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Abstract 
The author presents his experience in teaching at a graduate level the quantal exposition of 
a new non-statistically based paradigm of physics and thermodynamics. This paradigm, 
called the Unified Quantum Theory of Mechanics and Thermodynamics, applies to all 
systems large or small (including one particle systems) either in a state of thermodynamic 
(i.e. stable) equilibrium or not in a state of thermodynamic equilibrium. It uses as its 
primitives inertial mass, force, and time and introduces the laws of thermodynamics in the 
most unambiguous and general formulations found in the literature. Starting with a precise 
definition of system and of state followed by statements and corollaries of the laws of 
thermodynamics, the thermodynamic formalism is developed without circularity and 
ambiguity. In this quantal exposition of the new paradigm, a brief review of the formalism 
of thermodynamics as a general science not limited to stable equilibrium and large 
(macroscopic) systems as well as a very brief summary of the three prevalent formalisms in 
classical physics are presented followed by a presentation and development of solutions for 
a number of elementary problems in quantum physics (e.g., a particle in a box, a harmonic 
oscillator, a rigid rotor, etc.). These solutions and the maximum entropy principle are then 
used in a constrained optimization to develop the canonical and grand canonical 
distributions for Fermi-Dirac and Bose-Einstein types of particles, i.e. for fermions and 
bosons. This is done without the use of analogies between statistical and thermodynamic 
results and without additional hypotheses such as the ergodic hypothesis of statistical 
mechanics. These distributions are then employed under various assumptions (i.e. the 
Boltzmann, constant-potential, point-particle, and continuous eigenvalue-spectrum 
approximations) to derive the corresponding thermodynamic property expressions for 
perfect, semi-perfect (ideal), and Sommerfeld gases as well as for mixtures of ionized and 
dissociated gases. In a similar fashion but with a change from a single- to a multi-particle 
partition function and with the addition of various inter-particle potentials for two-particle 
interactions (e.g., the Lennard-Jones potential, the square-well potential, etc.), expressions 
for the thermodynamic properties of dense gases are developed and presented.  
Keywords: Quantum mechanics, thermodynamics, graduate level teaching, non-statistical 

paradigm of physics and thermodynamics, unified quantum theory of 
mechanics and thermodynamics 

1. Introduction 

This paper presents the author’s experience 
in teaching at a graduate level a new non-
statistically based paradigm of physics and 

thermodynamics called the Unified Quantum 
Theory of Mechanics and Thermodynamics 
(Hatsopoulos and Gyftopoulos, 1976, 1979; 
Beretta, Gyftopoulos, and Park, 1985; 
Gyftopoulos and Beretta, 1991, 2005; 
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Gyftopoulos and Çubukçu, 1997; Gyftopoulos 
and von Spakovsky, 2003, 2004; Beretta and 
Gyftopoulos, 2004). Having taught both the non-
quantal (Gyftopoulos and Beretta, 1991, 2005; 
von Spakovsky, 2005; Metghalchi, 2005; von 
Spakovsky and Metghalchi, 2006) and quantal 
(Hatsopoulos and Gyftopoulos, 1976, 1979; 
Beretta, Gyftopoulos, and Park, 1985; 
Gyftopoulos and Çubukçu, 1997; Gyftopoulos 
and von Spakovsky, 2003, 2004; Beretta and 
Gyftopoulos, 2004; von Spakovsky, 2006) 
expositions of this theory over the last several 
years, it was suggested by a number of my 
colleagues that a  paper on the quantal 
exposition would be of interest since what is 
generally taught today is the statistical 
mechanical based paradigm of statistical 
thermodynamics which has been the dominant 
paradigm since the 19th century. An 
accompanying paper co-authored with my 
colleague Hameed Metghalchi does the same for 
the non-quantal exposition (von Spakovsky and 
Metghalchi, 2006).  

Whichever exposition of the Unified 
Theory is taught, the paradigm itself applies to 
any system large or small (including one particle 
systems) either in a state of thermodynamic (i.e. 
stable) equilibrium or not. It uses as its 
primitives inertial mass, force, and time and 
introduces the laws of thermodynamics in the 
most unambiguous and general formulations 
found in the literature. Starting with a uniquely 
precise definition of system and of state followed 
by statements and corollaries of the laws of 
thermodynamics, this thermodynamic formalism 
avoids both circularities and ambiguities. In the 
quantal exposition presented here, the course 
taught is outlined beginning with a brief 
summary of the formalism of thermodynamics 
and the formalisms and failures of classical 
physics followed by solutions for a number of 
elementary problems in quantum physics (e.g., a 
particle in a box, an harmonic oscillator, a rigid 
rotor, etc.), which, along with the maximum 
entropy principle, are used in a constrained 
optimization to develop the canonical and grand 
canonical distributions  for Fermi-Dirac and 
Bose-Einstein types of particles, i.e. for fermions 
and bosons. This is done without the use of 
analogies between statistical and thermodyna-
mic results and without additional hypotheses 
such as the ergodic hypothesis of statistical 
mechanics. These distributions are then 
employed under various assumptions (i.e. the 
Boltzmann, constant-potential, point-particle, 
and continuous eigenvalue-spectrum 
approximations) to derive the corresponding 
thermodynamic property expressions for perfect, 
ideal, and Sommerfeld gases as well as for 
mixtures of ionized and dissociated gases. In a 

similar fashion but with a change from a single- 
to a multi-particle partition function and with the 
addition of various inter-particle potentials for 
two-particle interactions (e.g., the Lennard-Jones 
potential, the square-well potential, etc.), 
expressions for the thermodynamic properties for 
dense gases are developed and then presented. 
However, before beginning with this exposé, a 
brief history of the significant contributions 
made with regards to the unified theory is made. 

