$\label{eq:hardenergy} \begin{cases} \mbox{Hacettepe Journal of Mathematics and Statistics} \\ \mbox{Volume 43 (4) (2014), 635-640} \end{cases}$

A classification theorem on totally umbilical submanifolds in a cosymplectic manifold

Siraj Uddin^{*} and Cenap Ozel[†]

Abstract

In the present paper, we study totally umbilical submanifolds of cosymplectic manifolds. We obtain a result on the classification of totally umbilical contact CR-submanifolds of a cosymplectic manifold.

Received 07/03/2012 : Accepted 04/07/2013

2000 AMS Classification: 53C40, 53C42, 53B25.

Keywords: Totally umbilical, contact CR-submanifold, cosymplectic manifold.

1. Introduction

The notion of CR-submanifolds of a Kaehler manifold was introduced by A. Bejancu [1]. Later on, many researchers worked on these submanifolds for different structures [5]. These submanifolds are the natural generalization of both holomorphic and totally real submanifolds of a Kaehler manifold. Totally umbilical CR-submanifolds of a Kaehler manifold have been studied by A. Bejancu [2], B.Y. Chen (see [6]), S. Deshmukh and S.I. Husain [8].

The submanifolds of a cosymplectic manifold have been studied by G.D. Ludden [10]. Recently, we have obtained some results for the existence or non-existence of warped submanifolds in a cosymplectic manifold [11]. In this paper, we classify all totally umbilical contact CR-submanifolds of a cosymplectic manifold.

^{*}Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

E-mail: siraj.ch@gmail.cmy

[†]Department of Mathematics, Abant Izzet Baysal University, 14268 Bolu, Turkey E-mail: cenap.ozel@gmail.com

2. Preliminaries

Let \tilde{M} be a (2n + 1)-dimensional almost contact manifold with almost contact structure (ϕ, ξ, η) , that is ϕ is a (1, 1) tensor field, ξ is a vector field and η is a 1-form, satisfying the following properties

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1.$$
 (2.1)

In this case we call $(\tilde{M}, \phi, \xi, \eta)$ an almost contact manifold. There always exists a Riemannian metric g on an almost contact manifold \tilde{M} satisfying the following compatibility condition

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{2.2}$$

for any X, Y tangent to \tilde{M} ; with this metric the almost contact manifold is called an *almost contact metric manifold*.

An almost contact structure (ϕ, ξ, η) is said to be *normal* if $[\phi, \phi] + 2d\eta \otimes \xi$ vanishes identically on \tilde{M} , where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$ for any vector fields X, Y tangent to \tilde{M} is the Nijenhuis tensor of ϕ .

The fundamental 2-form Φ on \tilde{M} is defined as $\Phi(X,Y) = g(X,\phi Y)$, for any vector fields X, Y tangent to \tilde{M} . If $\Phi = d\eta$, the almost contact structure is a *contact structure*. A normal almost contact structure with Φ closed and $d\eta = 0$ is called *cosymplectic structure*. It is well known that the cosymplectic structure is characterized by

$$\tilde{\nabla}_X \phi = 0 \quad \text{and} \quad \tilde{\nabla}_X \eta = 0,$$
(2.3)

where $\tilde{\nabla}$ is the Levi-Civita connection of g on \tilde{M} . From (2.3), it follows that $\tilde{\nabla}_X \xi = 0$.

If we denote the curvature tensor of a cosymplectic manifold M by R, then we have

$$\tilde{R}(\phi X, \phi Y) = \tilde{R}(X, Y)$$
 and $\tilde{R}(X, Y)\phi Z = \phi \tilde{R}(X, Y)Z.$ (2.4)

Blair and Goldberg [5] studied the cosymplectic structure on a Riemannian manifold from topological viewpoint. They have given a typical example of simply connected cosymplectic manifold which is the product of a simply connected Kaehler manifold with \mathbb{R} . They proved that a complete simply connected cosymplectic manifold is almost contact isometric to the product of a complete simply connected Kaehler manifold with \mathbb{R} . On the other hand the natural example of a compact cosymplectic manifold is given by the product of a compact Kaehler manifold (V, J, h) with the circle S^1 , where J is almost complex structure and h is almost Hermitian metric on V. The cosymplectic structure (ϕ, ξ, η, g) on the product manifold $\tilde{M} = V \times S^1$ is defined by

$$\phi = J \circ (pr_1)_*, \quad \xi = \frac{E}{c}, \quad \eta = c(pr_2)_*(\theta), \quad g = (pr_1)_*(h) + c^2(pr_2)_*(\theta \otimes \theta),$$

where * is the symbol for tangent map and $pr_1: \tilde{M} \to V$ and $pr_2: \tilde{M} \to S^1$ are the projections of $V \times S^1$ onto V and S^1 respectively, θ is the length element of S^1 , E is its dual vector field and c is a non-zero real number [5]. In [7], De Leon and Marrero studied compact cosymplectic manifold with positive constant ϕ -sectional curvature.

