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Abstract 

The determination of the velocity UT of a turbulent propagating interface resulting from the 

interaction between a turbulent intensity U’ and a reactive front with a laminar velocity UL 

is still a fundamental and open problem. In this paper, we propose a new approach to deal 

with this phenomenon by introducing a geometrical structure called entropic skins 

geometry based on scale entropy and its dynamics in scale-space. In the specific case 

(called parabolic scaling) of equipartition of « scale-evolutivity » through scale space, we 

derive a law for turbulent velocity. This law has a second-order logarithmic form which is 

verified by experimental data.  
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1. Introduction  

Our aim is to propose a geometrical 

approach to study the dynamics of turbulent 

reactive fronts by using the concept of scale-

entropy and a general scale-entropy diffusion 

equation. This equation is established thanks to 

the introduction of a new quantity in physics 

called scale diffusivity which characterizes how 

information concerning a multi-scale structure 

propagates through scale-space and how it 

unifies the system giving it a sort of “structural 

viscosity” in scale-space. This description 

derives from a more general framework called 

entropic skins geometry introduced to deal with 

the phenomenon of intermittency in turbulence 

and turbulent reactive systems. 

In this paper, our approach is applied to the 

interaction of a turbulent flow and a reactive 

front which can lead to turbulent flames in the 

field of combustion and more generally to 

aqueous autocatalytic reaction fronts obtained by 

some specific chemical reaction. The choice of 

studying aqueous autocatalytic reaction fronts is 

due to the fact that, at high turbulence intensities, 

turbulent combustion generates secondary 

phenomena such as heat losses which have 

extinction effects on the flame: it is then difficult 

to study the interaction itself. A way to avoid this 

is to work with fronts produced by an aqueous 

autocatalytic chemical front evolving in a 

turbulent flow. In this case, large U’/UL values 

can be reached without any problem of extinction 

due to heat losses. Nevertheless, our main 

motivation concerns the field of turbulent 

combustion; that is why we will frequently refer 

to this specific domain. 

After a recall of the phenomenon of 

turbulent combustion, we will present our 

geometrical approach and then we will show how 

it can be applied to the field of turbulent reactive 

fronts. Our long-term aim within this work is to 

establish links between this geometrical approach 

and the classical quantities of non-equilibrium 

thermodynamics. We also think that such an 

approach can help to visualize some traditional 

thermodynamical quantities as it is already 

suggested here through a study on Yakhot’s law 

(elaborated by using the renormalization group 

theory) proposing a geometrical interpretation to 

this law in the context of the entropic skins 

approach. 

2. Turbulence-reactive Front Interaction: 

Multi-scale Structure and the Turbulent 

Velocity 

The scientific study of turbulent combustion 

started with Mallard and Le Chatelier (1883) at 

the end of the nineteenth century (a work realized 

at Ecole des Mines de Saint-Etienne). The 

fundamental problem in turbulent combustion is 
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to characterize how scales of turbulence 

influence the flame structure (front wrinkling, 

front thickening, quenching) and how this latter, 

by heat production or hydrodynamical 

instabilities, influences the characteristics of 

turbulence. Thanks to the development of laser 

visualization techniques, the multi-scale structure 

of turbulent flames can be revealed. This led to 

the application of fractal theory to the field of 

turbulence but no real success was attained in 

terms of the description of turbulent flames 

dynamics. A more complex multi-scale geometry 

is needed. The main objective of this paper is to 

propose a multi-scale geometry to treat these 

questions. 

Figure 1a represents an example of 

turbulent flame obtained by laser tomography 

(Queiros-Conde, 1996). The turbulent velocity 

UT results from the wrinkling process of the 

whole scale range of the turbulence cascade 

which can be defined by its turbulent intensity 

U’. The chemical part is defined by the thickness 

of the front δ and the laminar velocity UL. The 

flame surface is increased by the effect of 

wrinkling and leads to a turbulent surface ST 

which has a multi-scale structure. The main 

effect of turbulence is to wrinkle the flame front 

and, if the flow contains scales smaller than the 

flame thickness, to thicken the front. In the 

“flamelet” regime (Borghi and Destriau, 1995), 

the problem is simplified by the fact that 

chemical time and flame thickness are much 

smaller than the time and spatial scales 

characterizing the turbulence cascade. Our study 

concerns this case since our main aim is to 

understand turbulence-combustion interaction. 

There is a direct relation between velocities and 

surfaces through the relation UT/UL=ST/SL where 

SL is the projected flame surface perpendicular to 

the mean direction given by UT and which also 

corresponds to the flame surface obtained 

without turbulence. The ratio Σ=ST/SL is called 

the roughness of the front.  