2. Brief History of the Unified Theory  

The first presentation of this new paradigm 
of physics and thermodynamics is given by 
Hatsopoulos and Gyftopoulos (1976) in a series 
of four papers. Called the Unified Quantum 
Theory of Mechanics and Thermodynamics, the 
theory unifies these two disciplines of science 
and resolves a number of the dilemmas and 
paradoxes that have plagued generations of 
physicists and thermodynamicists in their 
attempts to rationalize the relationship between 
mechanics and thermodynamics. This work is a 
landmark development, which indeed fits the 
definition of a radical or revolutionary change in 
the way we think and conceive of 
thermodynamics and physics. As described in 
Thomas Kuhn’s book The Structure of Scientific 
Revolutions (1970), such a change is what has 
marked the shift throughout history from one 
major paradigm to another, e.g., the shift from 
classical to quantum mechanics or to general and 
special relativity or from the Ptolemaic theory to 
the heliocentric theory.   This work represents 
the basis on which Gyftopoulos and his 
colleagues have continued over the last three 
decades to develop this unified theory, which 
encompasses without modification all systems 
(both large and small) and all states (both 
thermodynamic or stable equilibrium and not 
stable equilibrium). The foundations laid here 
lead next to the discovery of a completely new 
equation of motion. 

Having observed that Newton’s and 
Schrödinger’s equations of motion and the latter’s 
equivalent the von Neumann equation are correct 
but incomplete, Beretta (Beretta, Gyftopoulos, and 
Park (1985)) proceeded to develop in the context 
of the unified theory a new and much more 
comprehensive equation of motion. To put this in 
perspective, the Schrödinger equation, for 
example, only describes a special case of 
processes, which are reversible and adiabatic and 
describe the evolution of a system from one 
mechanical state to another. Such processes are 
called unitary in quantum mechanics. However, 
not all reversible processes are unitary. For 
example, the transfer of energy from one system 
at a high temperature to another at a low 
temperature in a reversible heat interaction 
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represents a process fundamental to 
thermodynamics but one, which is not unitary and, 
thus, not describable by the Schrödinger equation. 
Furthermore, von Neumann’s equation for unitary 
transformations of the density operator in time is 
also not sufficiently general to encompass this 
type of reversible process, i.e. non-unitary 
process, since his density operator is both a 
statistical average of wave functions or projectors 
and each statistical weight is independent of time.  
In addition, neither the Newton, Schrödinger, nor 
von Neumann equations of motion are able to 
describe a whole class of processes which one 
encounters in thermodynamics, namely 
irreversible processes. 

In contrast to these equations, the equation 
of motion developed by Beretta encompasses 
these other equations as special cases and is able 
to predict the evolution in time of the state of a 
system not only for unitary reversible processes 
but for irreversible processes as well. None of the 
other equations of motion proposed over the last 
century are able to do this and, thus, the Beretta 
equation of motion is not only the most general 
but is as well an illustration of the unification 
which this theory brings to mechanics and 
thermodynamics since it is able to predict the 
evolution in time of a system’s state be it 
mechanical or thermodynamic. In fact, the Beretta 
equation is equivalent to using the laws of 
thermodynamics with the factor of time intro-
duced to predict not only the evolution of a state 
but the time it takes to go from one state to the 
next. 

In 1991, Gyftopoulos and Beretta published 
their non-quantal exposition (a 2nd edition has 
since been released, 2005) of Thermodynamics 
that defines all concepts and results rigorously and 
completely and without circular or tautological 
arguments.  Though the intellectual basis for this 
exposition is the Unified Theory, the presentation 
given in their book is done without reference to 
quantum-theoretic concepts, postulates and 
theorems and can, thus, be studied without 
knowledge of quantum theory. It is, therefore, a 
beautiful introduction into the generality of 
thermodynamics and its applicability to all 
systems whether microscopic or macroscopic or in 
a state of stable equilibrium or a state of not stable 
equilibrium. This contrasts with all other 
presentations of thermodynamics, which assume, 
as classical thermodynamics does, that 
thermodynamics stops (using the terminology of 
statistical mechanics) at the boundary between the 
macroscopic and the microscopic and that 
thermodynamic concepts such as entropy apply 
only to states in stable equilibrium and are not 
fundamental to matter in the same way that mass, 
energy and momentum are. 

In a 1997 landmark article, Gyftopoulos 
and Çubukçu posed and then conclusively 
answered the question: are all the numerous 
expressions for entropy, which proliferate the 
literature, acceptable as the entropy of 
thermodynamics?  Gyftopoulos and Çubukçu 
answer this question with an emphatic “no” by 
establishing a set of eight criteria, which the 
entropy of thermodynamics must meet. These 
criteria are based on the Unified Theory and are 
used to screen the most likely candidate 
expressions, namely, the quantum expressions by 
Daróczy (1970), by Hartley (1928), by Rényi 
(1966), and by von Neumann (1929) as well as 
the infinite norm entropy expression and the one 
developed by Hatsopoulos and Gyftopoulos 
(1976)1.  Expressions for entropy based on 
temperature and heat (typical of classical or 
equilibrium thermodynamics) are excluded 
because they only apply to stable equilibrium 
states while those which come from statistical 
mechanics are not acceptable because they are 
based on statistical (i.e. subjective) as opposed to 
quantal (i.e. inherent) probabilities and the 
entropy which results is, therefore, not a 
fundamental property of matter. Furthermore, 
expressions, which come from statistical 
quantum mechanics and depend on variables 
other than the eigenvalues of the density 
operator, are also excluded because they fail the 
criterion that entropy must be invariant or 
increase. Thus, of the expressions listed above, 
only the one, which comes from the Unified 
Theory, satisfies all eight criteria. All others fail 
at least one and most more than one.  