Let M be a submanifold of an almost contact metric manifold M with induced metric g and if ∇ and ∇^{\perp} are the induced connections on the tangent bundle TM and the normal bundle $T^{\perp}M$ of M, respectively. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on M and by $\Gamma(TM)$ the $\mathcal{F}(M)$ -module of smooth sections of tangent bundle TM over M, then Gauss and Weingarten formulae are given by

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{2.5}$$

$$\tilde{\nabla}_X N = -A_N X + \nabla_X^\perp N, \qquad (2.6)$$

636

for each $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where h and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N) respectively for the immersion of M into \tilde{M} . They are related as

$$g(h(X,Y),N) = g(A_N X,Y),$$
 (2.7)

where g denotes the Riemannian metric on \tilde{M} as well as induced on M. The mean curvature vector H on M is given by

$$H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$$
(2.8)

where n is the dimension of M and $\{e_1, e_2, \dots, e_n\}$ is a local orthonormal frame of vector fields on M.

A submanifold M of a Riemannian manifold \tilde{M} is said to be *totally umbilical* if

$$h(X,Y) = g(X,Y)H.$$
(2.9)

If h(X, Y) = 0 for any $X, Y \in \Gamma(TM)$ then M is said to be totally geodesic submanifold. If H = 0, then it is called *minimal submanifold*.

If M is totally umbilical, then from (2.9), the equations (2.5) and (2.6) reduce to the following equations, respectively;

$$\tilde{\nabla}_X Y = \nabla_X Y + g(X, Y)H, \qquad (2.10)$$

$$\tilde{\nabla}_X N = -g(H, N)X + \nabla_X^{\perp} N.$$
(2.11)

Now, for any $X \in \Gamma(TM)$, we write

$$\phi X = PX + FX, \tag{2.12}$$

where PX is the tangential component and FX is the normal component of ϕX .

Similarly for any $N \in \Gamma(T^{\perp}M)$, we write

$$\phi N = BN + CN, \tag{2.13}$$

where BN is the tangential component and CN is the normal component of ϕN . The covariant derivatives of the tensor fields ϕ , P and F are respectively defined as

$$(\tilde{\nabla}_X \phi)Y = \tilde{\nabla}_X \phi Y - \phi \tilde{\nabla}_X Y, \quad \forall \ X, Y \in \Gamma(T\tilde{M}),$$
(2.14)

$$(\tilde{\nabla}_X P)Y = \nabla_X PY - P\nabla_X Y, \quad \forall \ X, Y \in \Gamma(TM),$$
(2.15)

$$(\tilde{\nabla}_X F)Y = \nabla_X^{\perp} FY - F\nabla_X Y, \quad \forall \ X, Y \in \Gamma(TM).$$
(2.16)

3. Contact CR-submanifolds

In this section we consider the submanifold M tangent to the structure vector field ξ and defined as follows: A submanifold M tangent to ξ is called a *contact CR-submanifold* if it admits a pair of differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} such that \mathcal{D} is invariant and its orthogonal complementary distribution \mathcal{D}^{\perp} is anti-invariant i.e., $TM = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \langle \xi \rangle$ with $\phi(\mathcal{D}_x) \subseteq \mathcal{D}_x$ and $\phi(\mathcal{D}_x^{\perp}) \subset T_x^{\perp}M$, for every $x \in M$. Thus, a contact CR-submanifold Mtangent to ξ is *invariant* if \mathcal{D}^{\perp} is identically zero and an *anti-invariant* if \mathcal{D} is identically zero, respectively. If neither $\mathcal{D} = \{0\}$ nor $\mathcal{D}^{\perp} = \{0\}$, then M is proper contact CRsubmanifold.

Let M be a proper contact CR-submanifold of an almost contact metric manifold \tilde{M} , then for any $X \in \Gamma(TM)$, we have

$$X = P_1 X + P_2 X + \eta(X)\xi, (3.1)$$

where P_1 and P_2 are the orthogonal projections from TM to \mathcal{D} and \mathcal{D}^{\perp} , respectively. For a contact CR-submanifold, from (2.12) and (3.1), we obtain

$$PX = \phi P_1 X$$
 and $FX = \phi P_2 X$.

