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Some conditional and unconditional expectation
identities for the multivariate normal with

non-zero mean
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Abstract

We give formulas for the conditional and unconditional expectations of
products of multivariate Hermite and modified Hermite polynomials,
each with a multivariate normal argument. A unified approach is given
that covers both of these polynomials, each associated with a covariance
matrix. This extended Hermite polynomial is associated with a matrix
which is the difference between two covariance matrices, in other words,
with any symmetric matrix.
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1. Introduction

Conditional expectation identities have a fundamental role in contingency table anal-
ysis and its applications, see, for example, Lancaster (1957). A well known identity is
that E[Hn(X2) | X1] = ρnHn(X1), where Hn(·) is a Hermite polynomial and (X1, X2)
has the standard bivariate normal distribution with correlation coefficient ρ. Conditional
expectation identities are also useful for characterizing distributions, see Gupta and Ah-
sanullah (2004). Applications of conditional expectation identities are numerous. Some
recent applications include: multivariate input processes (Biller and Ghosh, 2006); mech-
anisms that modulate the transfer of spiking correlations (Rosenbaum and Josić, 2011);
linear-feedback sum-capacity for Gaussian multiple access channels (Ardestanizadeh et
al., 2012).

In this short note, we derive conditional expectation identities involving a product
of multivariate Hermite and/or modified Hermite polynomials with multivariate normal
arguments. This is done by extending the family of these polynomials to a polynomial
associated with a matrix whose eigenvalues may be both positive and negative. Our
identities generalize that due to Lancaster (1957).
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We illustrate the main results of this short note by several examples, see Example
1.1 and Examples 2.1 to 2.5. These examples give new expressions for expectations of
Hermite polynomials with random arguments and expectations of products of Hermite
polynomials with random arguments. Such expectations crop up in many theoretical as
well as applied areas. We mention: non-central limit theorems for non-linear functionals
of Gaussian fields (Dobrushin and Major, 1979, Section 4); combinatorial problems (Azor
et al., 1982); Wiener analysis of binary hysteresis systems (Nakayama and Omori, 1982);
level crossings for regularized Gaussian processes (Berzin et al., 1998); central limit theo-
rems for functionals of level overshoot by a Gaussian field with dependence (Jeon (1998),
see, for example, equation (4)); nonlinear time series analysis (Terdik (1999), see, for
example, equation (2.20)); locating human faces in a cluttered scene (Rajagopalan et
al. (2000), see, for example, equation (3)); influence of the order of input expansions
in spectral stochastic finite element methods (Gaignaire et al. (2006), see, for example,
equations (4)-(5)); stochastic finite element based on stochastic linearization for stochas-
tic nonlinear ordinary differential equations with random coefficients (Saleh et al., 2006,
Section 3). Hence, the expressions given in the examples can be very useful.

Let N+ and R denote the set of non-negative integers and the set of real numbers.
Suppose that

X = NV ∼ Np(0, V ),(1.1)

a p-dimensional normal random variable with zero means and covariance V . If V > 0,
that is, if V is positive-definite, then its density is

φV (x) = (2π)−p/2det(V )−1/2 exp
(
−x′V −1x/2

)

for x ∈ Rp. For n ∈ Np+, t ∈ Rp, x ∈ Rp and Dj = ∂/∂xj , set n! =
∏p
j=1 nj !, t

n =∏p
j=1 t

nj

j , (−D)n =
∏p
j=1 (−Dj)nj and define the nth multivariate Hermite polynomial

as

Hn(x, V ) = φV (x)−1(−D)nφV (x) = exp(q/2)(−D)n exp(−q/2)

for q = x′V −1x and n ∈ Np+. This is shown in Withers (2000) to be given simply by

Hn(x, V ) = E
[
V −1 (x+ iX)

]n
,

where i =
√
−1, see also Withers and McGavin (2003). Its exponential generating func-

tion (egf) is
∑

n∈Np
+

Hn(x, V )tn/n! = E
{

exp
[
t′V −1(x+ iX)