Thus, with this important work, the entropy 
of thermodynamics is established as a non-
statistical property of matter in any state, not just 
a stable equilibrium state. Furthermore, contrary 
to the view originating with Boltzmann and 
Maxwell and held since the 19th century, entropy 
is established as a measure of “order” and not 
“disorder” which in turn fundamentally changes 
how one views nature. These conclusions lead to 
the idea that entropy creation is a measure of 
how the constituents of a system be it large or 
small change or evolve in response to the 
internal and external forces acting upon them and 
that this change can be graphically seen as the 
change in the quantum-theoretic shape of the 
constituents. The latter is the next important 
contribution (Gyftopoulos and von Spakovsky, 
2003), which is discussed. 

In Gyftopoulos and von Spakovsky (2003), 
the authors make a novel and potentially 
important contribution to the field of 
                                                 
1 The original proof by Hatsopoulos and Gyftopoulos 
(1976) is completed and generalized in Gyftopoulos 
and Çubukçu (1997). 



thermodynamics. Viewing entropy as a 
fundamental property of matter (like mass or 
momentum or energy) independent of statistical 
considerations, the authors assert that entropy 
can be characterized by shape, and that the 
concept applies to individual atoms and 
molecules, not just to macroscopic ensembles. 
The aspect stressed in this paper is the 
observation that the shape of the probability 
density function is rippled and unstable for not 
stable equilibrium states and is smooth and stable 
for stable equilibrium.  

These are remarkable assertions, and the 
first presentation of quantum theoretic shapes (in 
terms of spatial coordinates) within the context 
of the Unified Theory.  Its originality lies beyond 
the fact that this is a novel exposition of quantum 
theoretic shapes, since spatial distributions or 
shapes have already been treated to a degree 
within the framework of quantum mechanics.  
Instead, its originality lies in the fact that since 
the Unified Theory encompasses quantum 
mechanics as a special case, there is a need for 
generalizing the concept of spatial shapes to 
thermodynamics as a whole.  This paper clearly 
fills that important gap.  To this end, this work 
accomplishes a great task in explaining a number 
of the features of the Unified Theory. 

Finally, in the latest contribution to this 
new theory, Beretta and Gyftopoulos (2004) 
make a significant contribution to the literature 
by developing analytical expressions for 
chemical affinities, reaction rates, and entropy 
generation rates as functions of the reaction 
coordinates for states near chemical equilibrium. 
The conditions for chemical equilibrium as a 
system proceeds through non-equilibrium states 
towards chemical equilibrium are established in 
terms of energy, volume, and composition or 
temperature, pressure, and composition. The 
model developed is valid for the homogeneous 
states of reactors and provides the conceptual 
basis for the so-called “local-equilibrium” 
assumption on which the continuum fluid 
dynamics’ treatment of non-homogeneous states 
rests. Of even greater import is Gyftopoulos’ and 
Beretta’s non-statistical development of Onsager 
reciprocal relations for isolated chemical 
reactors. They convincingly demonstrate that 
arguments based on statistical fluctuations, time 
reversal, and the principle of microscopic 
reversibility used in all traditional treatments are 
nonessential and, therefore, play no role in the 
thermodynamic theory of irreversible processes. 

3. Teaching the Unified Theory  

Obviously, in teaching the unified quantum 
theory of mechanics and thermodynamics at the 
graduate level in a single semester course, it is 

impossible to cover all the various aspects and 
complexities of this theory as outlined in brief 
above. Thus, a choice must be made as to which 
of these and in what detail it makes sense to 
cover given the limited time available and the 
background (primarily engineering) of the 
graduate students taking the course.  The choice 
made by the author was to develop for the 
students the formalism for the Unified Theory by 
showing how it allows one to go directly from 
the elementary problems and solutions of 
quantum mechanics to the development of the 
thermodynamic expressions for the 
thermodynamic properties of gases and to show 
how this can be done without the use of 
analogies between statistical and thermodynamic 
results and without additional hypotheses such as 
the ergodic hypothesis of statistical mechanics.  
In doing so, however, the course begins with a 
brief review of the principal concepts and laws 
of thermodynamics based on the non-quantal 
exposition given in Gyftopoulos and Beretta 
(1991, 2005), von Spakovsky and Metghalchi 
(2006), and von Spakovsky (2005). 

3.1 The formalism of thermodynamics 
The review given in the first two weeks of 

my course of the formalism of thermodynamics 
as a general science applicable to all systems and 
states begins with very precise definitions of 
system, property, and state. The first of these is 
defined as a collection of constituents with the 
following specifications: the amounts of 
constituents { }rnnn ,...,1=

r
, their type and range; 

parameters { }sβββ ,...,1=
r

, their type and range; 
internal forces including internal reaction 
mechanisms; and internal constraints on changes 
in values of the ni and the βj. The βj characterize 
external forces such as gravity, an electrostatic 
field, a magnetic field, or container walls, while 
internal forces and reaction mechanisms include 
chemical, nuclear, and molecular. Internal 
constraints include such things as internal 
partitions or the condition that all or some 
chemical reactions are inactive. Furthermore, 
partitioning of a system requires that the 
coordinates of each partition (i.e. subsystem) be 
separable from those of the other partitions and 
that the state of each partition be uncorrelated 
from that of the other partitions. It is assumed 
throughout Gyftopoulos and Beretta (1991, 
2005) that system refers to separable system and 
state to uncorrelated state. 

