A classification theorem on totally umbilical submanifolds in a cosymplectic manifold

Siraj Uddin* and Cenap Ozel ${ }^{\dagger}$

Abstract

In the present paper, we study totally umbilical submanifolds of cosymplectic manifolds. We obtain a result on the classification of totally umbilical contact CR-submanifolds of a cosymplectic manifold.

Received 07/03/2012 : Accepted 04/07/2013

2000 AMS Classification: $53 \mathrm{C} 40,53 \mathrm{C} 42,53 \mathrm{~B} 25$.

Keywords: Totally umbilical, contact CR-submanifold, cosymplectic manifold.

1. Introduction

The notion of CR-submanifolds of a Kaehler manifold was introduced by A. Bejancu [1]. Later on, many researchers worked on these submanifolds for different structures [5]. These submanifolds are the natural generalization of both holomorphic and totally real submanifolds of a Kaehler manifold. Totally umbilical CR-submanifolds of a Kaehler manifold have been studied by A. Bejancu [2], B.Y. Chen (see [6]), S. Deshmukh and S.I. Husain [8].

The submanifolds of a cosymplectic manifold have been studied by G.D. Ludden [10]. Recently, we have obtained some results for the existence or non-existence of warped submanifolds in a cosymplectic manifold [11]. In this paper, we classify all totally umbilical contact CR-submanifolds of a cosymplectic manifold.

[^0]
2. Preliminaries

Let \tilde{M} be a $(2 n+1)$-dimensional almost contact manifold with almost contact structure (ϕ, ξ, η), that is ϕ is a $(1,1)$ tensor field, ξ is a vector field and η is a 1 -form, satisfying the following properties

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta \circ \phi=0, \quad \eta(\xi)=1 . \tag{2.1}
\end{equation*}
$$

In this case we call $(\tilde{M}, \phi, \xi, \eta)$ an almost contact manifold. There always exists a Riemannian metric g on an almost contact manifold \tilde{M} satisfying the following compatibility condition

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

for any X, Y tangent to \tilde{M}; with this metric the almost contact manifold is called an almost contact metric manifold.

An almost contact structure (ϕ, ξ, η) is said to be normal if $[\phi, \phi]+2 d \eta \otimes \xi$ vanishes identically on \tilde{M}, where $[\phi, \phi](X, Y)=\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]$ for any vector fields X, Y tangent to \tilde{M} is the Nijenhuis tensor of ϕ.

The fundamental 2-form Φ on \tilde{M} is defined as $\Phi(X, Y)=g(X, \phi Y)$, for any vector fields X, Y tangent to \tilde{M}. If $\Phi=d \eta$, the almost contact structure is a contact structure. A normal almost contact structure with Φ closed and $d \eta=0$ is called cosymplectic structure. It is well known that the cosymplectic structure is characterized by

$$
\begin{equation*}
\tilde{\nabla}_{X} \phi=0 \quad \text { and } \quad \tilde{\nabla}_{X} \eta=0 \tag{2.3}
\end{equation*}
$$

where $\tilde{\nabla}$ is the Levi-Civita connection of g on \tilde{M}. From (2.3), it follows that $\tilde{\nabla}_{X} \xi=0$.
If we denote the curvature tensor of a cosymplectic manifold \tilde{M} by \tilde{R}, then we have

$$
\begin{equation*}
\tilde{R}(\phi X, \phi Y)=\tilde{R}(X, Y) \quad \text { and } \quad \tilde{R}(X, Y) \phi Z=\phi \tilde{R}(X, Y) Z . \tag{2.4}
\end{equation*}
$$