]}
= exp

(
t′V −1x− t′V −1t/2

)
(1.2)

for x, t ∈ Rp. The nth modified multivariate Hermite polynomial is defined by

H∗n(x, V ) = φV (x)DnφV (x)−1 = E
{[
V −1(x+X)

]n}

for n ∈ Np+. This is just Hn(x, V ) with all its signs positive. Its egf is
∑

n∈Np
+

H∗n(x, V )tn/n! = E
[
exp

(
t′V −1(x+X)

)]
= exp

(
t′V −1x+ t′V −1t/2

)
(1.3)

for x, t ∈ Rp. There is a problem with notation: Hn(x, V −1) = E[(V x + iX)n] and
its modified form exist for V ≥ 0 (positive semi-definite), not just for V > 0 (positive
definite). Some authors get around this by using V rather than V −1 as the second
argument: see page 273 of Willink (2005).

We prefer to work with what we shall call the extended Hermite polynomial

hn(x,C) = E [(x+ Y + iZ)n]
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for n ∈ Np+, x ∈ Rp and C = A− B ∈ Rp×p, where Y ∼ Np(0, A) and Z ∼ Np(0, B) are
independent. That this polynomial only depends on (A, B) through C, follows from its
egf,

∑

n∈Np
+

hn(x,C)tn/n! = exp
(
t′x+ t′Ct/2

)

for t ∈ Rp. So, hn(x, 0) = xn.

1.1. Theorem. Using the egf, it follows that

hn (x1 + x2, C1 + C2) /n! = hn (x1, C1) /n! ⊗ hn (x2, C2) /n!,

hn (x,A−B) /n! = hn (x1, A) /n! ⊗ hn (x3,−B) /n!, x = x1 + x3.(1.4)

For A > 0, B > 0 we shall see that this is essentially a convolution of a Hermite
polynomial and a modified Hermite polynomial. Here, an ⊗ bn =

∑
0≤k≤n, k∈Nr

+
akbn−k

is the convolution of an and bn in Nr+. The obvious choice of x1 is x. In this case,
hn(x3,−B) = hn(0,−B) = inE[Zn] is essentially just a moment of a multivariate normal.

The choice of A, B is not unique. We can write C = H ′ΛH, where H ′H = I and
Λ = diag(λ1, . . . , λp) = diag(Λ1, 0,−Λ3), where λ1 ≥ · · · ≥ λp and Λj > 0 for j = 1, 3.
That is, Λ1 consists of the positive eigenvalues of C and −Λ3 consists of the negative
eigenvalues of C. Then the obvious choice of A, B is the minimal choice,

A = H ′diag (Λ1, 0, 0)H, B = H ′diag (0, 0,Λ3)H.(1.5)

If C = 0, that is A = B, then Y +iZ ∼ CNp(0, V ), the complex normal distribution with
complex covariance E[(Y Y ′+ZZ′)] = 2A. Its real moments are all zero: E[(Y +iZ)n] = 0
for n ∈ Np+.

By (1.2) and (1.3) we have the other special cases

hn(x, V ) = E [(x+X)n] if V ≥ 0,(1.6)

= H∗n
(
V −1x, V −1) if V > 0,(1.7)

hn(x,−V ) = E [(x+ iX)n] if V ≥ 0,(1.8)

= Hn
(
V −1x, V −1) if V > 0.(1.9)

Equivalently when V > 0, H∗n(x, V −1) = hn(V x, V ) and Hn(x, V −1) = hn(V x,−V ). So,
the class of functions hn(x,C) includes xn, Hn(x, V ), H∗n(x, V ) as well as the mixed case,
where C has both positive and negative eigenvalues.

