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Abstract 
Entropy is the distinguishing and most important concept of our efforts to understand and 
regularize our observations of a very large class of natural phenomena, and yet, it is one of 
the most contentious concepts of physics. In this article, we review two expositions of 
thermodynamics, one without reference to quantum theory, and the other quantum 
mechanical without probabilities of statistical mechanics.  In the first, we show that entropy 
is an inherent property of any system in any state, and that its analytical expression must 
conform to eight criteria.  In the second, we recognize that quantum thermodynamics: (i) 
admits quantum probabilities described either by wave functions or by nonstatistical 
density operators; and (ii) requires a nonlinear equation of motion that is delimited by but 
more general than the Schrödinger equation, and that accounts for both reversible and 
irreversible evolutions of the state of the system in time.  Both the more general quantum 
probabilities, and the equation of motion have been defined, and the three laws of 
thermodynamics are shown to be theorems of this equation. 
Keywords: First law, energy, classification of states, second law, availability functions, 
entropy of all states. density operators without statistical probabilities,  derivation of 
quantum expression of entropy,  exorcism of Maxwell’s demon both without and with 
quantum theory 

 

1. Introduction 

Ever since Clausius postulated that “the 
energy of the universe is constant”, and “the 
entropy of the universe strives to attain a 
maximum value”, practically every scientist and 
engineer shares the beliefs that (i) 
thermodynamics is a statistical theory, restricted 
to phenomena in macroscopic systems in 
thermodynamic equilibrium states; and (ii) 
entropy – the concept that distinguishes 
thermodynamics from mechanics – is a statistical 
measure of ignorance, ultimate disorder, 
dispersion of energy, erasure of information, or 
other causes, and not an inherent property of 
matter like rest mass. 

These beliefs stem from the conviction that 
the “known laws” of mechanics (classical or 
conventional quantum) are the ultimate laws of 

physics, and from the fact that statistical theories 
of thermodynamics yield accurate and practical 
numerical results about thermodynamic 
equilibrium states. 

Notwithstanding the conviction and 
excellent numerical successes, the almost 
universal efforts to compel thermodynamics to 
conform to statistical and other non-physical 
explanations, and to restrict it only to 
thermodynamic equilibrium states (Callen, 1984; 
Lieb and Yngavson, 1999; Lieb and Yngavson, 
2000) are puzzling in the light of many accurate, 
reproducible, and nonstatistical experiences, and 
many phenomena that cannot possibly be 
described in terms of thermodynamic 
equilibrium states. 

Since the advent of thermodynamics, many 
academics and practitioners have questioned the 
clarity, unambiguousness, and logical consisten-
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cy of traditional expositions of the subject.  
Some of the questions raised are: (i) why is 
thermodynamics restricted to thermodynamic 
equilibrium states only, given that the universally 
accepted and practical statements of energy 
conservation and entropy non-decrease are 
demonstrably time dependent; (ii) why do we 
restrict thermodynamics to macroscopic systems, 
given that even Gibbsian statistics (Tolman, 
1962; Wilson, 1909), and systems in states with 
negative temperatures (Ramsey, 1970) prove 
beyond a shadow of a doubt that 
thermodynamics is valid for any system; (iii) 
how can any of the proposed statistical 
expressions of entropy be accepted if, as we will 
see later, none conforms to the requirements that 
must be satisfied by the entropy of 
thermodynamics; and (iv) why do so many 
professionals continue to believe that 
thermodynamic equilibrium is a state of ultimate 
disorder despite the fact that both experimental 
and theoretical evidence indicates that such a 
state represents ultimate order (Styer, 2000; 
Gyftopoulos, 2001)? 