In order to explain simply how the 

turbulence-flame interaction can be considered 

and analyzed in scale-space, let us consider a part 

of a flame in a domain defined by the integral 

scale of the flow noted l0. Let us note lc the 

smallest scale displayed by the front. This means 

that the turbulent velocity results from the action 

on the front of scale range [lc;l0] which leads to a 

total roughness noted Σc,0 ; for this reason, we can 

note the turbulent velocity UT=Uc,0 with 

Uc,0/UL=Σc,0 . On this initial front, one can define 

a smaller front (Figure 1b) contained this time in 

a box of size li. The physical problem should be 

exactly the same if we consider now the scale 

range [lc;li] which leads to the roughness noted 

Σc,i. The turbulent velocity has simply decreased 

since the front is less rough but we can also 

introduce a velocity indicated as Uc,i with 

Uc,i/UL=Σc,i. Again, it is possible to define on this 

front a new front (Figure 1c) contained in a box 

of size lj (pay attention: for convenience lj<li). It 

gives a velocity Uc,i.<Uc,j with Uc,j/UL=Σc,j. 

Locally, for small windows of size lc, the front 

has a laminar velocity Uc,c=UL. The front of 

Figure 1a is a true photography (it means that the 

photography has been taken at the real size 

corresponding to the combustion chamber) 

obtained for U’/UL=2.12. But Figures. 1b and 1c 

are only rescaled parts of the initial front. 

However, they could be « real » in the sense that 

these fronts could be obtained for smaller U’/UL 

values.  

A turbulent reactive front thus displays two 

remarkable properties. (i) A piece of turbulent 

front (such as in Figures 1b and 1c extracted 

from the original one in Figure 1a) leads to a 

turbulent front which could be obtained in some 

different experimental configurations using a 

smaller U’/UL value. (ii) Everywhere on the 

front, the velocity is UL but, owing to the multi-

scale structure which allows the mixture to burn 

faster, the front has a turbulent velocity (with 

UT>>UL). Hence, we have a remarkable system 

to study the link between multi-scale geometry 

and dynamics here. 

Uc,i/ UL =Σc,i lj

li
U
c,i

U
c,j
/ U

L
 =Σ

c,j

l0

li
Uc,0 = UT

U
c,0
/ U

L
 =Σ

c,0

Uc,j

UL

l
j

a)

b)

c)

U
c,i

U
c,j

 

Figure 1: Scale-dependent behavior of turbulent 

velocity and roughness. a) U’/UL=2.12$%. 

Equivalence ratio φ=1.05, dilution percentage 

δ=15%; b). Part of front of Fig. 1a rescaled; c) 

Part of front of Fig. b rescaled. The fronts b) and 

c) are extracted from one “real” front obtained 

experimentally. They could correspond to real 

fronts obtained for smaller values of U’/UL (scale 

covariance). 
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If the aim is to study the turbulence-front 

interaction, we must also be aware of the 

influence of the front on the flow. In fact, the 

front with a propagation velocity UT imposes a 

velocity gradient in the downstream part of the 

fluid whose order of magnitude is precisely the 

velocity UT of the front (exactly as if the front 

were a moving piston pushing fresh gases). This 

generates velocity fluctuations of order UT. Two 

sorts of fluid velocity fluctuations must thus be 

considered: the ones coming from the turbulence 

itself generated by external means (a grid for 

example, intensity quantified by U’) and the ones 

resulting from a background flow generated by 

the feedback of the front propagation on the 

downstream fluid simply by the creation of a 

velocity gradient due to the propagation itself. 

So, the turbulence quantified by U’ is superposed 

to this background flow generated by the front 

propagation on the flow (see Figure. 2). To 

characterize this property, we propose to 

introduce two kinds of kinetic energies. Let us 

consider a cube of fluid with the size of an 

integral scale l0 (Figure 2).  

l0

l0

UTU ’

 
Figure 2: Sketch to explain EBF(l0)=(1/2)ρl0

d
UT

2
 

and ETurb(l0)=(1/2) ρl0
d
U’

2
. Background fluid 

velocities are symbolized by dashed arrows. 

The front (like a piston) creates downstream 

a velocity gradient equal to UT over a distance l0. 

This generates turbulent fluctuations. It means 

that one can define a kinetic energy associated to 

these velocity fluctuations EBF(l0)=(1/2)ρl0
d
UT

2
 

where l0
d 

(d=3) is the volume associated to an 

integral scale. To these background velocity 

fluctuations, the fluctuations due to turbulence 

itself (injected by external means) are 

superposed. If we assume that the turbulent 

intensity U’ is distributed homogeneously in this 

cube, we can define a turbulent kinetic energy 

injected to the system by ETurb(l0)=(1/2)ρl0
d
U’

2
. 

