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A classification theorem on totally umbilical
submanifolds in a cosymplectic manifold
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Abstract

In the present paper, we study totally umbilical submanifolds of cosym-
plectic manifolds. We obtain a result on the classification of totally
umbilical contact CR-submanifolds of a cosymplectic manifold.
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1. Introduction

The notion of CR-submanifolds of a Kaehler manifold was introduced by A. Bejancu
[1]. Later on, many researchers worked on these submanifolds for different structures [5].
These submanifolds are the natural generalization of both holomorphic and totally real
submanifolds of a Kaehler manifold. Totally umbilical CR-submanifolds of a Kaehler
manifold have been studied by A. Bejancu [2], B.Y. Chen (see [6]), S. Deshmukh and S.I.
Husain [8].

The submanifolds of a cosymplectic manifold have been studied by G.D. Ludden
[10]. Recently, we have obtained some results for the existence or non-existence of warped
submanifolds in a cosymplectic manifold [11]. In this paper, we classify all totally um-
bilical contact CR-submanifolds of a cosymplectic manifold.
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2. Preliminaries

Let M̃ be a (2n + 1)−dimensional almost contact manifold with almost contact
structure (φ, ξ, η), that is φ is a (1, 1) tensor field, ξ is a vector field and η is a 1−form,
satisfying the following properties

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (2.1)

In this case we call (M̃, φ, ξ, η) an almost contact manifold. There always exists a Rie-

mannian metric g on an almost contact manifold M̃ satisfying the following compatibility
condition

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.2)

for any X,Y tangent to M̃ ; with this metric the almost contact manifold is called an
almost contact metric manifold.

An almost contact structure (φ, ξ, η) is said to be normal if [φ, φ]+2dη⊗ ξ vanishes

identically on M̃ , where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ] − φ[φX, Y ] − φ[X,φY ] for

any vector fields X, Y tangent to M̃ is the Nijenhuis tensor of φ.
The fundamental 2-form Φ on M̃ is defined as Φ(X,Y ) = g(X,φY ), for any vector

fields X, Y tangent to M̃ . If Φ = dη, the almost contact structure is a contact structure.
A normal almost contact structure with Φ closed and dη = 0 is called cosymplectic
structure. It is well known that the cosymplectic structure is characterized by

∇̃Xφ = 0 and ∇̃Xη = 0, (2.3)

where ∇̃ is the Levi-Civita connection of g on M̃. From (2.3), it follows that ∇̃Xξ = 0.

If we denote the curvature tensor of a cosymplectic manifold M̃ by R̃, then we have

R̃(φX, φY ) = R̃(X,Y ) and R̃(X,Y )φZ = φR̃(X,Y )Z. (2.4)

Blair and Goldberg [5] studied the cosymplectic structure on a Riemannian manifold
from topological viewpoint. They have given a typical example of simply connected
cosymplectic manifold which is the product of a simply connected Kaehler manifold
with R. They proved that a complete simply connected cosymplectic manifold is almost
contact isometric to the product of a complete simply connected Kaehler manifold with
R. On the other hand the natural example of a compact cosymplectic manifold is given
by the product of a compact Kaehler manifold (V, J, h) with the circle S1, where J is
almost complex structure and h is almost Hermitian metric on V . The cosymplectic
structure (φ, ξ, η, g) on the product manifold M̃ = V × S1 is defined by

φ = J ◦ (pr1)∗, ξ =
E

c
, η = c(pr2)∗(θ), g = (pr1)∗(h) + c2(pr2)∗(θ ⊗ θ),

where ∗ is the symbol for tangent map and pr1 : M̃ → V and pr2 : M̃ → S1 are the
projections of V × S1 onto V and S1 respectively, θ is the length element of S1, E is its
dual vector field and c is a non-zero real number [5]. In [7], De Leon and Marrero studied
compact cosymplectic manifold with positive constant φ-sectional curvature.