Let M be a contact CR-submanifold of an almost contact metric manifold \tilde{M} . Then the normal bundle $T^{\perp}M$ is decomposed as

$$T^{\perp}M = \phi \mathcal{D}^{\perp} \oplus \mu, \tag{3.2}$$

where μ is the orthogonal complementary distribution of $\phi \mathcal{D}^{\perp}$ in $T^{\perp}M$ and is a ϕ -invariant subbundle of $T^{\perp}M$.

Let M be a contact CR-submanifold of a cosymplectic manifold \tilde{M} , then for any $Z, W \in \Gamma(\mathcal{D}^{\perp})$ and $U \in \Gamma(TM)$, we have

$$g(A_{\phi W}Z, U) = g(h(Z, U), \phi W).$$

Using (2.5), we obtain

$$g(A_{\phi W}Z,U) = g(\tilde{\nabla}_U Z, \phi W) = -g(\phi \tilde{\nabla}_U Z, W).$$

By the structure equation (2.3), we get

$$g(A_{\phi W}Z, U) = -g(\tilde{\nabla}_U \phi Z, W).$$

Thus, from (2.6), we derive

$$g(A_{\phi W}Z, U) = g(A_{\phi Z}U, W) = g(h(W, U), \phi Z).$$

Again Using (2.5), we obtain

$$g(A_{\phi W}Z,U) = g(\tilde{\nabla}_W U, \phi Z) = -g(U, \tilde{\nabla}_W \phi Z).$$

Then from (2.6), we get

$$g(A_{\phi W}Z, U) = g(A_{\phi Z}W, U)$$

Hence, for a contact CR-submanifold of a cosymplectic manifold we conclude that

$$A_{\phi W}Z = A_{\phi Z}W \quad \forall Z, \ W \in \Gamma(\mathcal{D}^{\perp}).$$
(3.3)

Now, for any $X \in \Gamma(\mathcal{D} \oplus \langle \xi \rangle)$ and $Z, W \in \Gamma(\mathcal{D}^{\perp})$, we have

$$g([Z,W],\phi X) = g(\tilde{\nabla}_Z W - \tilde{\nabla}_W Z,\phi X)$$

 $= g(\phi \tilde{\nabla}_W Z - \phi \tilde{\nabla}_Z W, X).$

Thus, from (2.14) and (2.3), we obtain

$$g([Z,W],\phi X) = g(\tilde{\nabla}_W \phi Z - \tilde{\nabla}_Z \phi W, X)$$

$$= g(A_{\phi W}Z - A_{\phi Z}W, X).$$

Thus, from (3.3), we obtain $g([Z, W], \phi X) = 0$. This means that $[Z, W] \in \Gamma(\mathcal{D}^{\perp})$, for any $Z, W \in \Gamma(\mathcal{D}^{\perp})$, that is, \mathcal{D}^{\perp} is integrable. Now for any $X, Y \in \Gamma(\mathcal{D} \oplus \langle \xi \rangle)$, we have

$$h(X, PY) + \nabla_X PY = \nabla_X PY = \nabla_X \phi Y.$$

As \tilde{M} is cosymplectic, then by (2.14) and the structure equation (2.3), we obtain

$$h(X, PY) + \nabla_X PY = \phi \tilde{\nabla}_X Y.$$

Using (2.5), (2.12) and (2.13), we derive

$$h(X, PY) + \nabla_X PY = P\nabla_X Y + F\nabla_X Y + Bh(X, Y) + Ch(X, Y)$$

Equating the normal components, we get

$$F\nabla_X Y = h(X, PY) - Ch(X, Y). \tag{3.4}$$

Similarly,

$$F\nabla_Y X = h(Y, PX) - Ch(X, Y). \tag{3.5}$$

Thus from (3.4) and (3.5), we obtain

$$F[X, Y] = h(X, PY) - h(Y, PX).$$
(3.6)

Hence, we conclude that F[X, Y] = 0 if and only if h(X, PY) = h(Y, PX), that is the distribution $\mathcal{D} \oplus \langle \xi \rangle$ is integrable if and only if h(X, PY) = h(Y, PX), for all $X, Y \in \Gamma(\mathcal{D} \oplus \langle \xi \rangle)$.

We give the following main result of this section.

