059147 0.30777852 33.36570240 0.99957 
OH 0.03478011 -0.50597218 1.13636273 1.96908941 -2.38685363 29.88074938 0.99849 
CO2 0.09995132 0.00042527 -2.46535403 3.28070636 13.60436265 37.10227658 0.99997 
CO 0.22518502 -1.18879042 0.88803413 2.99191804 0.18922297 28.92502641 0.99955 
NO 0.22148616 -1.05253689 0.26215865 3.81009255 -0.18819240 29.74540076 0.99931 

 
 

TABLE II. ENTHALPY OF FORMATION AND ENTROPY AT 
STANDARD TEMPERATURE AND PRESSURE (T0=298.15 K; 

P0=101325 Pa), FOR ALL THE 12 GASES. 

TABLE III. THERMOCHEMICAL 
DISSOCIATION REACTIONS. 

 
Species 

o
fh

~
∆  

[J/mol] 
( )1,1s~  [J/(mol 

K)] 
 CO -110530 197.54 
 CO2 -393520 213.69 
 H2O -241830 188.72 
 H2 0 130.57 
 OH 38990 183.6 
 O2 0 205.04 
 O 249170 160.95 
 H 218000 114.61 
 N2 0 191.5 
 NO 90290 210.65 
 N 472690 153.19 
 Ar 0 154.74  
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