In what follows, we prove that 
thermodynamics is a well founded, non-
statistical general theory of physics.  We present 
brief summaries of two novel, intimately 
interrelated, and revolutionary, in the sense of 
Kuhn (1970), expositions. The first is purely 
thermodynamic without any probabilities, and is 
discussed in Section 2. In this exposition, 
entropy is proven to be an inherent, non-
statistical property of any system (either large or 
small), in any state (either thermodynamic 
equilibrium or not thermodynamic equilibrium). 
The second exposition is purely quantum 
mechanical, i.e., the probabilities are not 
mixtures of quantum and statistical probabilities, 
and is discussed in Section 3. The evolution in 
time of the probabilities just cited requires an 
equation of motion more general than either the 
Schrödinger or the statistical von Neumann 
equation.  Such an equation is discussed in 
Section 4, and our conclusions in Section 5. 

2. A New Exposition of Thermodynamics 
2.1 Foundations 
Over the past more than three decades, a 

small group at the Massachusetts Institute of 
Technology developed a non-statistical and non-
quantum mechanical exposition of the 
foundations and applications of thermodynamics 
that applies to all systems (including one particle 
or one spin systems) and to both thermodynamic 
equilibrium and not thermodynamic equilibrium 
states (Gyftopoulos and Beretta, 1991, 2005). 

In the new exposition, we start with the 
mechanical concepts of space, time, and inertial 

mass or force, and express the first law as 
follows: Any two states A1 and A2 of system A 
may always be the end states of a process that 
involves no other effects external to the system 
except the change in elevation of a weight 
between z1 and z2, that is, solely a purely 
mechanical effect, and z1 – z2 depends only on A1 
and A2.  In contrast to other expositions, it is 
noteworthy that this statement does not involve 
the concepts of energy, temperature, heat, and 
work, all of which are defined later. 

The first law implies many rigorously 
proven theorems.  Examples are: (i) at each state 
of a system there must exist a function E, called 
energy, such that the change of its value E2– E1 
from state A1 to state A2 is proportional to z2 – z1; 
(ii) in the course of spontaneous changes of state 
(changes in time in an isolated system), E is 
invariant; and (iii) in the course of interactions, 
E2–E1 must be accounted for by the energy 
exchanged with systems interacting with A, that 
is, an energy balance must be satisfied. 

Next, depending on their evolution in time, 
we classify states in the seven categories 
encountered in mechanics, that is, unsteady, 
steady, non-equilibrium, equilibrium, unstable 
equilibrium, metastable equilibrium, and stable 
equilibrium, and raise the question: For given 
values of the energy, the volume, and the 
amounts of constituents of a system, are there 
any stable equilibrium states? 

In the new exposition, the answer is given 
by the second law which avers that (simplified 
version): For each set of values of energy E, 
amounts of r constituents n, and volume V, there 
exists one and only one stable equilibrium state.  
It is noteworthy that the concept of stable 
equilibrium is what in ordinary expositions is 
called equilibrium or thermodynamic 
equilibrium, and that, in contrast to all other 
expositions, here the second law does not 
involve the concepts of heat, temperature, and 
entropy. 

The second law cannot be derived from or 
explained by the “known laws” of physics either 
directly or statistically because these laws imply 
that the state of lowest energy is the only stable 
equilibrium state, whereas the second law avers 
that such a state exists for each set of values E, n, 
V. 

Among the many rigorously proven 
theorems of the two laws, one is established as 
follows.  Upon defining a reservoir in terms of 
concepts that have already been introduced 
(Gyftopoulos and Beretta, 2005), we investigate 
the optimum amount of energy that can be 
exchanged between a weight and a composite of 
system A and reservoir R – the optimum 



mechanical effect.  We call this optimum value 
generalized available energy and denote it by 

, and show that it is additive, and a 
generalization of the motive power of fire 
introduced by Carnot.  It is a generalization 
because Carnot assumed that A is also a 
reservoir, and we do not. 

RΩ

For an adiabatic process of system A only, 
we show that the changes of energy E1 – E2 of A 
and of the generalized available energy 

 of the composite of A and R satisfy 
the relations: 

RR
21 Ω−Ω

  (1) RREE 2121 Ω−Ω=−

if the process is reversible, or 

  (2) RREE 2121 Ω−Ω<−

if the process is irreversible.  A process is 
reversible if both the system and its environment 
can be restored to their respective initial states.  
A process is irreversible if the restoration just 
cited is impossible. 