Blair and Goldberg [5] studied the cosymplectic structure on a Riemannian manifold from topological viewpoint. They have given a typical example of simply connected cosymplectic manifold which is the product of a simply connected Kaehler manifold with \mathbb{R}. They proved that a complete simply connected cosymplectic manifold is almost contact isometric to the product of a complete simply connected Kaehler manifold with \mathbb{R}. On the other hand the natural example of a compact cosymplectic manifold is given by the product of a compact Kaehler manifold (V, J, h) with the circle S^{1}, where J is almost complex structure and h is almost Hermitian metric on V. The cosymplectic structure (ϕ, ξ, η, g) on the product manifold $\tilde{M}=V \times S^{1}$ is defined by

$$
\phi=J \circ\left(p r_{1}\right)_{*}, \quad \xi=\frac{E}{c}, \quad \eta=c\left(p r_{2}\right)_{*}(\theta), \quad g=\left(p r_{1}\right)_{*}(h)+c^{2}\left(p r_{2}\right)_{*}(\theta \otimes \theta)
$$

where $*$ is the symbol for tangent map and $p r_{1}: \tilde{M} \rightarrow V$ and $p r_{2}: \tilde{M} \rightarrow S^{1}$ are the projections of $V \times S^{1}$ onto V and S^{1} respectively, θ is the length element of S^{1}, E is its dual vector field and c is a non-zero real number [5]. In [7], De Leon and Marrero studied compact cosymplectic manifold with positive constant ϕ-sectional curvature.

Let M be a submanifold of an almost contact metric manifold \tilde{M} with induced metric g and if ∇ and ∇^{\perp} are the induced connections on the tangent bundle $T M$ and the normal bundle $T^{\perp} M$ of M, respectively. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on M and by $\Gamma(T M)$ the $\mathcal{F}(M)$-module of smooth sections of tangent bundle $T M$ over M, then Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.5}\\
& \tilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, \tag{2.6}
\end{align*}
$$

for each $X, Y \in \Gamma(T M)$ and $N \in \Gamma\left(T^{\perp} M\right)$, where h and A_{N} are the second fundamental form and the shape operator (corresponding to the normal vector field N) respectively for the immersion of M into \tilde{M}. They are related as

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right), \tag{2.7}
\end{equation*}
$$

where g denotes the Riemannian metric on \tilde{M} as well as induced on M. The mean curvature vector H on M is given by

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{2.8}
\end{equation*}
$$

where n is the dimension of M and $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a local orthonormal frame of vector fields on M.

A submanifold M of a Riemannian manifold \tilde{M} is said to be totally umbilical if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{2.9}
\end{equation*}
$$

If $h(X, Y)=0$ for any $X, Y \in \Gamma(T M)$ then M is said to be totally geodesic submanifold. If $H=0$, then it is called minimal submanifold.

If M is totally umbilical, then from (2.9), the equations (2.5) and (2.6) reduce to the following equations, respectively;

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(X, Y) H \tag{2.10}\\
\tilde{\nabla}_{X} N=-g(H, N) X+\nabla_{X}^{\perp} N . \tag{2.11}
\end{gather*}
$$

Now, for any $X \in \Gamma(T M)$, we write

$$
\begin{equation*}
\phi X=P X+F X, \tag{2.12}
\end{equation*}
$$

where $P X$ is the tangential component and $F X$ is the normal component of ϕX.
Similarly for any $N \in \Gamma\left(T^{\perp} M\right)$, we write

$$
\begin{equation*}
\phi N=B N+C N, \tag{2.13}
\end{equation*}
$$

where $B N$ is the tangential component and $C N$ is the normal component of ϕN. The covariant derivatives of the tensor fields ϕ, P and F are respectively defined as

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \phi\right) Y & =\tilde{\nabla}_{X} \phi Y-\phi \tilde{\nabla}_{X} Y, \quad \forall X, Y \in \Gamma(T \tilde{M}), \tag{2.14}\\
\left(\tilde{\nabla}_{X} P\right) Y & =\nabla_{X} P Y-P \nabla_{X} Y, \quad \forall X, Y \in \Gamma(T M), \tag{2.15}\\
\left(\tilde{\nabla}_{X} F\right) Y & =\nabla_{X}^{\perp} F Y-F \nabla_{X} Y, \quad \forall X, Y \in \Gamma(T M) . \tag{2.16}
\end{align*}
$$