Next, definitions of property, state, and 
changes of state, i.e. evolutions in time of state, 
follow. Two types of states exist: stable and not 
stable equilibrium. Of the latter, there are the 
non-equilibrium, metastable and unstable 
equilibrium, steady, and unsteady states. Certain 

 Int. J. of Thermodynamics, Vol. 9 (No. 3) 150



time evolutions of state or processes are 
described by Newton’s equation of motion or its 
quantum mechanical equivalent, the Schrödinger 
equation of motion. Other time evolutions, 
however, do not obey either of these equations 
such as those involving reversible heat transfer 
or those in which irreversibilities are present. An 
equation of motion which does is the Beretta 
equation (Beretta, Gyftopoulos, and Park, 1985). 
The most general and well-established features 
of all of these equations are captured by the First 
and Second Laws of thermodynamics which 
provide a powerful alternative procedure for 
analyzing the time-dependent phenomena of 
physical processes.  

The most general and unambiguous 
statements of these two laws and their 
consequences are given in Gyftopoulos and 
Beretta (1991, 2005), using as primitives space, 
time, and force or inertial mass. What makes this 
First Law statement so general and 
encompassing of all other statements is that it 
applies to any (separable) system in any 
(uncorrelated) state undergoing any type of 
process and only requires as primitives mass 
(M), the acceleration of gravity (g), and elevation 
(z)2. The implication of this statement of the First 
Law is the existence of the property called the 
energy E. Furthermore, from this statement, a 
number of theorems can be proved such as the 
fact that E is additive, conserved, and can be 
formed into balances.   
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In a similar vein, the Second Law statement 
given in Gyftopoulos and Beretta (1991, 2005) is 
completely general3 and only requires the First 
Law and precise definitions of system and state 
which establish n

r  and β
r

. No other extensive 
properties, definitions of cycles and types of 
interactions, or any other concept are required. 
Another important aspect is that from this 
statement two very powerful corollaries follow, 
i.e. the Maximum Entropy Principle and the 
Minimum Energy Principle. However, to 
establish these corollaries one must first define 
the extensive property called the entropy which 
itself must be preceded by defining two other 
extensive properties called the generalized 
adiabatic availability and the generalized 
available energy. A discussion of these latter 
properties appears in Gyftopoulos and Beretta 
(1991, 2005) as well as in the accompanying 
paper by von Spakovsky and Metghalchi (2006).  

                                                 
2 For a fully rigorous treatment which includes special 
relativity, the speed of light cl in a vacuum also plays a 
role. 
3 The Second Law statement adopted by the MIT 
school of thermodynamics must be traced to the 
pioneering work by Hatsopoulos and Keenan (1965). 

Graphically, an illustration of the general 
science of thermodynamics which emerges from 
the Unified Theory appears in Figure 1. The 3D 
surface of energy (E), entropy (S), and volume 
( { }V=β
r

) for a simple system of fixed 
composition ( n

r ) which appears in this figure 
represents the stable equilibrium states of the 
system. The characteristic function which 
characterizes this surface is given by  

 ( )nSEE rr,,β=  (1) 

or by the fundamental relation 

 ( )nESS rr,,β=  (2) 

From these functions as well as derivative 
interrelations, all thermodynamic properties can 
be derived and equations of state developed for 
any system in a state of stable equilibrium. 
Examples of interrelations include, of course, the 
differential energy relation, i.e. a first-order 
Taylor series expansion, representing 
infinitesimal changes in the extensive properties 
E, S, β

r
, and n

r  along the hyper-surface of stable 
equilibrium states, i.e. the well-known Gibbs 
relation, 
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Figure 1. Energy versus entropy versus 
volume for a simple system of fixed composition. 

Equation (3) in effect constrains how 
changes in the extensive properties E, S, β

r
, and 

n
r  can be made in moving from one neighboring 

stable equilibrium state to another on the hyper-
surface. For the case of a simple system for 
which by definition the fundamental relation 
(equation (2)) is a homogeneous function of first 
degree in the variables E, V, and  independent 
of other parameters, one can in addition to 
equation (3) derive both the Euler and Gibbs-
Duhem relations. The latter of these further 
constrains how changes in the intensive 

n
r



properties T, P, and µi can be made in moving 
from one neighboring stable equilibrium state to 
another along the hyper-surface. 

In Figure 1, however, it is not just the 3D 
surface of stable equilibrium states which 
provides useful information but the vertical axes 
and the space between the surface and the 
vertical axes as well which represent all non-
equilibrium states and non-stable equilibrium 
states including those at zero entropy. As a 
specific illustration, the generalized adiabatic 
availability (Ψ) and generalized available 
energy (Ω ) concepts as defined by Gyftopoulos 
and Beretta (1991, 2005) can be clearly seen in 
Figure 1 where, for example, some system A in a 
not stable equilibrium state A1 has values of Ψ1  
and Ω1 given by the difference in energy 
between states A1 and AS1 and between state A1 
and point “a” on the graph, respectively, where 
state AS1 and point “a” are identified by the value 
of the entropy of the given state A1 and the given 
value of the final volume. In contrast, if the same 
system with the same energy E1 is in a state AE1 
of stable equilibrium, the generalized available 
energy ΩE1 (or in this case the exergy) is given 
by the difference in energy between state AE1 
and point “b”. Clearly, Ω1 > ΩE1, pointing to the 
definite advantage that the system derives from 
being in a not stable as opposed to stable 
equilibrium state with energy E1. Furthermore, as 
should be evident from the comparison just 
made, the generalized available energy is a more 
general concept than that of the exergy which 
derives from classical thermodynamics since the 
former is not limited to states of stable 
equilibrium, i.e. the exergy is a special case of 
the generalized available energy. 