Note that for p = 1, n ∈ N+, x ∈ R and N ∼ N(0, 1), hn(x, 1) = E[(x+N)n] = H∗n(x)
and hn(x,−1) = E[(x+ iN)n] = Hn(x), where Hn(x) = Hn(x, 1) and H∗n(x) = H∗n(x, 1)
are the usual univariate Hermite and modified Hermite polynomials. Also

Hn
(
x, σ−2) = σnHn(σx) = σnhn(σx,−1),(1.10)

H∗n
(
x, σ−2) = σnH∗n(σx) = σnhn(σx, 1).(1.11)

We now partition X of (1.1) as
(
X1
X2

)
with Xj ∈ Rpj , so that p1 + p2 = p. We denote

conditional expectation by EX1 [f(X)] = E[f(X)|X1]. Partition V into (Vjk : j, k = 1, 2),
where Vjk is a pj × pk block matrix, and set V2·1 = covar(X2|X1) = V22 − V21V

−1
11 V12 if

p1 > 0, and V2·1 = covar(X2) = V22 if p1 = 0. The latter corresponds to not conditioning.
We assume that V2·1 > 0, that is, X2 is not just a multiple of X1.

Now consider α = (α1, α2) ∈ Rr×p with αj ∈ Rr×pj so that αX =
∑2
j=1 αjXj . We

have the following.

1.2. Theorem. Suppose that Y =
(
Y1
Y2

)
= X + µ ∼ Np(µ, V ) with Yj ∈ Rpj , j = 1, 2.

Partition µ in the same way. Set

δ =
(
α1 + α2V21V

−1
11

)
(Y1 − µ1) , F0 = α2V2·1α

′
2, F = F0 + C.(1.12)
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Then

EY1 [hn (αY,C)] = hn (αµ+ δ, F ) .(1.13)

We now give some special cases with µ = 0, that is Y = X of (1.1), in terms of the
Hermite polynomials Hn, H∗n. Taking C = 0 gives

EX1 [(αX)n] = H∗n
(
F−1
0 δ, F−1

0

)
(1.14)

for F0 > 0, that is, for r ≤ p2 and α2 of rank r.
By (1.6) for C ≥ 0, hn(x,C) = E[(x + NC)n] so that by (1.13), the left hand side of

(1.13) is equal to hn(δ, F ) = E[(δ +NF )n]. So, by (1.7),

EX1
[
H∗n
(
C−1αX,C−1)] = H∗n

(
F−1δ, F−1)(1.15)

for C > 0. By (1.8) for D = −C ≥ 0, hn(x,C) = E[(x + iND)n] so that by (1.13), the
left hand side of (1.13) is equal to hn(δ, F ) = E[(δ + iNG)n] if G = −F = D − F0 ≥ 0.
So, by (1.9),

EX1
[
Hn
(
D−1αX,D−1)] = Hn

(
G−1δ,G−1)(1.16)

for G = D − F0 > 0.
Taking p1 = 0 gives E[hn(αY,C)] = hn(αµ, F ), where F = C + αV22α

′. For example,
taking C > 0, then E[H∗n(C−1αY,C−1)] = H∗n(F−1αµ, F−1).

1.3. Example. Take r = 1 and set β = α′ ∈ Rp and βj = α′j ∈ Rpj . Set v = β′2V2·1β2.
Then by (1.14), (1.15) at C = 1, (1.11), (1.16) at C = −1, and (1.10),

EX1
[(
β′X

)n]
= σnH∗n(δ/σ) for σ2 = v > 0,(1.17)

EX1
[
H∗n
(
β′X

)]
= σnH∗n(δ/σ) for σ2 = 1 + v,(1.18)

EX1
[
Hn
(
β′X

)]
= σnHn(δ/σ) for σ2 = 1− v > 0,(1.19)

= σnH∗n(δ/σ) for σ2 = v − 1 > 0,

= δn for v = 1.