3.1. Theorem Let M be a totally umbilical contact CR-submanifold of a cosymplectic manifold \tilde{M} . Then at least one of the following statements is true

- (i) *M* is totally geodesic,
- (ii) the anti-invariant distribution \mathcal{D}^{\perp} is one-dimensional, i.e., dim $\mathcal{D}^{\perp} = 1$,
- (iii) the mean curvature vector $H \in \Gamma(\mu)$.

Proof. For a cosympectic manifold, we have

$$\tilde{\nabla}_Z \phi W = \phi \tilde{\nabla}_Z W,$$

for any $Z, W \in \Gamma(\mathcal{D}^{\perp})$. Using (2.10) and (2.11), we derive

$$-g(H,\phi W)Z + \nabla_Z^{\perp}\phi W = \phi \nabla_Z W + g(Z,W)\phi H.$$
(3.7)

Taking the product with $Z \in \Gamma(\mathcal{D}^{\perp})$ in (3.7), we get

$$g(H, \phi W) \|Z\|^2 = g(Z, W)g(H, \phi Z).$$
(3.8)

Interchanging Z and W in (3.8), we obtain

$$g(H, \phi Z) \|W\|^2 = g(Z, W)g(H, \phi W).$$
(3.9)

Thus, from (3.8) and (3.9), we deduce that

$$g(H, \phi Z) = \frac{g(Z, W)^2}{\|Z\|^2 \|W\|^2} g(H, \phi Z).$$

That is

$$g(H,\phi Z)\{1 - \frac{g(Z,W)^2}{\|Z\|^2 \|W\|^2}\} = 0.$$
(3.10)

Hence, the equation (3.10) has a solution if at least one of the followings holds

(i) H = 0 or (ii) $Z \parallel W$ or (iii) $H \perp \phi \mathcal{D}^{\perp}$.

That is either M is totally geodesic or as Z and W are parallel to each other for any $Z, W \in \Gamma(\mathcal{D}^{\perp})$ that is these two vectors are linearly dependent and hence $\dim \mathcal{D}^{\perp} = 1$ or $H \in \Gamma(\mu)$, this proves the theorem completely. \Box

3.2. Example Consider a flat manifold of real dimension 6 which have a complex Kaehler structure of dimension 3, that is (\mathbb{C}^3, J, h) be a Kaehler manifold with complex structure J and Euclidean Hermitian metric h. Then $\tilde{M} = \mathbb{C}^3 \times \mathbb{R}$ is a cosymplectic manifold with the structure vector field $\xi = \frac{\partial}{\partial t}$, dual 1-form $\eta = dt$ and the metric $g = h + dt^2$. Now, consider $M = \mathbb{R}^3 \times S^1$, where S^1 is a unit circle being taken as totally real submanifold of \mathbb{C}^3 . Then M is a contact CR-submanifold of \tilde{M} with the invariant distribution $\mathcal{D} = \mathbb{R}^2$, anti-invariant distribution $\mathcal{D}^{\perp} = \Gamma(S^1)$ and the 1-dimensional distribution $\langle \xi \rangle = \mathbb{R}$.

Acknowledgement. The authors are thankful to the referee for providing constructive comments and valuable suggestions.

References

- A. Bejancu, CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc., 69 (1978), 135-142.
- [2] A. Bejancu, Umbilical CR-submanifolds of a Kaehler manifold, Rend Mat. J., 13 (1980), 431-466.
- [3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in mathematics, Springer-Verlag, New York, Vol. 509, 1976.
- [4] D.E. Blair and B.Y. Chen, On CR-submanifolds of Hermitian manifold, Israel J. Math., 34 (1980), 353-363.
- [5] D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967), 347-354.
- [6] B.Y. Chen, Totally umbilical submanifolds of Kaehler manifolds, Arch. Math. J., 36 (1981), 83-91.
- [7] M. De Leon and J.C. Marrero, Compact cosymplectic manifolds of positive constant sectional curvature, Extracta Math., 9 (1994),28-31.
- [8] S. Deshmukh and S.I. Husain, Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J., 9 (1986), 425-429.
- [9] D.D. Joyce, Compact manifolds with special holonomy, Oxford University Press, 2000.
- [10] G.D. Ludden, Submanifolds of cosymplectic manifolds, J. Diff. Geom., 4 (1970), 237-244.
- [11] S. Uddin, V.A. Khan and K.A. Khan, A note on warped product submanifolds of cosymplectic manifolds, Filomat, 24 (2010), 95-102.

640