The two properties E and  determine a 
property of A only, which is called the entropy 
and is denoted by S.  For state A

RΩ

1, S1 is evaluated 
by means of any reservoir R, a reference state A0, 
and the expression 

 ( ) ( )1 0 1 0 1 0
1 Ω ΩR R

R
S S E E

c
⎡ ⎤= + − − −⎢ ⎥⎣ ⎦

 (3) 

where cR is a well defined positive constant that 
depends only on the reservoir.  The entropy S is 
shown to be independent of the reservoir, that is, 
S is an inherent property of A only.  It is also 
shown that S can be assigned absolute values that 
are non-negative, and that vanish for all the 
states encountered in mechanics.  Moreover, and 
perhaps more importantly, by virtue of equations 
(1) and (2), entropy remains invariant in any 
reversible adiabatic process of A, and increases 
in any irreversible adiabatic process of A.  These 
conclusions are valid also for spontaneous 
processes, and for zero-net-effect interactions. 

The dimensions of S depend on the 
dimensions of both energy and cR.  In due course 
we show that the dimensions of cR are 
independent of mechanical dimensions, and are 
the same as those of temperature (Gyftopoulos 
and Beretta, 2005). 

Other rigorously proven theorems are: (i) in 
the course of interactions that change the state of 
a system A from A1 to A2, the difference S2 – S1 
must equal the entropy exchanged with systems 
interacting with A plus a nonnegative amount 
generated spontaneously within A; the latter 
amount is called entropy generated by 
irreversibility; (ii) the minimum value of entropy 

is zero; (iii) if a system is in a stable equilibrium 
state, then and only then the entropy is an 
analytic function of the form ( ),  ,  S E Vn , and 
the concepts of temperature T, total potentials iµ  
for i = 1, 2, …r, and pressure p are defined in 
terms of partial derivatives of ( ),  ,  S E Vn ; (iv) 
for states that are not stable equilibrium, T, iµ , 
and p are undefinable and meaningless; (v) work 
is an interaction that involves only the exchange 
of energy between the system and other systems 
in its environment; (vi) heat is an interaction that 
involves only the exchange of energy and 
entropy between either a system and one or more 
reservoirs, and/or between two systems behaving 
as black body radiators, and differing 
infinitesimally in temperature; (vii) neither work 
nor heat are contained in a system; (viii) any 
expression that purports to represent entropy 
must conform to eight conditions or equivalently 
have the following characteristics: 

(1) The expression must be well defined 
for every system (large or small), and 
every state (stable equilibrium or not 
stable equilibrium). 

(2) The expression must be invariant in all 
reversible adiabatic processes, and 
increase in any irreversible adiabatic 
process. 

(3) The expression must be additive for all 
systems and all states. 

(4) The expression must be non-negative, 
and vanish for all the states 
encountered in mechanics. 

(5) For given values of energy, amounts 
of constituents, and parameters, one 
and only one state must correspond to 
the largest value of the expression. 

(6) For given values of the amounts of 
constituents and parameters, the graph 
of entropy versus energy of stable 
equilibrium states must be concave 
and smooth. 

(7) For a composite C of two subsystems 
A and B, the expression must be such 
that the entropy maximization 
procedure for C (criterion (5)) yields 
identical thermodynamic potentials 
(for example, temperature, chemical 
potentials, and pressure) for all three 
systems A, B, and C. 

(8) For stable equilibrium states, the 
expression must reduce to relations 
that have been established 
experimentally and that express the 
entropy in terms of the values of 
energy, amounts of constituents, and 
parameters, such as the relations for 
ideal gases. 
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It is noteworthy that, except for criteria (1) 
and (4), we can establish the remaining six 
criteria by reviewing the behavior of the entropy 
of classical thermodynamics. 

The definition of entropy introduced here 
differs radically from and is more general than 
the entropy presented in practically all textbooks 
on physics and thermodynamics.  Despite these 
differences, for thermodynamic equilibrium 
states, it has the same values as those listed in 
existing tables. 