 The review of the formalism of 
thermodynamics in this course then concludes 
with a discussion of the types of interactions a 
system can undergo (again using 3D surfaces 
such as in Figure 1 to illustrate the interactions), 
global balance equations, equations of state, 
Legendre transforms, Gibbs’ Phase Rule, etc.  

3.2 The formalisms and failures of 
classical physics 

In my very brief review of Classical 
Physics, the formalisms of Newton, Lagrange, 
and Hamilton are presented as different 
approaches for achieving the same thing, 
namely, modeling the time evolution of the states 
of a purely mechanical system. The Newtonian 
approach is, of course, a local approach which 
given an initial state predicts the trajectory of a 
system (consisting of a single particle or of 
multiple particles) in time through successive 
infinitesimal time intervals towards some final 

state. In contrast, both the Lagrangian and 
Hamiltonian formalisms are global approaches 
which calculate the entire trajectory at once. The 
Lagrangian formalism is then described in some 
detail as employing a variational principle to 
arrive at the Euler-Lagrange equations from 
which the equations of motion for a particular 
system can be derived. The advantages of this 
type of global approach over that of the local 
approach of Newton is that i) it is close to the 
quantum mechanical (Hamiltonian) approach, ii) 
from a single scalar (i.e. the Lagrangian) all 
equations of motion follow, iii) the Euler-
Lagrange equations have the same form for any 
general set of n-independent coordinates, and iv) 
the conservation laws are more easily obtained in 
this formalism. Of course, examples are given 
both for the case of the general potential not 
being a function of the velocity of the system and 
for when it is. 

The Hamiltonian formalism is then 
introduced as a Legendre transform of the 
Lagrangian and as a representation in position 
and momentum space (as opposed to the 
Lagrangian’s position and velocity space). This 
is followed by a very brief discussion of the 
representation of waves via wave functions and a 
more detailed discussion of the pre-quantum 
theories of black body radiation with the 
classical theory prediction resulting in the 
Rayleigh-Jeans Law for the spectral distribution 
of radiant energy in a box, which, as can be seen 
in Figure 2, agrees neither with the experimental 
data nor with Wien’s semi-empirical expression. 
Clearly, something was incomplete with respect 
to the classical theory. 

3.3 The advent of quantum theory 
The course, thus, next introduces Max 

Planck’s attempt to correct the classical 
prediction by speculating that there are only a 
discrete set of energies  

 ,...,1,0, == iihi νε  (4) 

that an harmonic oscillator (each wave 
component in the classical theory is modeled as a 
single harmonic oscillator) can assume. 
Although the prediction made by this equation 
gives the correct result (see Figure 2) and 
matches the experimental data, the form of 
equation (4) is not correct since hν should be 
multiplied by (i+1/2) and not just i. Nonetheless, 
the field of quantum mechanics is born and many 
new and correct results follow, including the 
conclusions that electromagnetic waves travel in 
bundles or packets called photons which are 
particles of zero mass, each photon is described 
by a wave function but does not behave as 
classical theory predicts particles to behave, 
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electromagnetic radiation has wave-particle 
duality, Einstein’s quantum mechanical model of 
the internal energy of monatomic solids is able to 
closely predict the specific heat data of such 
solids, matter also has wave-particle duality, the 
Uncertainty Principle prescribes limits to the 
spreads or dispersions (not accuracy) of values 
that can simultaneously be assigned to the 
characterization of particle position and 
momentum, etc. The course covers each of these 
in varying details and then more formally 
introduces the Hamiltonian formalism of 
Quantum Mechanics including the concept of 
operators, observables, expectation values, wave 
functions, the Schrödinger equation of motion, 
and the energy eigenvalue problem, i.e. the 
stationary part of the equation of motion. The 
latter leads to a presentation in the course of a 
number of elementary problems in Quantum 
Mechanics, the solutions to which are then used 
as the building blocks for the one-particle 
partition functions, resulting from the Maximum 
Entropy Principle.  It is these building blocks 
which are briefly discussed next. 
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Figure 2.  Spectral radiant energy distribu-
tion in a box: experimental data, Wien’s 
distribution, the Rayleigh-Jeans prediction, and 
Planck’s initial quantum mechanical prediction 
(Tien and Lienhard, 1979). 

3.4. The unified quantum theory of 
mechanics and thermodynamics 

The Unified Theory is deduced logically 
from the laws of Quantum Mechanics and 
Thermodynamics only, allowing one to derive 
relations between the states or changes of state of 
a system and its detailed microstructure 
(Hatsopoulos and Gyftopoulos, 1979). This is 
done without resort to analogies between 
statistical and thermodynamic results such as 
those typically made in statistical 
thermodynamics between statistical expressions 
for the entropy and the entropy of classical 
thermodynamics. This is furthermore done 

without resort to additional hypotheses such as 
the ergodic hypothesis of statistical 
thermodynamics. With this in mind, we proceed 
to the development which follows. 