We expect that the ratio ETurb(l0)/EBF(l0) (which is 

equal to U’
2
/UT

 2
 ) will intervene in the study of 

the flow-front interaction. 

3. Turbulent Velocity Laws Obtained by  

Renormalization Group Theory and Scale 

Covariance 

The fundamental problem in turbulent 

reactive fronts is to express their turbulent 

velocity, namely the ratio UT/UL as a function of 

the characteristic ratio U’/UL. Although a large 

number of expressions or laws (empirical, 

phenomenological or theoretical) have been 

proposed, the problem is not entirely resolved. 

However, three approaches, based on rigorous 

theoretical frameworks, deserve to be quoted. (i) 

The first one is the work by Clavin and Williams 

(1979) which, for small U’/UL values, used a 

perturbation method and obtained 

UT/UL=1+(U’/UL)
2
. (ii) The second important 

law 2
T L TU /U =exp (U'/U )  

 has been obtained 

by Yakhot (1988) using the renormalization 

group theory. It gives an implicit form which 

remains difficult to grasp physically. The Clavin-

Williams’ law is recovered for small U’/UL 

values. This law seems to be adequate to describe 

experimental measurements (Ronney et al., 1992, 

1995). (iii) The third theoretical approach 

(Queiros-Conde, 1996; Pocheau and Queiros-

Conde, 1996) assumes a property of scale 

covariance for the law, i.e. it imposes the fact 

that the explicit form of the law must be 

independent of the scale-range over which it is 

expressed. It leads to a quadratic form 

( ) ( )2 2

T L LU /U =1+c U'/U  where c is an order-

one constant depending on the equivalence-ratio; 

it also gives the Clavin-Williams’ law for small 

U’/UL. In the context of this paper, we will 

mainly focus on Yakhot’s law for a geometrical 

interpretation proposed here. 

4. Scale Entropy and Diffusion Equation in 

Scale-Space: the Scale-Space as a Dimension 

The entropic skins theory (ESG hereafter) 

(Queiros-Conde, 2000, 2001, 2003) is a 

geometrical framework which describes the 

phenomenon of intermittency in fully developed 

turbulence. It also appeared adequate to describe 

multi-scale features of turbulent interfaces 

(Queiros-Conde, 2003). ESG introduces a 

hierarchy of multi-scale sets (skins) having 

different space-filling properties (quantified by 

scale-entropy), all these skins being linked to 

each other by an entropic flux through scale 

space. Concerning the specific multi-scale 

structure of turbulent interfaces, scale analyses 

showed that turbulent interfaces are not really 

fractal and that the measured fractal dimension is 

scale-dependent, which is paradoxical. Let us 

recall the classical box-counting method used to 

realize a scale analysis. The interface is covered 

by a grid of mesh size li, then one counts the 

number of meshes N(li) touched by the interface. 

By varying the mesh size, if a power law N(li)~li
-

Df
 can be evidenced over a  sufficiently  extended 

scale range, then the interface is said to be fractal 

with a fractal dimension Df. However, 

measurements showed that this is not the case 

and that fractality can only be an ideal limit 
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(Queiros-Conde, 1996, 2003). This ideal limit is 

obtained for U’/UL numbers or large scales. The 

values Df=7/3 is consistent with Kolmogorov 

cascade without intermittency. With 

intermittency, it has been shown that Df=1+2γ 

with 
1/3 1/3 3γ ((1 3/ 8) (1 3/ 8) ) 0.68= + + − ≈   

i.e. Df=2.36 (Queiros-Conde, 2000). But this is 

only a limit case and, generally, fractal 

dimension is scale-dependent and a « local fractal 

dimension » must be defined.  

In ESG, scale invariance is assumed only 

locally in scale space: For 2 scales li and li+1 

(with li+1<li) close enough in scale space, one can 

define a local fractal dimension ∆i implying that, 
for scales l with li+1≤ l≤ li, one has N(l)~l-∆i 
where N(l) is the number of balls of size l 

necessary to cover the structure. Let us consider a 

multi-scale system having scales ranging from an 

inner cut-off length lc to an outer cut-off length 

l0. To these scales lc and l0 correspond two local 

fractal dimensions ∆c and ∆0 with ∆c<∆0. ∆c as 
the dimension of the most localized structure in 

the system (called the crest) and ∆0 as the 
dimension of the most extended structure (called 

the bulk, the dimension ∆0 usually corresponds to 
the fractal dimension obtained in the limit of 

large scales or high turbulent intensities: ∆0=Df). 
In the case of a turbulent flow, lc is simply the 