In the new exposition, the third law avers 
that: For each given set of values of n and V of 
system A (without a finite upper limit on energy) 
there exists one stable equilibrium state with 
zero temperature, or infinite inverse 
temperature.  For a system with both a lower 
and an upper limit on energy, such as a spin 
system, there exist two stable equilibrium states 
with zero temperatures, or equivalently 

  1   T−∞ ≤ ≤ ∞ . 
Neither the statements of the three laws nor 

the proofs of any of their theorems require any 
considerations about numerical difficulties that 
prevent us from making explicit calculations, and 
about statistical measures of ignorance (or lack 
of information), or any restrictions to systems of 
specific sizes and specific numbers of degrees of 
freedom, or any limitations to states of specific 
types. So a statistical interpretation of thermody-
namics is unwarranted, and a restriction to 
specific states unjustifiable. 

2.2 An energy versus entropy graph 
At an instant in time, a state can be 

represented by a point in a multidimensional 
space with one axis for each amount of 
constituent, volume, and each independent 
property.  Such a representation, however, is 
unwieldy because the number of independent 
properties of any system, even a system 
consisting of one particle only, is infinite.  
Nevertheless, useful information can be captured 
by first cutting the multidimensional state space 
by a hyper-surface corresponding to given values 
of each amount of constituent and the volume, 
and then projecting the cut on an energy versus 
entropy plane.  For system A without upper 
bound on energy, it is proven that the projection 
must have the shape of the cross-hatched area in 
Figure 1. 

A point either inside the cross-hatched area 
or on the line S = 0 represents the projections of 
an infinite number of states.  Each such state has 
the same values of amounts of constituents n, 
volume V, energy E, and entropy S but differing 
values of other properties, and is not a stable 
equilibrium state.  In particular, the line (and 

more generally the surface) S = 0 represents all 
the states regularized by the “known laws” of 
physics.  The convex curve represents classical 
thermodynamics for given n and V.  Each point 
on the curve corresponds to one and only one 
stable equilibrium state.  For any such state, the 
value of any property is determined solely by the 
values of E, n, and V.  Many theorems of the 
laws of thermodynamics can be elegantly and 
simply illustrated on the E versus S diagram 
(Gyftopoulos and Beretta, 1991, 2005).  
Projections of other cuts of the multidimensional 
state space on other planes, such as E versus V, 
or E versus the amount of a constituent, are 
possible.  Each results in a graph that provides 
visual illustrations of different aspects of the new 
exposition. 

 
Figure 1. Energy versus entropy graph. 

2.3 A thermodynamic exorcism of 
Maxwell’s demon 

Maxwell is one of the great scientists who 
believed that all physical phenomena are 
mechanical, but numerical difficulties with 
macroscopic systems force us to abandon the 
mechanical explanation and resort to the 
statistical method.  He said: “One of the best 
established facts in thermodynamics is that it is 
impossible in a system enclosed in an envelope 
which permits neither change of volume nor 
passage of heat, and in which both the 
temperature and the pressure are everywhere the 
same, to produce any inequality of temperature 
or of pressure without the expenditure of work.  
Now let us suppose that such a vessel is divided 
into two portions B and C by a division in which 
there is a small hole, and that being who can see 
the individual molecules, opens and closes this 
hole, so as to allow only the swifter molecules to 
pass from B to C, and only the slower ones to 
pass from C to B.  He will thus, without 
expenditure of work, raise the temperature of C 
and lower that of B, in contradiction to the 
second law of thermodynamics.”  This being was 
later named a demon by Thomson. 
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Hundreds of papers and several books have 
been written over the past century, all claiming 
to prove that the demon cannot violate the 
second law.  In our view, none of these 
publications has proven what is claimed because 
none addresses the problem posed by Maxwell.  
In each publication, either the demon or the 
environment of the vessel, or both experience 
some effects in sharp contrast to Maxwell’s 
specification that such effects are not needed by 
an omniscient and omnipotent demon that 
accomplishes his task without expenditure of 
work, and, therefore, without any contribution 
whatsoever.  One may think that such a 
specification is too restrictive and unrealistic.  
Nevertheless, this is Maxwell’s conception. 