3.4.1 Elementary problems in quantum 
physics 

The four elementary energy eigenvalue 
problems presented in detail in the course are i) 
the free particle in a box, ii) the harmonic 
oscillator, iii) the rigid rotor, and  iv) the 
hydrogen atom. These are important because 
they provide the basis for which different modes 
of energy storage at a particle level are 
described. The presentation begins with a 
description of the 1D energy eigenvalue problem 
for a system of n non-interacting, structureless 
particles, each of mass m moving along the x-
axis, i.e. 
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where the summation and the term in brackets is 
the Hamiltonian operator, ui is the ith energy 
eigenfunction for the system of particles, and Ei 
the corresponding energy eigenvalue. The 
potential energy function V depends on xj only 
and noting that ui=u(x1)u(x2)…u(xn), the one-
particle energy eigenvalue problem is written as 
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where 
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and εj is the one-particle energy eigenvalue 
corresponding to the jth one-particle energy 
eigenfunction uj. When V is independent of the 
position xj, the equation of motion describes a 
free particle. It is this free particle in a box or 
potential well that is the first elementary problem 
solved in 1D and then generalized to 3D, 
resulting in an energy eigenvalue expressed by 
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where the nx,  ny,  and nz  are quantum numbers 
and the lx,  ly,  and lz  the lengths of the sides of 
the box. Expressions for the energy eigenvalues 
of the other elementary problems are also 
determined by first developing appropriate 
expressions for the potential function and then 
proceeding to find solutions to equation (6). 
With these expressions in hand, the next step is 
to determine the set of eigenvalues of the 0

ix



state matrix that maximizes the entropy of a 
system in a constrained optimization as a 
function of their corresponding energy 
eigenvalues Ei. A given  is in fact equal to the 
probability that a given measurement will yield 
E

0
ix

i. It is this application of the Maximum Entropy 
Principle which is discussed next. 

3.4.2 Maximization of entropy principle 
In the course, the Maximum Entropy 

Principle is used to establish the canonical 
distribution for the stable equilibrium states of a 
system with a given expectation value of energy 
and dispersion-free number of particles and 
constraints, i.e. an ordinary closed system. This 
is generalized to systems open to the transfer of 
rest mass or the creation or annihilation of 
particles within the system. For such systems 
called grand systems by Gibbs, the number of 
particles and constraints are not dispersion-free 
and the resulting probability distribution  is 
called the grand canonical distribution.  It is this 
last distribution which is used exclusively in our 
development of thermodynamic property 
relations for dilute gases. Thus,  is determined 
by maximizing the entropy of the system in a 
constrained optimization, i.e. 

0
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0
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where the yi are the probability distributions for 
the not stable equilibrium states of the system, S 
is the system entropy, E the expectation value of 
the system energy, nk the expectation value of the 
number of particles of constituent “k”, n the 
expectation value of the total number of system 
particles, and nki the number of particles with 
energy eigenvalue Ei. Using Lagrange’s method 
of undetermined multipliers, the constrained 
optimization of equations (9) is transformed into 
an unconstrained optimization which results in 
an expression for our grand canonical 
distribution, namely, 
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and Qg is called the grand canonical partition 
function while the energy E and the entropy S of 
the system are given by 
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3.4.3 Stable equilibrium thermodynamic 
property relations for dilute gases 

In the course, equations (10) and (11) are 
next utilized to find specific expressions for the 
thermodynamic stable equilibrium properties of 
one-component, dilute gases. To do so, the one-
particle energy eigenvalue problem defined in 
equation (6) is used to determine the one-particle 
energy eigenstates, which can be combined to 
approximate the energy eigenstates of a dilute 
gas. This is done by first rewriting equations (10) 
in terms of the number of particles νij with one-
particle energy eigenvalue εj, i.e. 
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The expectation value of the number of particles 
in the one-particle energy eigenstate of energy εj 
is given by 

 ∑=
i

ijij x νν 0  (16) 

where νj is also the one-particle distribution 
function. The expectation value of the number of 
particles of the dilute gas is  

 ∑∑ ==
j

j
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Two types of particles are now considered: 
bosons and fermions. One-particle energy 
eigenstates can be occupied by any number of 
bosons (e.g., photons) so that ,...,,ij 210=ν for 
all i and j, while only one fermion (e.g., an 
electron) can occupy such a state at a time. Thus, 
in this case, 10,ij =ν  for all i and j. The 
resulting grand canonical partition and 
distribution functions for each of these types of 
particles are then found to be  
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and 
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where the plus of ±  is for fermions and the 
minus for bosons. Note that when the dilute gas 
consists of bosons, the expression for νj is called 
the Bose-Einstein factor, while for a dilute gas 
composed of fermions, νj is called the Fermi-
Dirac factor (Hatsopoulos and Gyftopoulos, 
1979). Furthermore, note that in all textbooks 
based on the statistical paradigm of 
thermodynamics (e.g., see Tien and Lienhard, 
1979), these factors are referred to as Bose-
Einstein or Fermi-Dirac statistics since these 
texts interpret these results in the context of the 
statistical mechanical approach. However, 
consistent with the Unified Theory developed by 
Gyftopoulos and Hatsopoulos and their 
coworkers, equations (18) and (19) require no 
such interpretation since the grand canonical 
distribution on which they are based are the set 
of eigenvalues of the state matrix that 
maximizes the entropy of a system. As noted 
above, a given  is in fact equal to the 
probability that a given measurement will yield 
the energy eigenvalue E

0
ix

0
ix

i. Thus, no statistical 
interpretation is required here.  

3.4.3.1 Perfect, Ideal, and Sommerfeld 
gases 

In the course, three types of gas models are 
presented: perfect, semi-perfect (or ideal), and 
Sommerfeld. These models are based on the 
following set of four approximations: i) the 
Boltzmann approximation, ii) the constant-
potential approximation, iii) the point-particle 
approximation, and iv) the continuous 
eigenvalue-spectrum approximation. The perfect 
gas model requires all four; the semi-perfect gas 
i), ii) and iv); and the Sommerfeld gas ii), iii), 
and iv).  

The Boltzmann approximation assumes that 

 00 <<
−
kT

εµ
 (20) 

where ε0 is the ground state energy eigenvalue. 
This approximation leads to a simplification in 
expressions for the equation of state and the 
number of particles n of the dilute gas such that 
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where 
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and q is defined as the one-particle partition 
function. 