3. Contact CR-submanifolds

In this section we consider the submanifold M tangent to the structure vector field ξ and defined as follows: A submanifold M tangent to ξ is called a contact CR-submanifold if it admits a pair of differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} such that \mathcal{D} is invariant and its orthogonal complementary distribution \mathcal{D}^{\perp} is anti-invariant i.e., $T M=\mathcal{D} \oplus \mathcal{D}^{\perp} \oplus\langle\xi\rangle$ with $\phi\left(\mathcal{D}_{x}\right) \subseteq \mathcal{D}_{x}$ and $\phi\left(\mathcal{D}_{x}^{\perp}\right) \subset T_{x}^{\perp} M$, for every $x \in M$. Thus, a contact CR-submanifold M tangent to ξ is invariant if \mathcal{D}^{\perp} is identically zero and an anti-invariant if \mathcal{D} is identically zero, respectively. If neither $\mathcal{D}=\{0\}$ nor $\mathcal{D}^{\perp}=\{0\}$, then M is proper contact CRsubmanifold.

Let M be a proper contact CR-submanifold of an almost contact metric manifold \tilde{M}, then for any $X \in \Gamma(T M)$, we have

$$
\begin{equation*}
X=P_{1} X+P_{2} X+\eta(X) \xi \tag{3.1}
\end{equation*}
$$

where P_{1} and P_{2} are the orthogonal projections from $T M$ to \mathcal{D} and \mathcal{D}^{\perp}, respectively. For a contact CR-submanifold, from (2.12) and (3.1), we obtain

$$
P X=\phi P_{1} X \quad \text { and } \quad F X=\phi P_{2} X
$$

Let M be a contact CR-submanifold of an almost contact metric manifold \tilde{M}. Then the normal bundle $T^{\perp} M$ is decomposed as

$$
\begin{equation*}
T^{\perp} M=\phi \mathcal{D}^{\perp} \oplus \mu, \tag{3.2}
\end{equation*}
$$

where μ is the orthogonal complemetary distribution of $\phi \mathcal{D}^{\perp}$ in $T^{\perp} M$ and is a ϕ-invariant subbundle of $T^{\perp} M$.

Let M be a contact CR-submanifold of a cosymplectic manifold \tilde{M}, then for any $Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right)$ and $U \in \Gamma(T M)$, we have

$$
g\left(A_{\phi W} Z, U\right)=g(h(Z, U), \phi W)
$$

Using (2.5), we obtain

$$
g\left(A_{\phi W} Z, U\right)=g\left(\tilde{\nabla}_{U} Z, \phi W\right)=-g\left(\phi \tilde{\nabla}_{U} Z, W\right)
$$

By the structure equation (2.3), we get

$$
g\left(A_{\phi W} Z, U\right)=-g\left(\tilde{\nabla}_{U} \phi Z, W\right)
$$

Thus, from (2.6), we derive

$$
g\left(A_{\phi W} Z, U\right)=g\left(A_{\phi Z} U, W\right)=g(h(W, U), \phi Z)
$$

Again Using (2.5), we obtain

$$
g\left(A_{\phi W} Z, U\right)=g\left(\tilde{\nabla}_{W} U, \phi Z\right)=-g\left(U, \tilde{\nabla}_{W} \phi Z\right) .
$$

Then from (2.6), we get

$$
g\left(A_{\phi W} Z, U\right)=g\left(A_{\phi Z} W, U\right) .
$$

Hence, for a contact CR-submanifold of a cosymplectic manifold we conclude that

$$
\begin{equation*}
A_{\phi W} Z=A_{\phi Z} W \quad \forall Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right) \tag{3.3}
\end{equation*}
$$