In the new exposition, the exorcism 
satisfies Maxwell’s specification, is definitive, 
and applies even if the molecules do not behave 
as a perfect gas and, therefore, cannot be treated 
individually (Gyftopoulos, 2002a). The proof of 
these assertions can be readily illustrated by 
means of the E versus S diagram for the air 
molecules.  Starting from stable equilibrium state 
A0, the demon is asked to sort the air molecules 
into swift and slow without any changes in the 
values of the energy, the amount of air and the 
volume, and without any change either of his 
state or, more generally, of the state of the 
environment.  If this were possible, the final state 
of A would be A1 (Fig. 1), that is a state with the 
same values of E, n, and V as those of A0, but 
less entropy than that of A0.  But we have proven 
that entropy is a non-destructible, non-statistical 
property of the molecules of A.  Accordingly, the 
demon cannot reduce the entropy without 
compensation.  It is clear that this impossibility 
has nothing to do with either the entropy 
generated by irreversibility, shortcomings of the 
demon’s procedures and equipment, or the 
collection and discard of information. 

Equivalently, if the demon is regarded 
either as a cyclic machine or a perpetual motion 
machine of the second kind (PMM2), then his 
ultimate task is to extract only energy from 
system A and, thus, change state A0 to a state of 
smaller energy and equal or larger entropy than 
those of A0. But under the specified conditions, 
the graph in Figure 1 shows that there exists no 
such state. 

Some authors claim that the demon is 
infeasible even if the initial state of A is not 
stable equilibrium (Zhang and Zhang, 1992). 
This claim is also erroneous. If the initial state A1 
is not stable equilibrium and, therefore, lies 
somewhere within the cross-hatched area in 
Figure 1, then even an incompetent demon could 
extract only energy from A without violating the 
laws of thermodynamics. Among a myriad of 

examples that illustrate the remarks just cited, a 
simple one is the work done by the small battery 
encapsulated in your or my wrist watch! 

2.4 Reversibility and the age of the 
universe 

Some scientists believe that we can expect 
to see unusual events such as gases unmixing 
themselves, only if we wait for times 
inconceivably long. There are lots of 
experiments that contradict this belief.  For 
example, a well insulated bucket initially 
containing hot and cold water.  Upon interacting 
only with each other, the hot and cold water 
become lukewarm and of course the process is 
irreversible.  However, we can always restore the 
hot and cold parts over a very short period of 
time by means of cyclic machinery which leaves 
the energy of the environment intact but 
increases its entropy even if the processes are 
thermodynamically perfect, i.e., reversible.  
Moreover, the restoration of the initial state of 
the water is independent of the speed at which it 
is achieved, and involves neither velocity 
reversals nor any special information. 

Another example is a high quality charged 
battery wrapped in excellent insulation and left 
idle on a shelf.  After a few years, the battery is 
found to be dead because of internal discharge at 
constant energy.  At that time, we can restore the 
initial state of the battery over a period of time 
much shorter than the time required for the 
completion of the spontaneous internal 
discharge.  The spontaneous discharge is 
irreversible.  Upon completing the recharging 
process, the energy of the environment is 
unchanged but its entropy increases even if the 
recharging is perfect, and occurs over a short or 
long period of time. 

3. A New Exposition of Quantum Thermo-
dynamics 

3.1 Foundations 
In this section we present a brief summary 

of a non-relativistic quantum theory that differs 
from the presentations in practically every 
textbook on the subject.  The key differences are 
the discoveries that for a broad class of quantum-
mechanical problems: (i) the probabilities 
associated with ensembles of measurement 
results at an instant in time require a 
mathematical representation delimited by but 
more general than a wave function or projector; 
and (ii) the evolution in time of the new 
mathematical representation requires a nonlinear 
equation of motion delimited by but more 
general than the Schrödinger equation. 