Let M be a submanifold of an almost contact metric manifold M̃ with induced
metric g and if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and
the normal bundle T⊥M of M , respectively. Denote by F(M) the algebra of smooth
functions on M and by Γ(TM) the F(M)-module of smooth sections of tangent bundle
TM over M , then Gauss and Weingarten formulae are given by

∇̃XY = ∇XY + h(X,Y ) (2.5)

∇̃XN = −ANX +∇⊥XN, (2.6)
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for each X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental
form and the shape operator (corresponding to the normal vector field N) respectively

for the immersion of M into M̃ . They are related as

g(h(X,Y ), N) = g(ANX,Y ), (2.7)

where g denotes the Riemannian metric on M̃ as well as induced on M . The mean
curvature vector H on M is given by

H =
1

n

n∑

i=1

h(ei, ei) (2.8)

where n is the dimension of M and {e1, e2, · · · , en} is a local orthonormal frame of vector
fields on M .

A submanifold M of a Riemannian manifold M̃ is said to be totally umbilical if

h(X,Y ) = g(X,Y )H. (2.9)

If h(X,Y ) = 0 for any X,Y ∈ Γ(TM) then M is said to be totally geodesic submanifold.
If H = 0, then it is called minimal submanifold.

If M is totally umbilical, then from (2.9), the equations (2.5) and (2.6) reduce to
the following equations, respectively;

∇̃XY = ∇XY + g(X,Y )H, (2.10)

∇̃XN = −g(H,N)X +∇⊥XN. (2.11)

Now, for any X ∈ Γ(TM), we write

φX = PX + FX, (2.12)

where PX is the tangential component and FX is the normal component of φX.
Similarly for any N ∈ Γ(T⊥M), we write

φN = BN + CN, (2.13)

where BN is the tangential component and CN is the normal component of φN . The
covariant derivatives of the tensor fields φ, P and F are respectively defined as

(∇̃Xφ)Y = ∇̃XφY − φ∇̃XY, ∀ X,Y ∈ Γ(TM̃), (2.14)

(∇̃XP )Y = ∇XPY − P∇XY, ∀ X,Y ∈ Γ(TM), (2.15)

(∇̃XF )Y = ∇⊥XFY − F∇XY, ∀ X,Y ∈ Γ(TM). (2.16)

3. Contact CR-submanifolds

In this section we consider the submanifold M tangent to the structure vector field ξ
and defined as follows: A submanifold M tangent to ξ is called a contact CR-submanifold
if it admits a pair of differentiable distributions D and D⊥ such that D is invariant and its
orthogonal complementary distribution D⊥ is anti-invariant i.e., TM = D⊕D⊥⊕〈ξ〉 with
φ(Dx) ⊆ Dx and φ(D⊥x ) ⊂ T⊥x M , for every x ∈M . Thus, a contact CR-submanifold M
tangent to ξ is invariant if D⊥ is identically zero and an anti-invariant if D is identically
zero, respectively. If neither D = {0} nor D⊥ = {0}, then M is proper contact CR-
submanifold.

Let M be a proper contact CR-submanifold of an almost contact metric manifold
M̃ , then for any X ∈ Γ(TM), we have

X = P1X + P2X + η(X)ξ, (3.1)
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where P1 and P2 are the orthogonal projections from TM to D and D⊥, respectively.
For a contact CR-submanifold, from (2.12) and (3.1), we obtain

PX = φP1X and FX = φP2X.

Let M be a contact CR-submanifold of an almost contact metric manifold M̃ . Then
the normal bundle T⊥M is decomposed as

T⊥M = φD⊥ ⊕ µ, (3.2)

where µ is the orthogonal complemetary distribution of φD⊥ in T⊥M and is a φ−invariant
subbundle of T⊥M .

Let M be a contact CR-submanifold of a cosymplectic manifold M̃ , then for any
Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), we have

g(AφWZ,U) = g(h(Z,U), φW ).

Using (2.5), we obtain

g(AφWZ,U) = g(∇̃UZ, φW ) = −g(φ∇̃UZ,W ).

By the structure equation (2.3), we get

g(AφWZ,U) = −g(∇̃UφZ,W ).

Thus, from (2.6), we derive

g(AφWZ,U) = g(AφZU,W ) = g(h(W,U), φZ).

Again Using (2.5), we obtain

g(AφWZ,U) = g(∇̃WU, φZ) = −g(U, ∇̃WφZ).

Then from (2.6), we get
g(AφWZ,U) = g(AφZW,U).