For example, taking p1 = 0 and setting v = β′V β and N ∼ N(0, 1) gives

E
[(
β′X

)n]
= σnE [Nn] for σ2 = v > 0,

E
[
H∗n
(
β′X

)]
= σnE [Nn] for σ2 = 1 + v,

E
[
Hn
(
β′X

)]
= σnE [(iN)n] for σ2 = 1− v > 0,

= σnE [Nn] for σ2 = v − 1 > 0,

= δ0n for v = 1,

where δjk = 1 or 0 for j = k or j 6= k. Consider the standardized bivariate normal,
pj ≡ 1, V =

(
1ρ
ρ1

)
, where |ρ| < 1. Then in (1.17)-(1.19), δ = (β1 + ρβ2)X1 and σ2 is given

by (1 − ρ2)β2
2 , 1 + (1 − ρ2)β2

2 , 1 − (1 − ρ2)β2
2 , respectively. If also β2 = 1 then one can

take σ = ρ in (1.19) since ρN has the same distribution as |ρ|N for N ∼ N(0, 1), giving
EX1 [Hn(β1X1 +X2)] = ρnHn((β1/ρ+ 1)X1).

In the notation of (1.1), we can write NC1 = H ′NL1 , NC3 = H ′NL3 , where L1 =
diag(Λ1, 0, 0) and L3 = diag(0, 0,Λ3). In our result, (1.13), the form of hn(x,C) is
determined by the eigenvalues of C, while the form of hn(δ, F ) is determined by the
eigenvalues of F . We now show the following.

1.4. Theorem. An eigenvalue of F of (1.12) is either an eigenvalue of C or it satisfies

det
(
V −1
2·1 − Jλ

)
= 0,(1.20)

where Jλ = α′2(λIr − C)−1α2.
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In Section 2, we extend our result, (1.13), to products of extended Hermite polyno-
mials. Some conclusions and future work are noted in Section 3. The proofs of all main
results are provided in the appendix.

2. An extension to products

We now give an extension of Theorem 1.2 to products. Suppose that for 1 ≤ k ≤ K,
nk ∈ Nrk+ , tk ∈ Rrk , Ck in Rrk×rk , αk = (αk1, αk2) ∈ Rrk×p, αkj ∈ Rrk×pj .

2.1. Theorem. Suppose that Y =
(
Y1
Y2

)
∼ Np(µ, V ) with Yj ∈ Rpj , j = 1, 2. Partition µ

in the same way. Set δk = (αk1 +αk2V21V
−1
11 )(Y1−µ1), δ̃k = αkµ+δk, δ̃′ = (δ̃′1, . . ., δ̃′K),

n′ = (n1, . . ., nK), γ′ = (α′12, . . ., α′K2), Λ = diag(C1, . . ., CK) and D = Λ + γV2·1γ
′.

Then

EY1

[
K∏

k=1

hnk (αkY,Ck)

]
= hn

(
δ̃, D

)
.(2.1)

2.2. Example. Find an = E[
∏K
k=1Hnk (N)] for N ∼ N(0, 1). So, µ = p1 = 0, p2 = V =

αk = 1, Ck = −1, δ̃ = 0, γ = 1K , the K-vector of ones, D = 1K1′K − IK .
If K = 1 then D = 0 so an = δn0.
If K = 2 then D =

(
01
10

)
and q = t1t2. The coefficient of tn in exp(q) is δn1n2/n1! so that

an = hn(0, D) = δn1n2n1!. So, {Hn(x)/n!1/2} are orthonormal with respect to φ(x), as
is well-known.
If K = 3 then q = t1t2 + t2t3 + t3t1, exp(q) =

∑∞
m1,m2,m3=0 t

n/m! at n1 = m2 + m3,

n2 = m1 +m3, n3 = m1 +m2. Set |n| = ∑3
k=1 nk. So, an = 0 if |n| is odd, while if |n| is

even, then an = n!/m! at 2m1 = n2 +n3−n1, 2m2 = n1 +n3−n2, 2m3 = n1 +n2−n3.
If K = 4 then q =

∑
1≤j<k≤4 tjtk has six terms. Also

exp(q) =

∞∑

m12,...,m34=0

tn/ (m12! · · ·m34!)

at nj =
∑
k 6=jmjk, where mkj = mjk, j = 1, . . . , 4. This gives four equations in six ms,

so we can make m12 and m13 arbitrary, giving

m14 = n1 −m12 −m13, 2m23 = n′2 + n′3 − n′4,
2m24 = n′2 + n′4 − n′3, 2m34 = n′3 + n′4 − n′2,(2.2)

where n′j = nj −m1j . So,

an = n!
∑

m12,m13

1/ [m12! · · ·m34!](2.2) .