In response to the first difference, 
Hatsopoulos and Gyftopoulos (1976) observed 



that there exist two classes of quantum problems.  
In the first class, the probabilities associated with 
measurement results are fully described by a 
wave function or projector, whereas in the 
second class the probabilities require a density 
operator  that involves no statistical averaging 
over projectors – no mixtures of quantum and 
statistical probabilities.  The same result emerges 
from the excellent review of the foundations of 
quantum mechanics by Jauch (1973). In addition, 
the recognition of this difference eliminates the 
“monstrosity” of the concept of mixed state that 
concerned Schrödinger (1980) and Park (1968), 
and provides the link between quantum theory 
and thermodynamics without resort to statistics.  
This link extends the realm of quantum theory to 
states encountered in thermodynamics, and 
thermodynamic principles to quantum 
phenomena. 

ρ
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ρIn either the case of a projector , or 
of a non-statistical density operator , the 
pictorial representation of is a homogeneous 
ensemble, that is, each member of the ensemble 
is characterized by the same ρ as the ρ of the 
whole ensemble.  This fundamental difference 
must be contrasted to heterogeneous ensembles 
where is a statistical average of projectors 

. 

2ρ =
2ρ  ρ<

ρ

ρ
iρ ρ≠

For unitary evolutions of in time, 
Hatsopoulos and Gyftopoulos (1976) postulate 
that obeys the equation 

ρ

ρ

 [ ]ρ   H,ρd i
dt h

= −  (4) 

for both isolated systems (H independent of 
time) and non-isolated systems (H dependent on 
time). 

It is noteworthy that though equation (4) 
looks like the von Neumann equation of 
statistical quantum mechanics, here it must be 
postulated because is not a statistical mixture 
of projectors and, therefore, equation (4) cannot 
be derived as a statistical average of Schrödinger 
equations. 

ρ

As it is well known, the processes described 
by equation (4) are reversible and adiabatic.  If 
there exist constants of the motions of all the 
reversible adiabatic processes described by 
equation (4), each such constant must be a 
functional solely of the eigenvalues of ρ because 
these are the only quantities that remain invariant 
in the course of all unitary transformations with 
respect to time. 

Using the conclusion just cited, and the 
eight conditions discussed in Section 2.1, 
Gyftopoulos and Çubukçu (1997) prove that the 
only expression for entropy that is acceptable is 

   ρ lnρS kTr= −  (5) 

provided that is purely quantum mechanical, 
and not a mixture of quantum mechanical and 
statistical probabilities as in the case of the von 
Neumann entropy. 

ρ

3.2 A quantum thermodynamic exorcism 
of Maxwell’s demon 

A theorem of quantum thermodynamics is 
that each molecule of a system in a 
thermodynamic equilibrium state has zero value 
of momentum, that is, each molecule is at a 
standstill and, therefore, there are no molecules 
to be sorted as swift and slow.  The proof of this 
assertion is given in (Gyftopoulos, 2002b).  It is 
noteworthy that each molecule is at a standstill 
even in a system that is in an equilibrium state 
that is not stable. 

The idea that in an equilibrium state each 
molecule or atom is at a standstill has been the 
subject of many nonscientific criticisms.  In Ref. 
(Gyftopoulos, 2002b) I provide fully 
documented and rational responses to all the 
criticisms of which I am aware. 

3.3 Pictorial Illustration of Entropy 
In many textbooks (Leighton, 1959; Brandt 

and Dahmen, 1995), the probability density 
function 2ρ ρ=  of the spatial coordinates is 
interpreted as the shape of the constituents of a 
system.  Gyftopoulos observed (Gyftopoulos, 
1998; Gyftopoulos, 1999; Gyftopoulos and von 
Spakovsky, 2003) that the same interpretation of 
the spatial shape applies to the probabilities 
derived from density operators . 2ρ ρ>

It follows that the entropy of 
thermodynamics (equation (5)) is a measure of 
the quantum-theoretic spatial shape of 
constituents.  Examples of this interpretation and 
how entropy changes from zero to larger values 
as the spatial shape 2ρ ρ≤  changes are given in 
(Gyftopoulos, 1998; Gyftopoulos, 1999; 
Gyftopoulos and von Spakovsky, 2003).  For 
example, for one particle confined in either a 
one-dimensional or a two-dimensional infinitely 
deep potential well, and having a fixed energy, 
the spatial shapes are oscillatory and become flat 
as the particle reaches a thermodynamic 
equilibrium state.  Similarly, an electron of a 
hydrogen atom begins with beautiful but 
complicated spatial shapes (Brandt and Dahmen, 
1995) and ends up with a perfect spherical shape 
if the electron is in a thermodynamic equilibrium 
state. 