Kolmogorov scale (scale of dissipation) and l0 is 

the integral scale (scale of energy injection). At 

each scale li, one can define Vi as the volume 

occupied by the system at the scale li: It can be 

written Vi=Ni,0li
d
 where Ni,0 is the number of balls 

of size li needed to cover the system embedded in 

a volume of characteristic scale l0 (d is the 

embedding dimension of space: here d=3; to 

simplify we do not consider the coefficient π/4  in 
the volume). Since N0,0=1, we have V0=l0

d
. We 

then introduce the scale entropy Si,0 at scale li 

defined by Si,0=ln(V0/Vi). Denoting x=ln(li/l0) 

(called ln-scale), Sx=Si,0, we introduce the scale-

entropy flux φx=dSx/dx. It can easily be shown 
that φx=∆x-d where ∆x is the local fractal 
dimension considered at scale li defined by 

x=ln(li/l0).  

 

Figure 3. Sketch describing the scale-entropy 

balance argument. 

By an argument of scale-entropy flux 

balance (see Figure 3), it is obtained d
2
Sx/dx

2
-

ω(x)=0 where ω(x) as a sink of scale-entropy 
flux in dx; ω(x) could also be a source but here 
we only consider the case of a sink. If we assume 

the simple case of a uniform scale-entropy flux 

sink (ω(x)=β with β ≥ 0, β=0 gives back the 
fractal case) then it can easily be obtained 

Sx=(β/2)x
2
+(∆0-d)x where β=(∆0

_∆c)/ln(l0/lc). 
This case has been called parabolic scaling. This 

purely geometrical assumption probably has a 

close link with Tondeur and Kvaalen (1987)'s 

assumption of equipartition entropy production. 

Recently, a link between this parabolic scaling 

and constructal optimization has been evidenced 

(Queiros-Conde et al., 2007). The constructal 

optimization corresponds to a uniform 

distribution of scale entropy sink in scale space 

(i.e. parabolic scaling). Parabolic scaling leads to 

remarkable relations namely 

 0 i(∆ +∆ )/2

i,0 0 i
N =(l /l )  (1) 

and  

 i i 0 c i c∆ =d+βln(l /l )=∆ βln(l /l )+ . (2) 

Let us introduce the quantity 

c,0∆ =(∆0+∆c)/2 as the mean dimension between 

bulk and crest; we thus have  

 ,00 c(∆ +∆ )/2

c,0 0 c 0 cN =(l /l ) =(l /l ) c∆

.
 (3) 

This leads to a total scale-entropy of a 

multi-scale system following parabolic scaling 

noted P

c,0
S equal to c,0d-∆P

c,0 0 c
S =ln (l /l ) 

 
. Let us 

also remark that [ ]2P

c,0 0 c
β=S / ln(l /l ) ; this quantity 

thus represents a sort of surfacic scale-entropy 

density in which the spatial-coordinate would be 

scale-logarithm. Moreover, let us remark that the 

maximum scale-entropy is cd-∆max

c,0 0 c
S =ln (l /l )   : 

it represents the scale-entropy of a fractal system 

for the scale range [lc;l0] which would have the 

crest-dimension ∆c  as fractal dimension. 

At this level, in order to simplify our 

following presentation and to make clear the 

concepts we defined, it is convenient to define 

some adequate terminology and quantities. The 

absolute value of scale entropy flux 

φx=dSx/dx=∆x-d represents in fact, at ln-scale x, 

an evolutive capacity for the system (the minus 

sign is due to our convention for scale 

definition). Its maximal value 
c c
φ = ∆ -d  is 

obtained for the inner cut-off scale and its 

minimal value 
0 0
φ = ∆ -d  is given for the 

integral scale. For this reason, we will specify the 

scale-entropy flux φx in a more simple way as a 
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scale evolutive flux for the ln-scale x. The scale-

entropy flux sink ω(x) is thus a gradient of 

evolutive flux in scale-space; it quantifies how 

the evolutive flux is itself evolving through 

scale-space; it can be seen as a scale evolutive 

capacit ; we will call it a scale-evolutivity for the 

ln-scale x.  