For example, take n1 = 1. Then (m12,m13) = (0, 0), (0, 1) or (1, 0). So, setting n23 =
n2 + n3 − n4, n24 = n2 + n4 − n3, n34 = n3 + n4 − n2, Mjk = (njk − 1)/2 and Njk =
(njk + 1)/2, we have an/n! = 1/N23!M24!M34! + 1/M23!N24!M34! + 1/M23!M24!N34!.

2.3. Example. Find an = E[
∏K
k=1H

∗
nk

(N)] for N ∼ N(0, 1). The parameters are as for

Example 2.1 except that Ck = 1, D = 1K1′K + IK and q =
∑K
k=1 t

2
k +

∑
1≤j<k≤K tjtk.

IfK = 1 then q = t2 and exp(q) =
∑∞
m=0 t

2m/m!, giving a2m+1 = 0 and a2m = (2m)!/m!.

If K = 2 then q = t21 + t22 + t1t2 and exp(q) =
∑∞
m1,m2,m3=0 t

n/m! at nj = 2mj + m3.

So, an = 0 if |n| is odd, while if |n| is even and n1 ≤ n2, then

an = n!

min(n1,n2)∑

k=0

1/m1!m2!m3!

∣∣∣∣∣∣
2m1=n1−k, 2m2=n2−k

,
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writing k for m3. For example,

a0n2 = E [H∗n2
(N)] = n2!/ (n2/2)!,

a1n2 = E [NH∗n2
(N)] = n2!/ ([n2 − 1] /2)!, n2 ≥ 1,

a3n2 = E
[(
N3 + 3N

)
H∗n2

(N)
]

= 3!n2! {1/ ([n2 − 1] /2)! + 1/3! ([n2 − 3] /2)!} , n2 ≥ 3.

2.4. Example. Find an = σnE[H∗n1
(N/σ1) Hn2(N/σ2)] = E[hn1(N,σ2

1) hn2(N,−σ2
2)].

So, K = 2, C1 = σ2
1 , C2 = −σ2

2 , D = 121′2 + diag(σ2
1 ,−σ2

2) and q =
∑2
j=1 cjt

2
j + t1t2,

where c1 = (1+σ2
1)/2 and c2 = (1−σ2

2)/2. So, in a derivation similar to that of Example
2.2 for K = 2 one obtains an = 0 for |n| odd, while if |n| is even and n1 ≤ n2, then

an = n!

min(n1,n2)∑

k=0

cm1
1 cm2

2 /m1!m2!m3!

∣∣∣∣∣∣
2m1=n1−k, 2m2=n2−k

.(2.3)

For example,

a0n2 = n2!c
n2/2
2 / (n2/2)!,

a1n2 = n2!c
(n2−1)/2
2 / ([n2 − 1] /2)!, n2 ≥ 1,

a3n2 = 3!n2!
{
c1c

(n2−1)/2
2 / ([n2 − 1] /2)! + c

(n2−3)/2
2 /3! ([n2 − 3] /2)!

}
, n2 ≥ 3.

2.5. Example. Find an = σnE[Hn1(N/σ1) · · ·HnK (N/σK)] = E[hn1(N,C1) · · ·hnK (N,CK)],

where Ck = −σ2
k, µ = 0, V = 1, γ = 1K , D = 1K1′K − diag(σ2

k), q =
∑K
j=1 cjt

2
j +∑

1≤j<k≤K tjtk and ck = (1− σ2
k)/2. So,

exp(q) =
∑

m

K∏

k=1

(
ckt

2
k

)mk /mk!
∑

M

∏

j<k

(tjtk)Mjk /Mjk!, nk = 2mk +
∑

j 6=k
Mjk.