4. The Equation of Motion of Quantum 
Thermodynamics 



4.1 Introduction 
In response to the second difference cited in 

3.1, Beretta in his doctoral dissertation (Beretta 
et al., 1984; Beretta, Gyftopoulos, and Park, 
1984) conceived a nonlinear equation of motion 
for the non-statistical density operator ρ . The 
equation consists of a linear part that tends to 
drive the operator  along a unitary isentropic 
evolution and maintains constant each 
eigenvalue of ρ , and a conservative but 
dissipative force that pulls  toward the path of 
steepest entropy ascent.  In what follows, we 
discuss the simplest application of the equation.  
More information and applications are given in 
(Beretta, 1986; Beretta, 1987; Beretta, 2005). 

ρ

ρ

 Int. J. of Thermodynamics, Vol. 9 (No. 3) 113

4.2 One particle approximation for a 
Boltzmann gas 

As an illustration of the Beretta equation, 
we consider an isolated system composed of 
non-interacting identical particles with single-
particle energy eigenvalues  for i = 1, 2, …, N 
where N is finite and the i ’s are repeated in 
case of degeneracy.  As done by Beretta (2005), 
we restrict our analysis to the class of dilute-
Boltzmann-gas states in which the particles are 
independently distributed among the N (possibly 
degenerate) one-particle energy eigenstates.  In 
density operator language, this is tantamount to 
restricting the analysis on the subset of one-
particle density operators that are diagonal in the 
representation in which also the one-particle 
Hamiltonian operator is diagonal.  We denote by 

i  the probability of the i-th energy eigenstate, 
so that the per-particle energy and entropy 
functionals are given by the relations 

ie
e

p

N
i i

i=1
E e p= ∑    

N
i i

i=1
lnS k p p= − ∑

N
i

i=1
1p =∑       (6) 

As in all paradigms of physics, the 
nonlinear equation of motion maintains the 
initially zero probabilities equal to zero, whereas 
the rates of change of the nonzero probabilities 
are given by 

j j j j j

i i i i
2

j i i i i i i i

i i
2

i i i i

   ln                        

 ln           1          

ln            1  
    1        

    

p p p e p

p p e p

dp e p p e p e p
e pdt τ

e p e p

∑ ∑

∑ ∑ ∑
=

∑

∑ ∑

 

 for i, j = 1, 2, …, N (7) 
where  is a scalar time constant or functional. τ

The solutions of these equations are well-
behaved in the sense that they satisfy both all the 
conditions given in Gyftopoulos (2002) and have 

the following general features: (i) they conserve 
the energy and trace of ρ ; (ii) they preserve the 
non-negativity of each i ; (iii) they maintain the 
non-negative rate of entropy generation; (iv) they 
maintain the dimensionality of the density 
operator; (v) they drive any arbitrary initial 
density operator 

p

( )ρ 0  toward the partially 
canonical equilibrium density operator ( )ρ ∞  
with time independent eigenvalues in the energy 
representation 

 ( )
( )

( )
pe

jpe
j N pe

ii 1

exp
,    

exp

β e
p E t

β e=

−
= ∞ =

−∑
 (8) 

where the value of peβ  is determined  by the 
initial condition ( ) ( )( )N pe

i ii 1= , 
and the superscript “pe” is used to indicate that 
the system is in an unstable or, so-called, partial 
equilibrium state. 