Hence, the parabolic scaling case (ω(x)=β) 

corresponds to a constant scale-evolutivity 

through scale-space and to an evolutive flux 

which  decreases (in absolute value) from inner 

cut-off scale to integral scale. For this case, let us 

introduce a « parabolic volume». The total 

volume (one can call it an « Euclidean volume ») 

for a ball of size l0 is V0=l0
d
. The parabolic 

volume corresponds to the exact volume 

occupied by the multi-scale front following a 

parabolic scaling; it can be written 
c,0∆ -dd

p c,0 c 0 0 c
V =N l =V (l /l ) . It represents the 

volume occupied by the really active part 

(dissipative part) of the front contained in its 
Euclidean volume. The ideal fractal case would 

give a « fractal volume » defined by 
0∆ -dF d

F c,0 c 0 0 c
V =N  l =V (l /l )  where F

c,0
N is the 

number of balls needed to cover a fractal having 

a dimension ∆0 in the scale range [lc;l0]. We have 
the relation c,0 0∆ -∆

P F 0 c
V /V =(l /l ) . We also define a 

global scale entropy based on a fractal behavior: 
0d-∆F

c,0 0 c
S =ln (l /l )   . At this point, we define the 

deviation P/F

c,0
σ  of scale-entropy in the parabolic 

case by taking the ideal fractal case as a 

reference: P/F P F

c,0 c,0 c,0
σ =S -S . It can be shown 

immediately that   

 0 c,0∆ -∆P/F

c,0 0 c F Pσ =ln (l /l ) ln(V /V )  =  . (4) 

This quantity which takes the ideal fractal 

case as a reference quantifies a sort of scale-

entropy production. The fractal behavior 

becomes here a reference for parabolic behavior 

which describes the multi-scale geometry of 

turbulent flames much better. Let us remark that, 

for the case of turbulent reactive fronts in the 

flamelet regime, if we take ∆0=7/3 

(corresponding to Kolmogorov cascade without 

intermittency) then, since ∆c=2, we have 

0 c,0∆ -∆ 1/ 6=  and finally 

 

P/F

c,0 0 cσ =(1/6)ln(l /l )
. (5) 

Using the maximum scale entropy 
cd-max

c,0 0 cS =ln (l /l )
∆   , we define a scale structure 

efficiency by 

 

P F P/F

c,0 c,0 c,0

max max

c,0 c,0

S -S σ
η= =

S S
. (6) 

It is easily shown that 

 
0 c,0 0 c

c c

∆ -∆ ∆ -∆1
η=

d-∆ 2 d-∆

 =  
 

. (7) 

For a pure fractal system (fractal over the 

scale-range [lc;l0]), this efficiency is null. The 

fractal system does not produce scale entropy: it 

does not display any capacity to make structure. 

For turbulent reactive fronts (since ∆0=7/3 and 

∆c=2), we have η=1/6 . In a more general way 

(systems different from the one studied in this 

paper but having a multi-scale behavior 

described by ESG), it is interesting to deal with 

two specific cases given by (i) bulk-dimension 

having its maximum value (i.e. the embedding 

dimension i.e. ∆0=d=3) and (ii) the crest-

dimension having the smallest possible value (i.e. 

∆c=0). In fact, the first case gives, whatever the 

value of ∆c , the maximum value of scale 

structure efficiency: 
maxη =1/2 . The second case 

leads to 
lim 0η =(1/2)(∆ /d) . Assuming a system 

displaying a turbulent structure for the bulk 

(∆0=7/3) and a point-like one for the crest (∆c=0), 

we determine 
lim
η =7/18 . Other cases can be 

considered; nevertheless, the maximum value of 

scale structure efficiency cannot be higher than ½ 

whatever the crest-dimension is. 

We emphasize the fact that the previous 

derivation corresponds to a specific case 

« parabolic scaling » for which there is uniform 

scale-entropy flux sink through scale-space. Let 

us now come back to the general case. The 

equation d
2
Sx/dx

2
-ω(x)=0 can be generalized to 

time behavior for non-stationary systems. It has 

been shown that scale entropy is piloted by a 

diffusion equation where the spatial coordinate is 

the scale logarithm. It gives the fundamental and 

new equation  

 

2

x,t x,t

2

S S1
-ω(x,t)=

χ tx

∂ ∂

∂∂
  (8) 

where the quantity χ (a new quantity in physics) 
is called ‘scale diffusivity’. Scale diffusivity 

defines the capacity for the system to propagate 

perburtations through scale-space and gives 

access to a scale dynamics since it becomes 

possible to calculate information transfer in 

scale-space. The scale diffusion equation leads to 

a breakthrough in the way to consider multi-scale 

systems since it gives a tool to study scale 

dynamics analytically and to calculate some 

temporal quantities which so far have remained 

non-accessible. We now apply this formalism to 
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turbulent reactive fronts, namely turbulent 

flames. 