If K = 2 then an = 0 if |n| is odd, while if |n| is even and n1 ≤ n2, then an is given by
(2.3).

By Theorem 2.1, Examples 2.1-2.4 can be extended by (i) replacing N by µ+N ; and
(ii) replacing expectation by conditional expectation.

According to (1.4), the form of hn depends on the positive and negative parts of D,
and these are determined by the positive and negative eigenvalues of D, which we now
obtain. Suppose that x is an eigenvector of D with eigenvalue λ. Then Dx = λx implies
γV2·1γ

′x = (λI − Λ)x. So, either λ is an eigenvalue of Λ, that is an eigenvalue of Ck for
some k ∈ {1, . . . ,K}, or det(λI−Λ) 6= 0 and z = V2·1γ

′x satisfies z = V2·1γ
′(λI−Λ)−1γz,

which implies that

det
(
V −1
2·1 − Jλ

)
= 0,(2.4)

where Jλ =
∑K
k=1 α

′
k2(λIrk − Ck)−1αk2. That is, the r eigenvalues of D are given by

(2.4) and the eigenvalues of {Ck}. The number of roots of (2.4) depends on the number
of distinct {Ck}. We illustrate this with an important example that takes up the rest of
this section.

2.6. Example. Suppose that rk ≡ 1, that is, the arguments of the hnk functions in (2.1)
are all scalar. Consider the case when Ck = −1, 0 or 1. Then

Jλ =

1∑

j=−1

(λ− j)−1 wj ,(2.5)

where wj =
∑
Ck=j

α′k2αk2 ≥ 0 ∈ Rp2×p2 and w =
∑K
k=1 wj > 0, assuming that αk2 6= 0

for k = 1, . . . ,K. (We can always assume this, since if αk2 = 0, then the corresponding
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term in the product on the left hand side of (2.1) can be factored out.) There are a
number of cases to consider when evaluating the roots of (2.4).

Consider the situation, where p2 = 1. Then {wj} are scalar and the equation (2.4) for

the eigenvalues of D of (2.1) becomes the cubic v =
∑1
j=−1(λ− j)−1wj , where v = V −1

2·1 .

The case w−1 > 0 = w0 = w1: The only root is λ = w/v − 1.
The case w0 > 0 = w−1 = w1: The only root is λ = w/v.
The case w1 > 0 = w−1 = w0: The only root is λ = w/v + 1.

The case w−1 > 0, w0 > 0, w1 = 0: There are two roots, λ = (w − v ± ε1/21 )/(2v),
where ε1 = (w − v)2 + 4vw0 > 0. So, one root is positive and the other negative.

The case w−1 > 0, w1 > 0, w0 = 0: There are two roots, λ = (w ± ε1/20 )/(2v), where
ε0 = w2 + 4v(v + w1 − w−1) = (w − 2v)2 + 8vw1 > 0. If v + w1 < w−1 then both roots
are positive. If v + w1 > w−1 then one root is positive and the other negative.

The case w0 > 0, w1 > 0, w−1 = 0: There are two positive roots, λ = (v + w ±
ε
1/2
−1 )/(2v), where ε−1 = (v + w)2 − 4vw0 = (w − v)2 + 4vw1 > 0.

The general case w−1 > 0, w0 > 0, w1 > 0: There are three roots, those of vλ3 −
wλ2 + (w−1 −w1 − v)λ+w0 = 0. So, one or two roots are positive and the other two or
one are negative.

3. Conclusions

We have given new expressions for conditional and unconditional expectations of prod-
ucts of multivariate Hermite polynomials with multivariate normal arguments. This re-
quired development of an extended Hermite polynomial. Some possible applications of
the expressions are noted.