ρ 0e p E E E= =∑

Among all the equilibrium states just cited 
there exists one and only one that is stable (“se”) 
and corresponds to the largest value of the 
entropy for the given value of energy E, and for 
which the eigenvalues of the density operator in 
the energy representation are given by the 
relations – canonical distribution 

 ( )
( )( )
( )( )

jse
j N

ii 1

exp
  

exp

e kT E
p E

e kT E=

−
=

−∑
 (9) 

where ( )T E  is shown to be equal to the 
derivative of energy with respect to entropy of 
stable equilibrium states of the Boltzmann gas at 
energy E.  By definition the derivative just cited 
is called temperature. 

For a general non-equilibrium state, the rate 
of entropy generation may be written as a ratio of 
Gram determinants in the form 

( )

0
1

ln

1ln

lnlnln

2

2

2

≥

∑∑

∑
∑ ∑∑

∑ ∑

∑ ∑ ∑

τ
=

iiii

ii

iiiiiii

iiii

iiiiiii

pepe

pe
pepeppe

pepp

ppepppp

k
dt
dS   

 (10) 
where the non-negativity follows from the well-
known properties of Gram determinants. 

Given any initial density operator, it is 
possible to solve the equation of motion for all 
values of time, that is .  In the limit 

, the trajectory approaches a largest 
entropy equilibrium state with a density operator 
that is canonical over the energy eigenstates 
initially included in the analysis.  An exception 

t−∞ < < ∞
t →∞



to this conclusion is the case of the initial density 
operator being a projector . Then the 
evolution in time follows the Schrödinger 
equation and is unitary and reversible, except if 
the projector is an energy eigenprojector which is 
stationary. 

2ρ=ρ

As stated earlier, in the unified quantum 
theory of mechanics and thermodynamics 
without statistical probabilities, the three laws of 
thermodynamics introduced in Section 2 need 
not be introduced explicitly because they are 
theorems of the new exposition of quantum 
thermodynamics.  This fact is analogous to the 
derivation of momentum and kinetic energy 
conservations as theorems of Newton’s equation 
of motion of classical mechanics. 

4.3 Discussion of views about 
thermodynamics 

Some views of preeminent scientists about 
the nature of thermodynamics are reviewed in 
light of the two novel expositions of the subject 
in (Gyftopoulos, 2001). In particular, comments 
made by Boltzmann (Brush, 1986), Brillouin 
(1962), Feynman (1963), Penrose (1989), 
Denbigh (1955), and Lebowitz (1993) are 
reviewed and found to misrepresent the 
principles and theorems of both the exposition of 
thermodynamics without quantum considera-
tions and/or the quantum theory of mechanics 
and thermodynamics without statistical 
probabilities. 

5. Concluding Remarks 

The most important conclusion of this work 
is that entropy is a quantum-theoretic, inherent, 
non-statistical property of any system (large or 
small, including a one spin system), in any state 
(thermodynamic equilibrium or not thermo-
dynamic equilibrium). Another conclusion is that 
thermodynamics is a general quantum theory that 
enlarges the realm of quantum mechanics from 
zero entropy physics to physics for nonzero 
values of entropy, and the realm established for 
conditions of thermodynamic equilibrium. Thus, 
the conception of the unification of mechanical 
and thermodynamic concepts eliminates the need 
for the ideas of randomness, disorder, lack or 
erasure of information, and the difficulty of 
performing complicated calculations. 

Nomenclature 

Rc  Positive constant proven to be the 
temperature of a reservoir 

E Energy 
i

H Hamiltonian operator 
e   energy eigenvalue i th−

h Planck’s constant 
h  Planck’s constant divided by  2π

k Boltzmann’s constant 
n Vector of amounts of r types of 

constituents 
p Pressure 

ip  Probability of the system measured to 
be in the i th−  energy eigenstate 

pe
jp  Probability of the system measured to 

be in the j energy eigenstate of a partial 
equilibrium state 

se
jp  Probability of the system measured to 

be in the j energy eigenstate of a stable 
equilibrium state 

S Entropy 
t Time 
T Temperature 
( )T E  Temperature of a stable equilibrium 

state of energy E 
V Volume 
z Location in a gravity field 

Greek Letters 

iµ  Total potential of the  constituent i th−
ρ  Non-statistical density operator 
ΩR  Generalized available energy 
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