The constant-potential approximation 
assumes that the one-particle energy eigenvalues 
εj can be written as the sum of two parts, i.e. one 
which is determined as if an externally applied 
field and long-range forces acting on each 
particle did not exist and the other which is 
assumed to be equal to the average potential 
energy per particle due to an applied field and 
long-range forces. The first part is further 
subdivided into the sum of two parts, namely, 
that due to the translational degrees of freedom, 
εk, and that due to the internal degrees of 
freedom (e.g., vibration, rotation, etc.), εs. 

The third approximation, the point-particle 
approximation, consists of replacing the internal 
energy spectrum εs by a g-fold degenerate 
average value of oε  and the summation over the 
internal degrees of freedom in equation (22) by 
the degeneracy g. The fourth approximation 
leads to the replacement of the three summations 
over the translational degrees of freedom in 
equation (22) with integrals and requires that to 
do so the characteristic temperature for 
translation be much less than one, i.e. 
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where l represents the different lengths of 
equation (8).  

With these approximations and the previous 
developments beginning with Section 3.4.1, 
expressions are found for n and PV/kT for all 
three types of gases which in turn lead to, for 
example, the Sommerfeld equation for the 
average energy per electron, ε , for a gas of free 
electrons in a metal, i.e. 
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where  is the Fermi level or energy of the 
gas. With this equation, for example, a linear 
expression for the contribution of the electron 
gas to the specific heat of a metal is found as T 
approaches 0 

*ε∆

oK. It is given by 

 TRkATc
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In this equation, A and  are constants 
specific to a particular material. Equation (25) 
can be used to modify Debye’s expression for the 
specific heat of the metal as T approaches 0 

*ε∆

oK 
so that the electron gas contribution is taken into 
account. Thus, 

  (26) 3BTATc
metalv +=

where B is a constant as well. 
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In a like manner, the expressions found for 
n and PV/kT for a semi-perfect gas lead, for 
example, to the Sakur-Tetrode equation for the 
entropy S of a monatomic gas, namely, 
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This last expression is, of course, not appropriate 
for polyatomic, semi-perfect gases, since it does 
not include contributions due to the internal 
degrees of freedom of such gases. Thus, the 
students are next shown how equation (27) can 
be modified to account for rotational, vibrational, 
electronic, and dissociational degrees of 
freedom.  This discussion also includes material 
on how the elementary energy eigenvalue 
problems discussed in Section 3.4.1 and used to 
construct expressions such as equations (24) to 
(27) must be modified to account for such things 
as i) the reference energy of the vibrational mode 
of energy storage, ii) the nuclear spin of nuclei 
and whether or not the spin is symmetric or anti-
symmetric, iii) non-linear harmonics, iv) 
rotational-vibrational coupling, v) centrifugal 
stretching, and vi) the 2D or 3D geometry and 
symmetry of the molecule. This part of the 
course then concludes with the development of 
expressions for the chemical potential, entropy, 
internal energy, and specific heats of a perfect 
gas. 

3.4.3.2 Mixtures of ionized and 
dissociated perfect and semi-perfect gases 

The course next presents multi-component 
systems, using a binary ionized mixture of 
perfect gases for purposes of illustration. This is 
later extended to semi-perfect gas mixtures and 
to gas mixtures involving dissociation only. 
Focusing on an ionized mixture of perfect gases 
which comprises an isolated system in which the 
following reaction mechanism is active: 

  (28) −+ +⇔ eXX
it is clear that the presence of ions and electrons 
in the system results in a non-uniform electric 
field of potential ψ and, therefore, the system is 
heterogeneous. However, at high temperatures 
and low pressures, this system can be divided 
into independent homogenous parts each of 
which behaves as a perfect gas, i.e. it behaves as 
a Gibbs-Dalton mixture. 

At stable chemical equilibrium, this mixture 
must obey the stable equilibrium condition 

 0=−− eia µµµ  (29) 

where the total potential of the atom is equal to 
its chemical potential and those of the ion and 
electron are given by 
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Here, the q are the positive and negative charges 
of the ion and electron. Due to conservation of 
charge, the total potentials in equation (29) are 
replaced with the chemical potentials of each 
species and using the characteristic function for 
the chemical potential developed earlier in the 
course for a single constituent perfect gas, the 
well-known Saha equation for a single ionization 
is derived in terms of the degree of ionization α, 
i.e. 
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where IΘ is the characteristic temperature of 
ionization. A plot of the variation of α with T 
and P for monatomic oxygen appears in Figure 
3. This is typical of the types of plots that the 
students are asked to generate once they have 
derived similar expressions for the degree of 
ionization of a mixture of semi-perfect gases or 
the degree of dissociation of a mixture of semi-
perfect or perfect gases. This part of the course 
then ends with a discussion of the partial 
pressures of the constituents of the ionized 
mixture, i.e. that for the atom being uniform 
throughout the mixture and those for the ion and 
electron varying exponentially with ψ. This in 
turn leads to a development of the electro-static 
potential distribution in the gas due to a source 
density, which is governed by Poisson’s equation 
for ψ. 

T (oK)

0 10000 20000 30000 40000

α

0.0

0.2

0.4

0.6

0.8

1.0

P=0.5 atm
P=1.0 atm
P=3.0 atm

 
Figure 3. Degree of ionization versus 

temperature at three different pressures for 
monatomic oxygen as a perfect gas. 