5. Determination of the Inner Cut-off Scale in 

Turbulent Combustion  

Let us come back to the definition of the 

inner cut-off scale. It is linked to the 

Kolmogorov scale of the flow defined by 

lk=(v
3
/ε)

1/4
 where  ε  is the rate of energy 

dissipation and v the kinematic viscosity (with 

ε=U’
3
/l0=u’k

3
/lk, u’k being the characteristic 

velocity associated to the Kolmogorov scale). 

This is without chemical reaction. Let us 

consider the specific case of turbulent 

combustion. In the case of premixed turbulent 

combustion, due to the density change at the 

front between fresh and burnt gases, the 

interesting viscosity is not the viscosity of fresh 

fluid but the viscosity of burnt gases and we can 

determine a Kolmogorov scale lk,BG concerning 

only burnt gases. We propose to take this scale as 

an inner cut-off scale. Let us determine the 

evolution of this scale with the ratio U’/UL. For 

this, we consider that the viscosity of burnt gases 

can be formulated as lk,BG =ULδ  where δ is a 

characteristic thickness of the front; for a 

turbulent flame, it would be the thermal 

thickness. The Reynolds number can then be 

written as Re=(U’/UL)(l0/ δ): this way of 

expressing the Reynolds number is not classical, 

its objective is to decompose the Reynolds 

number and express it using the characteristic 

ratio U’/UL which is the main control variable of 

experiments in turbulent combustion. The 

existence of a Kolmogorov cascade implies 

l0/lc=Re
3/4

. We thus can write 

lc/δ=(l0/δ)
1/4

(U’/UL)
-3/4

. Experimentally, it has 

been found that a multiplicative factor 2 

appears giving lc≈ 2lk,BG (Queiros-Conde,1996). 
Multiplicative factor 2 can be explained by the 

following simple qualitative argument: the 

turnover time corresponding to lk,BG is tk,BG= 

lk,BG/UL. This time tk,BG being the minimum 

turnover-time of the flow means that the 

corresponding vortex just does a turn before 

dissipating. To be able to wrinkle the front, it 

must live at least 2tk,BG which means lc≈ 2 lk,BG. 
We thus finally propose the expression 

lc/δ=2(l0/δ)
1/4

(U’/UL)
-3/4

.  

This order of magnitude and the exponent –

3/4 are experimentally well verified (Queiros-

Conde, 1996). Let us remark in this context that 

the exponent –3 in the Gibson scale lG=l0(U’/UL)
-

3
 introduced by Peters (1986) has no 

experimental validation; moreover, it can be 

shown that, in the context of multi-scale 

approach, it leads to some paradoxical 

conclusions (Queiros-Conde, 1996). A Gibson 

scale is derived assuming that, to wrinkle a 

flame, a vortex must have a characteristic 

velocity such as u’k≥ UL. Such a condition does 

not take into account any constraints on the 

relative scales of the two interacting objects 

(front and vortex). 

 Another simple derivation (without the 

multiplicative coefficient 2) of formula 

lc/δ=(l0/δ)
1/4
(U’/UL)

-3/4
 is possible. Apart from the 

reactive time δ/UL characterizing combustion and 
the turnover time tk=lk/u’k characterizing a 

vortex, to really characterize the interaction 

vortex-flame, we have to introduce times which 

are characteristic of the entanglement of 

velocities and scales. We define tk(f)=lk/u’k as the 

time needed by a vortex of size lk  and thus of 

velocity u’k to cross the thermal thickness δ of 
the front. In the same way, we define tf(k)=lk/UL 

as the time needed by the flame to cross the 

vortex. Let us examine the inequality tk(f)>tf(k): 

in this case the flame crosses the vortex so fast 

that this latter has no time to wrinkle the flame. 

The wrinkling condition is thus tk(f)≤ tf(k). The 
identity tk(f)=tf(k) defines the cut-off scale 

(without the multiplicative coefficient 2). 

6. Velocity of Turbulent Reactive Fronts 
Determined by Entropic Skins Geometry 

Let us consider a turbulent reactive front as 

a multi-scale system having scales ranked from 

an inner cut-off length lc to an outer cut-off 

length l0. The total roughness of the front which 

results from all the scale range [lc; l0] can be 

expressed by Σc,0=(Nc,0lc
2
)/l0

2
 where Nc,0 is the 

number of balls of size lc (minimum resolution) 

needed to cover the front contained in a ball of 

size l0. We can define a roughness at  any scale li  

by Σc,i=(Nc,ilc
2
)/li

2
 where Nc,i is the number of 

balls of size lc needed to cover the front 

contained in a ball of size li. We can also vary the 

resolution and define the roughness 

Σi,0=(Ni,0li
2
)/l0

2
 where Ni,0 is the number of balls 

of size li needed to cover the front contained in a 

ball of size l0. Multiplicativity of roughness 

implies Σc,iΣi,0=Σc,0 for any scale li. We can thus 
introduce for any scale range [lj;li] a roughness 

Σj,i=(Nj,ilj
2
)/li

2
 with Σj,i=Uc,i /Uc,j.  