Now, for any $X \in \Gamma(\mathcal{D} \oplus\langle\xi\rangle)$ and $Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right)$, we have

$$
\begin{aligned}
g([Z, W], \phi X) & =g\left(\tilde{\nabla}_{Z} W-\tilde{\nabla}_{W} Z, \phi X\right) \\
& =g\left(\phi \tilde{\nabla}_{W} Z-\phi \tilde{\nabla}_{Z} W, X\right) .
\end{aligned}
$$

Thus, from (2.14) and (2.3), we obtain

$$
\begin{aligned}
g([Z, W], \phi X) & =g\left(\tilde{\nabla}_{W} \phi Z-\tilde{\nabla}_{Z} \phi W, X\right) \\
& =g\left(A_{\phi W} Z-A_{\phi Z} W, X\right) .
\end{aligned}
$$

Thus, from (3.3), we obtain $g([Z, W], \phi X)=0$. This means that $[Z, W] \in \Gamma\left(\mathcal{D}^{\perp}\right)$, for any $Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right)$, that is, \mathcal{D}^{\perp} is integrable. Now for any $X, Y \in \Gamma(\mathcal{D} \oplus\langle\xi\rangle)$, we have

$$
h(X, P Y)+\nabla_{X} P Y=\tilde{\nabla}_{X} P Y=\tilde{\nabla}_{X} \phi Y
$$

As \tilde{M} is cosymplectic, then by (2.14) and the structure equation (2.3), we obtain

$$
h(X, P Y)+\nabla_{X} P Y=\phi \tilde{\nabla}_{X} Y
$$

Using (2.5), (2.12) and (2.13), we derive

$$
h(X, P Y)+\nabla_{X} P Y=P \nabla_{X} Y+F \nabla_{X} Y+B h(X, Y)+C h(X, Y)
$$

Equating the normal components, we get

$$
\begin{equation*}
F \nabla_{X} Y=h(X, P Y)-C h(X, Y) \tag{3.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
F \nabla_{Y} X=h(Y, P X)-C h(X, Y) \tag{3.5}
\end{equation*}
$$

Thus from (3.4) and (3.5), we obtain

$$
\begin{equation*}
F[X, Y]=h(X, P Y)-h(Y, P X) \tag{3.6}
\end{equation*}
$$

Hence, we conclude that $F[X, Y]=0$ if and only if $h(X, P Y)=h(Y, P X)$, that is the distribution $\mathcal{D} \oplus\langle\xi\rangle$ is integrable if and only if $h(X, P Y)=h(Y, P X)$, for all $X, Y \in$ $\Gamma(\mathcal{D} \oplus\langle\xi\rangle)$.

We give the following main result of this section.
3.1. Theorem Let M be a totally umbilical contact CR-submanifold of a cosymplectic manifold \tilde{M}. Then at least one of the following statements is true
(i) M is totally geodesic,
(ii) the anti-invariant distribution \mathcal{D}^{\perp} is one-dimensional, i.e., $\operatorname{dim} \mathcal{D}^{\perp}=1$,
(iii) the mean curvature vector $H \in \Gamma(\mu)$.

Proof. For a cosympectic manifold, we have

$$
\tilde{\nabla}_{Z} \phi W=\phi \tilde{\nabla}_{Z} W
$$

for any $Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right)$. Using (2.10) and (2.11), we derive

$$
\begin{equation*}
-g(H, \phi W) Z+\nabla_{Z}^{\perp} \phi W=\phi \nabla_{Z} W+g(Z, W) \phi H \tag{3.7}
\end{equation*}
$$

Taking the product with $Z \in \Gamma\left(\mathcal{D}^{\perp}\right)$ in (3.7), we get

$$
\begin{equation*}
g(H, \phi W)\|Z\|^{2}=g(Z, W) g(H, \phi Z) . \tag{3.8}
\end{equation*}
$$