Future work is to extend the results to matric variate Hermite polynomials and com-
plex variate Hermite polynomials. The future work could also consider multivariate
non-normal arguments, matric variate non-normal arguments and complex variate non-
normal arguments.

Appendix: Proofs

Proof of Theorem 1.2: We prove (1.13). We use the well-known representation

X2 = NA +BX1, A = V2·1, B = V21V
−1
11 ,(A.1)

where NA ∼ N(0, A) is independent of X1. (This works since it implies that X2 ∼
N(0, V22), E[X2X

′
1] = V21, and X is normal.) So, for α = (α1, α2), αj ∈ Rr×pj , αX =∑2

j=1 αjXj = δ + α2NA, where δ = (α1 + α2B)X1. (1.13) now follows since the egf of

EY1 [hn(αY,C)] is EY1 [exp (t′αY + t′Ct/2)] = exp [t′(αµ+ δ) + t′Ft/2].
Proof of Theorem 1.1: Using the minimal choice of A, B of (1.5), for t ∈ Rp set
u = Ht so that t = H ′u, t′Ct = u′Λu = u′1Λ1u1 − u′3Λ3u3, where uj = Hjt, partitioning
H ′ as (H ′1H

′
2H
′
3). For any x1 ∈ Rp, set x3 = x− x1,

q1 = t′x1 + u′1Λ1u1/2 = t′x1 + u′V1u/2 = t′x1 + t′C1t/2,

q3 = t′x3 − u′3Λ3u3/2 = t′x3 − u′V3u/2 = t′x3 − t′C3t/2,

say with Cj = H ′jΛjHj ≥ 0. So, exp(q1) is the egf of hn(x1, C1) = E[(x1 + NC1)n]
and exp(q3) is the egf of hn(x3,−C3) = E[(x3 + iNC3)n]. But exp(q1 + q3) is the egf of
hn(x,C). So, we obtain

hn(x,C) =
∑

n1+n3=n

(
n

n1

)
hn1 (x1, C1)hn3 (x3,−C3) ,
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that is, hn(x,C)/n! can be written as (1.4), the convolution of hn(x1, C1)/n and hn(x3,−C3)/n!.
2

Proof of Theorem 1.3: For λ an eigenvalue of F with eigenvector x, Fx = Cx+ α2z,
where z = V2·1α

′
2x ∈ Rp2 . In the special case that α′2x = 0, that is, z = 0 then λ

is an eigenvalue of C with eigenvector x and α′2x = 0, implying p2 constraints on x
so that p2 < r and we can take r − p2 orthogonal solutions for the eigenvalues x from
the nullspace {x : α′2x = 0}. But if z 6= 0 then λx = Fx = Cx + α2z implies that
z = V2·1α

′
2(λIr − C)−1α2z with z 6= 0 so that (1.20) holds. 2

Proof of Theorem 2.1: For A of (A.1), αkY = δ̃k +αk2NA. So, for t′ = (t′1, . . . , t
′
K) ∈

Rr, r =
∑K
k=1 rk, the egf of EY1 [

∏K
k=1 hnk (αkY,Ck)] as a function of (n1, . . . , nK) ∈ Rr

is

EY1

[
exp

{
K∑

k=1

(
t′kαkY + t′kCktk/2

)
}]

= exp(q),(A.2)

where q =
∑K
k=1 qk, qk = t′k δ̃k + t′kDktk/2 and Dk = αk2V2·1α

′
k2 + Ck. The exponent in

the left hand side of (A.2) is

K∑

k=1

[
t′k
(
δ̃k + αk2NA

)
+ t′kCktk/2

]
=

K∑

k=1

[
t′k δ̃k + t′kCktk/2

]
+ u′NA,

where u =
∑K
k=1 α

′
k2tk = γ′t and t′ = (t′1, . . . , t

′
K). So,

q =

K∑

k=1

(
t′k δ̃k + t′kCktk/2

)
+ u′Au/2 = t′δ̃ + t′Dt/2.

This completes the proof. 2
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