We assume that turbulent reactive fronts 

belong to the case of parabolic scaling (i.e. 

following d
2
Sx/dx

2
-β=0). In the case of a constant  

scale evolutivity β in scale-space, it leads to the 
simple and general relation lnΣc,i=(β/2)[ln(li/lc)]

2
. 

The global roughness due to the effect of scale 

range [lc;l0] is thus lnΣc,0=(β/2)[ln(l0/lc)]
2
. By 

using Eq. (3) and the relation Σc,0=Νc,0 lc
2
/ l0

2
, it 

can be written c 0(∆ +∆ -d-1)/2

c,0 0 cΣ =(l /l ) . It is 

interesting to notice at this stage that since ∆c=2, 

we have d+1=2∆c and then c 0 0 c
∆ +∆ -(d+1)=∆ -∆ . 
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It follows that the scale-entropy production 
P/F P F

c,0 c,0 c,0
σ =S -S  can be written  

 
P/F

c,0 c,0σ =lnΣ . (9) 

Since Σc,0=UT/UL, it implies 

ln(UT/UL)=(β/2)[ln(l0/lc)]
2
. It has been shown 

(Queiros-Conde, 2003) that the parameter β is 
not varying with U’/UL: experimentally, by 

measuring how local fractal dimension varies 

with scale-logarithm, it gives β=0.177. Using 
l0/lc=Re

3/4 
and Re=(U’/UL)(l0/δ), the following 

relation is easily derived 

[ ]2 2

T L L Lln(U /U )=(α/2) ln(U'/U ) +µln(U'/U )+(µ/2) (10) 

where α=(9/16)β  and µ=αln(l0/δ).  

Using the experimental result β=0.177 
measured (Queiros-Conde, 2003), we thus should 

obtain for the parameter α a value close to 
αth=0.099. In this law, the variations of l0/δ are 
considered to display a slight contribution 

compared to variations of the main variable 

U'/UL.  

To test the experimental validity of the 

previous relation, a large range of U’/UL values 

is necessary. Let us recall that the experimental 

problem of propagating flames at high turbulence 

is that it generates annex phenomena such as heat 

losses which have extinction effects on the flame, 

and this represents an obstacle for the study of 

the interaction itself. A way to avoid such a case 

is to work with fronts produced by an aqueous 

autocatalytic chemical front evolving in a 

turbulent flow. Large U’/UL values can then be 

reached. The previous law can be compared to 

experimental results obtained by Ronney and his 

team (1992) and to those achieved by Shy et al. 

(1995) on fronts in the general case of aqueous 

autocatalytic reaction fronts for several turbulent 

flow configurations. 
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Fig. 4 :  Experimental measurements 

ln(UT/UL ) vs ln(U'/UL) from Ronney et al. 

(1995). Second-order polynomial fit gives: 

[ ]2T L L Lln(U /U )=0.048 ln(U'/U ) +0.46ln(U'/U )+0.73  

The second-order polynomial interpolation 

presented in Figure 4 implies α=0.096 in very 
good agreement with the expected value αth. The 

experimental data cover several turbulent flow 

configurations (and its dispersion is due to this 

fact) because the data obtained for one single 

flow are too limited. However, an improvement 

of our approach would be to take into account 

this point (we considered here that it represents a 

second-order effect). A possible way to proceed 

is to introduce scales of interaction larger than 

the integral scale and which would be system-

dependent i.e. linked to the external large-scale 

boundaries of the flow. The problem is that, for 

these scales, the Kolmogorov cascade is not valid 

anymore and the corresponding turbulent 

intensity cannot be calculated easily. Another 

way would be to know more precisely the 

integral scale l0 and the bulk dimension ∆0 
corresponding to each flow configuration in 

order to calculate β=(∆0
_∆c)/ln(l0/lc) and then 

α=(9/16)β  to have the good parameter in 
Equation (10). In fact, we assumed here that this 

parameter is a constant since we did not 

distinguish between flow configurations. A more 

specific study on these configurations would be 

needed. 

7. Geometrical Interpretation of Yakhot’s 

Law by Using Scale-entropy Production 

Yakhot’s law 2
T L TU /U =exp (U'/U )    

(Yakhot, 1988) has been established by using the 

renormalization group theory. Thanks to its 

theoretical derivation and a good experimental 

validation (Ronney et al., 1992, 1995), it has 

received great attention. In the context of our 

geometrical framework and by using scale-

entropy production, this law can be interpreted in 

a simple way. To do so, we assume the validity 

of Yakhot’s law in order to derive all its 

implications in the context of our geometrical 

framework. We thus write ln(UT/UL)=U’
2
/UT

2
. 