Interchanging Z and W in (3.8), we obtain

$$
\begin{equation*}
g(H, \phi Z)\|W\|^{2}=g(Z, W) g(H, \phi W) . \tag{3.9}
\end{equation*}
$$

Thus, from (3.8) and (3.9), we deduce that

$$
g(H, \phi Z)=\frac{g(Z, W)^{2}}{\|Z\|^{2}\|W\|^{2}} g(H, \phi Z) .
$$

That is

$$
\begin{equation*}
g(H, \phi Z)\left\{1-\frac{g(Z, W)^{2}}{\|Z\|^{2}\|W\|^{2}}\right\}=0 \tag{3.10}
\end{equation*}
$$

Hence, the equation (3.10) has a solution if at least one of the followings holds

$$
\text { (i) } H=0 \text { or (ii) } Z \| W \text { or (iii) } H \perp \phi \mathcal{D}^{\perp} \text {. }
$$

That is either M is totally geodesic or as Z and W are parallel to each other for any $Z, W \in \Gamma\left(\mathcal{D}^{\perp}\right)$ that is these two vectors are linearly dependent and hence $\operatorname{dim} \mathcal{D}^{\perp}=1$ or $H \in \Gamma(\mu)$, this proves the theorem completely.
3.2. Example Consider a flat manifold of real dimension 6 which have a complex Kaehler structure of dimension 3 , that is $\left(\mathbb{C}^{3}, J, h\right)$ be a Kaehler manifold with complex structure J and Euclidean Hermitian metric h. Then $\tilde{M}=\mathbb{C}^{3} \times \mathbb{R}$ is a cosymplectic manifold with the structure vector field $\xi=\frac{\partial}{\partial t}$, dual 1 -form $\eta=d t$ and the metric $g=h+d t^{2}$. Now, consider $M=\mathbb{R}^{3} \times S^{1}$, where S^{1} is a unit circle being taken as totally real submanifold of \mathbb{C}^{3}. Then M is a contact CR-submanifold of \tilde{M} with the invariant distribution $\mathcal{D}=\mathbb{R}^{2}$, anti-invariant distribution $\mathcal{D}^{\perp}=\Gamma\left(S^{1}\right)$ and the 1-dimensional distribution $\langle\xi\rangle=\mathbb{R}$.

Acknowledgement. The authors are thankful to the referee for providing constructive comments and valuable suggestions.

References

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc., 69 (1978), 135-142.
[2] A. Bejancu, Umbilical CR-submanifolds of a Kaehler manifold, Rend Mat. J., 13 (1980), 431-466.
[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in mathematics, Springer-Verlag, New York, Vol. 509, 1976.
[4] D.E. Blair and B.Y. Chen, On CR-submanifolds of Hermitian manifold, Israel J. Math., 34 (1980), 353-363.
[5] D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Diff. Geometry, 1 (1967), 347-354.
[6] B.Y. Chen, Totally umbilical submanifolds of Kaehler manifolds, Arch. Math. J., 36 (1981), 83-91.
[7] M. De Leon and J.C. Marrero, Compact cosymplectic manifolds of positive constant sectional curvature, Extracta Math., 9 (1994),28-31.
[8] S. Deshmukh and S.I. Husain, Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J., 9 (1986), 425-429.
[9] D.D. Joyce, Compact manifolds with special holonomy, Oxford University Press, 2000.
[10] G.D. Ludden, Submanifolds of cosymplectic manifolds, J. Diff. Geom., 4 (1970), 237-244.
[11] S. Uddin, V.A. Khan and K.A. Khan, A note on warped product submanifolds of cosymplectic manifolds, Filomat, 24 (2010), 95-102.

[^0]: *Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
 E-mail: siraj.ch@gmail.cmy
 ${ }^{\dagger}$ Department of Mathematics, Abant Izzet Baysal University, 14268 Bolu, Turkey
 E-mail: cenap.ozel@gmail.com