Hence, for a contact CR-submanifold of a cosymplectic manifold we conclude that

AφWZ = AφZW ∀ Z, W ∈ Γ(D⊥). (3.3)

Now, for any X ∈ Γ(D⊕ 〈ξ〉) and Z,W ∈ Γ(D⊥), we have

g([Z,W ], φX) = g(∇̃ZW − ∇̃WZ, φX)

= g(φ∇̃WZ − φ∇̃ZW,X).

Thus, from (2.14) and (2.3), we obtain

g([Z,W ], φX) = g(∇̃WφZ − ∇̃ZφW,X)

= g(AφWZ −AφZW,X).

Thus, from (3.3), we obtain g([Z,W ], φX) = 0. This means that [Z,W ] ∈ Γ(D⊥), for
any Z,W ∈ Γ(D⊥), that is, D⊥ is integrable. Now for any X,Y ∈ Γ(D⊕ 〈ξ〉), we have

h(X,PY ) +∇XPY = ∇̃XPY = ∇̃XφY.
As M̃ is cosymplectic, then by (2.14) and the structure equation (2.3), we obtain

h(X,PY ) +∇XPY = φ∇̃XY.
Using (2.5), (2.12) and (2.13), we derive

h(X,PY ) +∇XPY = P∇XY + F∇XY +Bh(X,Y ) + Ch(X,Y ).

Equating the normal components, we get

F∇XY = h(X,PY )− Ch(X,Y ). (3.4)

638



Similarly,
F∇YX = h(Y, PX)− Ch(X,Y ). (3.5)

Thus from (3.4) and (3.5), we obtain

F [X,Y ] = h(X,PY )− h(Y, PX). (3.6)

Hence, we conclude that F [X,Y ] = 0 if and only if h(X,PY ) = h(Y, PX), that is the
distribution D ⊕ 〈ξ〉 is integrable if and only if h(X,PY ) = h(Y, PX), for all X,Y ∈
Γ(D⊕ 〈ξ〉).

We give the following main result of this section.

3.1. Theorem Let M be a totally umbilical contact CR-submanifold of a cosymplectic
manifold M̃ . Then at least one of the following statements is true

(i) M is totally geodesic,
(ii) the anti-invariant distribution D⊥ is one-dimensional, i.e., dim D⊥ = 1,

(iii) the mean curvature vector H ∈ Γ(µ).

Proof. For a cosympectic manifold, we have

∇̃ZφW = φ∇̃ZW,
for any Z,W ∈ Γ(D⊥). Using (2.10) and (2.11), we derive

−g(H,φW )Z +∇⊥ZφW = φ∇ZW + g(Z,W )φH. (3.7)

Taking the product with Z ∈ Γ(D⊥) in (3.7), we get

g(H,φW )‖Z‖2 = g(Z,W )g(H,φZ). (3.8)

Interchanging Z and W in (3.8), we obtain

g(H,φZ)‖W‖2 = g(Z,W )g(H,φW ). (3.9)

Thus, from (3.8) and (3.9), we deduce that

g(H,φZ) =
g(Z,W )2

‖Z‖2‖W‖2 g(H,φZ).

That is

g(H,φZ){1− g(Z,W )2

‖Z‖2‖W‖2 } = 0. (3.10)

Hence, the equation (3.10) has a solution if at least one of the followings holds

(i) H = 0 or (ii) Z ‖W or (iii) H ⊥ φD⊥.
That is either M is totally geodesic or as Z and W are parallel to each other for any
Z,W ∈ Γ(D⊥) that is these two vectors are linearly dependent and hence dim D⊥ = 1
or H ∈ Γ(µ), this proves the theorem completely. �

3.2. Example Consider a flat manifold of real dimension 6 which have a complex
Kaehler structure of dimension 3, that is (C3, J, h) be a Kaehler manifold with complex

structure J and Euclidean Hermitian metric h. Then M̃ = C3 × R is a cosymplectic
manifold with the structure vector field ξ = ∂

∂t
, dual 1-form η = dt and the metric

g = h+ dt2. Now, consider M = R3×S1, where S1 is a unit circle being taken as totally
real submanifold of C3. Then M is a contact CR-submanifold of M̃ with the invariant
distribution D = R2, anti-invariant distribution D⊥ = Γ(S1) and the 1-dimensional dis-
tribution 〈ξ〉 = R.
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