3.4.4 Stable equilibrium thermodynamic 
property relations for dense gases 

In the final part of the course, the students 
are shown how the thermodynamic properties for 
dense gases are developed. For such gases, the 
constant-potential approximation used in the 
development of our expressions for dilute gases 
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is no longer applicable and the particles no 
longer behave independently.  It is, thus, 
necessary to introduce an intermolecular 
potential function to the earlier developments, a 
function which must be increasingly accurate the 
denser the gas becomes.  The one-particle 
partition function, equation (22), now becomes a 
multi-particle partition function by defining the 
energy eigenvalue εj as 
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where np equals one if only two-body 
interactions are considered, two for three-body 
interactions, etc. The first term to the right of the 
equals accounts for the energies associated with 
the internal degrees of freedom of the np +1 
particles, while the second term accounts for 
those associated with the translation degrees of 
freedom of these particles. The last term 
accounts for the inter-particle interactions. 
Substitution of equation (33) into (22) results in 
the multi-particle partition function, q, which 
can be shown for the case of np =1 to be the 
product of that due to internal degrees of 
freedom, qs, translational degrees of freedom, qt, 
and inter-particle interactions, qφ, i.e. 
 φqqqq ts=  (32) 

The functional forms taken by qs and qt are those 
developed earlier for the one-particle partition 
functions while qφ  can be shown to be given by 

 ⎥⎦
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where V is the volume of the system and b(T) is 
the second virial coefficient defined by 
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Based on earlier developments in the course, 
these last equations can be used then to derive an 
expression for the fundamental relation of the 
dense gas from which in turn one can derive the 
virial equation of state given by  
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Of course, to finalize these expressions, 
some model must be chosen for the inter-particle 
potential, and, thus, the students are introduced 
to a variety of angle-independent (symmetrical) 
and angle-dependent (asymmetrical) semi-
empirical functions such as the hard sphere, 
Sutherland, point-center-of-repulsion, square 
well, Lennard-Jones, Buckingham, Keeson, and 

Stockmayer potentials. The students then use 
these in order, for example, to generate two-
dimensional slices (e.g., see Figure 4) in the 
energy-entropy plane of the E-S- β

r
-  hyper-

surface of stable equilibrium states of the system.    
nr

4. Conclusions 

It has often been said that thermodynamics 
is a particularly difficult science to learn but 
more importantly to understand. It was in trying 
to address this latter point that I became 
intrigued by the Unified Theory, a theory that 
presents thermodynamics as a broad and general 
science not limited to certain types of systems 
(large) nor to certain types of states (stable 
equilibrium).  
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Figure 4. Comparison of the results 
obtained for 1 mole of He contained in a 3 cm3 
tank using a dense gas model based on the 
Lennard-Jones potential and the square-well 
potential, respectively: a) 2D slice in the energy-
entropy plane of the hyper-surface of all possible 
stable equilibrium states of the system; b) 
internal energy versus temperature; and c) 
entropy versus temperature.  
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As should be evident from the presentation 
given above, the Unified Theory allows one to 
arrive at the same thermodynamic property 
relationships as are typically found with the 
statistical based paradigm but without the 
encumbrance of this additional discipline, i.e. 
that of statistical mechanics. It simply is not 
needed and in fact its inclusion results, as 
outlined above and in the literature cited, in a 
number of paradoxes and inconsistencies which 
the Unified Theory does not have.   With the 
latter, in fact, thermodynamics can be taught as a 
science which applies to any system large or 
small and to any state, demolishing the boundary 
(using the terminology of statistical mechanics) 
between the microscopic and the macroscopic. It 
is a science in which entropy is a fundamental 
property of matter, stable equilibrium is a state of 
perfect order not disorder, and irreversibilities 
are not a “macroscopic invention” but instead 
occur at the microscopic level. It is this broader 
science of thermodynamics, which I have taught 
to my graduate students over the last several 
years both in its non-quantal and quantal 
versions and which I believe has provided them 
with a much clearer and broader understanding 
of this science. As a next step in this process, I 
am developing a third graduate level course 
which specifically addresses the Beretta 
equation, its experimental verification, and the 
general mathematical framework of the Unified 
Theory. 

Nomenclature 

b second virial coefficient 
cv specific heat at constant volume 
E energy 
Ei energy eigenvalue 
f generalized force 
g acceleration of gravity or degeneracy 
h Planck’s constant 
h  modified Planck’s constant 
k Boltzmann’s constant 
l length 
M inertial mass of a weight 
m mass 
n
r  set of amounts of constituents 

n expectation value of the number of 
particles 

nk expectation value of the number of 
particles 

nki the number of particles 
nx,y,z quantum numbers 
P pressure 
p momentum 
Qg grand canonical partition function 
q multi- or one-particle partition function 
R universal gas constant 
r distance 
S entropy 

T temperature 
t time 
ui energy eigenfunction 
V volume or potential 

0
ix  probability distribution for stable 

equilibrium states; eigenvalue of the 
state matrix 

yi probability distribution for not stable 
equilibrium states 

z elevation in a gravity field 

Greek Letters 

α degree of ionization 
β
r

 set of parameters 
ε energy eigenvalue or quantum of energy 
εk  translational energy eigenvalue  
ε   average energy per electron 

oε   average energy eigenvalue 
εs  internal energy eigenvalue spectrum  
φ interparticle potential  
µ total or chemical potential 
ν frequency 
νj  one-particle distribution function 
νij number of particles with one-particle 

energy eigenvalue εj

Ω generalized available energy 
Ψ generalized adiabatic availability 
ψ  electrostatic field potential 
Θ characteristic temperature 

Subscripts 

a atom 
e electron 
φ interparticle potential 
I ionization 
i ion 
s internal degrees of freedom 
t translation degrees of freedom 

Superscripts 

0 stable equilibrium 
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