Since Σc,0=UT/UL and 
P/F

c,0 c,0σ =lnΣ , we thus can 

write 
P/F

c,0σ = U’
2
/UT

2
 i.e., by using turbulent 

kinetic energy and background kinetic energy, 
P/F

c,0σ =ETurb(l0)/EBF(l0). This implies that, since 

P/F

c,0 F Pσ =ln(V /V ) , exp[-ETurb(l0)/EBF(l0)]=VP/VF. 

Let us remark that the scale structure efficiency 

can be written 
max

Turb 0 c,0 BF 0η= E (l )/S /E (l )   . 

We thus see that the scale-entropy 

production 
P/F

c,0σ  corresponds to the ratio of two 

energies. Let us now make an analogy and look 

for an equivalent Boltzmann factor exp(
_
E/kT) 

giving, in statistical physics, the probability p(E) 

to have the energy E (for a system having a 

temperature T). It is easy to see that the energy 

EBF(l0) (background velocity fluctuations) would 

correspond to kT and ETurb(l0) to the energy E of 

the system. We then have p(E)=exp[-



 

    Int. J. of Thermodynamics, Vol. 11 (No. 1) 18

P/F

c,0σ ]=VP/VF. So there is, assuming Yakhot’s 

law, a direct and remarkable link between the 

probability p(E) to have an energy E and the 

volume fraction VP/VF characterizing the multi-

scale extension of a parabolic front relatively to 

an ideal fractal one. 

We thus conclude that Yakhot’s law 

expresses the fundamental link between statistics 

and multi-scale geometry through the relation 

[ETurb(l0)]=VP/VF. 

8. Conclusion 

In conclusion, entropic skins geometry 

appears to be an adequate multi-scale geometry 

to describe turbulent reactive fronts and namely 

turbulent flames. We determined an expression 

for the inner cut-off  scale, i.e. the smallest scale 

of the front. Then, based on this geometrical 

framework, we proposed a new law for turbulent 

velocity that we verified with experimental 

measurements. This led us to introduce the 

concept of scale-entropy production which is 

directly linked to front roughness. Scale-entropy 

production offers the possibility of a comparison 

between the real multi-scale behavior (with 

dissipation and thus entropy production) and the 

ideal fractal one (which does not dissipate). We 

finally showed that Yakhot’s law can acquire a 

simple geometrical interpretation. Our approach 

is based so far on geometrical arguments but 

recent developments show that it could be linked 

to thermodynamical arguments resulting from 

specific optimization methods in 

thermodynamics (Feidt, 1996). We also would 

like to investigate the possible connections 

between our approach and the constructal theory 

(Bejan, 2000). We hope to develop these aspects 

in our future work. 
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Nomenclature 

U’ turbulent intensity 

UL laminar front velocity 

UT turbulent front velocity 

ST turbulent front surface 

SL projected front surface  

li  scale 

lc  inner cut-off scale  

l0   outer cut-off scale (integral scale) 

lk  Kolmogorov scale  

u’k Kolmogorov velocity 

tk  Kolmogorov time 

lk,BG Kolmogorov scale (in burnt gases) 

x scale-logarithm: x=ln(li/l0) 

Uc,i turbulent velocity due to [lc;li] 

EBF(l0) background (indirect) kinetic energy 

ETurb(l0)  direct kinetic energy 

N(li) number of covering balls at scale li  

Vi  volume at scale li: Vi=Ni,0li
d
 

Df  fractal dimension 

d embedding dimension (d=3) 

Sx  scale-entropy  

V0 volume at integral scale 

VF fractal volume  

VP parabolic volume  
F

c,0N  covering balls in [lc;l0], fractal case  

P

c,0N  covering balls in [lc;l0], parabolic case  

F

c,0
S  fractal scale-entropy 

P

c,0S  parabolic scale-entropy 

Greek Letters 

ε rate of energy dissipation 

Σ front roughness 

Σc,i roughness due to scale range [lc;li] 

δ thermal front thickness 

γ intermittency factor 

∆c  crest fractal dimension 

∆0  bulk fractal dimension 

c,0∆   mean fractal dimension 

∆x  local fractal dimension 

φx  scale-entropy flux 

ω(x), β scale evolutivity 
η scale structure efficiency  
χ scale diffusivity 

  P/F

c,0σ  scale-entropy production: P/F P F

c,0 c,0 c,0σ =S -S  
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