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Abstract 

In this study, the first forbidden beta transitions of  
1

2

+
↔

1

2

−
 states for ∆J=0 have been investigated in 

spherical odd mass nuclei. The pn-QRPA model is used with a schematic separable interaction to calculate 
first forbidden transitions by considering the Woods–Saxon potential basis in the Chepurnov 
parameterization. The transition probabilities in this model have been calculated within the ξ-approximation. 
ξ is a dimensionless parameter representing the magnitude of the Coulomb energy and is approximated by 
1.2ZA−1/3 [1]. Logft values calculated of first forbidden transitions are found to be in better agreement with 

measured data. 
 
Keywords: First Forbidden, Beta Transitions 
 
 
1. INTRODUCTION 

 
It is well known that beta decay processes are very important to understand the weak interaction processes 

and the nuclear structure. Although there are many theoretical and experimental studies about the allowed 

transitions in literature scientists have not shown the same interest in forbidden transitions. The studies 

performed recently show that the first-forbidden beta transition process provides useful information in 

checking the validity of theories related to the r-processes and 2 [2-10]. The ground state transitions in 

allowed Gamow-Teller and FF β-decays are studied by Suhonen [11]. Various models are used for the 

calculations of beta decay half-lives. |∆J|=0,2 excited states are calculated dependence of spin-isospin on 

even-even, odd-odd and FF β-decay transitions for [12]. The 0+↔ 0- transitions are studied QRPA model 

for spherical nuclei in the mass range 90-214. [13] and the results were in better agreement with the 

experimental results and previous calculations. In the studies of β-decay the proton-neutron QRPA theory 

has been widely used and in pn-QRPA a quasiparticle basis using pairing interaction is constructed and 

schematic first forbidden (FF) residual interaction is solved using RPA equation [14-19]. Sorensen and 

Halbleib [20] modifying the RPA model for the calculations of relevant transitions developed this model. 

The RPA, QRPA and pn-QRPA models were extended for spherical nuclei [21-29] and deformed nuclei  as 

well by many authors [30-34]. In total decay rates for the calculation of half-lives, the FF transitions plays 

an important role. 

 

The present work aims to study the first-forbidden beta transitions of spherical odd-mass nuclei in ½+↔ ½- 

states for ∆J=0. The rank0 FF transitions are studied by using pn-QRPA in the Woods-Saxon potential with 

the particle-hole term of the effective interactions of the β-decay. 

 

 
2. FORMALISM 
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The first forbidden beta transitions of 
1

2

+
↔

1

2

−
 states for ∆J=0 have been investigated in spherical odd mass 

nuclei. The Woods-Saxon potential with Chepurnov parametrization has been used as a mean field basis in 

numerical calculations. The eigenvalues and eigenfunctions of the Hamiltonian with separable residual GT 

effective interactions in particle-hole (ph) channel were solved within the framework of pn-QRPA model. 

 

The model Hamiltonian which generates the spin-isospin dependent vibrations modes with 𝜆𝜋 =  0−, 1−  
on odd-odd nuclei in quasi boson approximation is given as  

 
�̂� =  �̂�𝑠𝑞𝑝 + ℎ̂𝑝ℎ                                           (1) 

 

The single quasi-particle Hamiltonian of the system is given by 

 

�̂�𝑠𝑞𝑝 =  ∑ 𝜀𝑗𝑟
𝛼𝑗𝑟𝑚𝑟

†
𝑗𝑟

𝛼𝑗𝑟𝑚𝑟(𝜏=𝑝,𝑛)                 (2) 

 

where εjr
 and 𝛼𝑗𝑟𝑚𝑟

†
 (𝛼𝑗𝑟𝑚𝑟

) are the single quasi-particle energy of the nucleons with angular momentum 𝑗𝑟 

and the quasi-particle creation (annihilation) operators, respectively. 
The ℎ̂𝑝ℎ is the spin-isospin effective interaction Hamiltonian which generates 0− , 1− vibration modes in 

particle-hole channel and given as 

 

ℎ̂𝑝ℎ = 2𝜒𝑝ℎ ∑ 𝑇𝜆𝜇
+ 𝑇𝜆𝜇

−
𝜇  ,               𝑇𝜆𝜇

− = (𝑇𝜆𝜇
+ )

+
                            (3) 

 

where  𝑇𝜆𝜇
±   is the first forbidden beta decay operator and 𝜒𝑝ℎ is particle-hole effective interaction constant. 

 

Tλμ
± = {

gV ∑ t±(k)rkY1μ(θk, φk)                                for  dipole interactionsk

gA ∑ t±(k)rk[Y1μ(θk, φk), σ1(k)]
λ
                for spin − dipolek  interactions

          (4) 

 

The beta decay operator in quasiparticle space is written as follows 

 

𝑇𝜆𝜇
+ = ∑ [�̅�𝑝𝑛𝐶𝑛𝑝

+ (𝜆, 𝜇) + (−1)𝜆+𝜇+1𝑏𝑝𝑛𝐶𝑛𝑝(𝜆, −𝜇)]𝑝,𝑛 +  

 

   ∑ [𝑑𝑝𝑛𝐷𝑛𝑝
+ (𝜆, 𝜇) + (−1)𝜆+𝜇�̅�𝑝𝑛𝐷𝑛𝑝(𝜆, −𝜇)]𝑝,𝑛 .                                        (5) 

 

The 𝐶𝑛𝑝
+ (𝜆, 𝜇) and 𝐷𝑛𝑝

+ (𝜆, 𝜇) are the quasi boson operators and given as 

 

𝐶𝑛𝑝
+ (𝜆, 𝜇) = √

2𝜆+1

2𝑗𝑛+1
∑ (−1)𝑗𝑝−𝑚𝑝(𝑗𝑝𝑚𝑝𝜆𝜇/𝑗𝑛𝑚𝑛)𝛼𝑗𝑛𝑚𝑛

+ 𝛼𝑗𝑝−𝑚𝑝

+
𝑚𝑛,𝑚𝑝

             (6) 

𝐷𝑛𝑝
+ (𝜆, 𝜇) = √

2𝜆+1

2𝑗𝑛+1
∑ (𝑗𝑝𝑚𝑝𝜆𝜇/𝑗𝑛𝑚𝑛)𝛼𝑗𝑛𝑚𝑛

+ 𝛼𝑗𝑝𝑚𝑝𝑚𝑛,𝑚𝑝
                           (7) 
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2.1 The pn-QRPA Equation In Even Mass Nuclei 

As the Hamilton operator of even-even mass nuclei is known, it contains the multiplicative parts of the 

effective interaction 𝐶𝑛𝑝(𝜆𝜇) and 𝐶𝑛𝑝
+ (𝜆, 𝜇) operators. Other parts become zero at the end of the 

commutation operations. Thus, the Hamilton operator of even-even mass nuclei is written as 

𝐻0 = 𝐻𝑆𝑄𝑃 + ℎ𝑐𝑐                  (8) 

The charge-exchange interaction forms the excited 𝜆𝑖
− phonon states in neighboring nuclei. The phonon 

operator in pn-QRPA method given as 

 

𝑄𝑖
+(𝜆, 𝜇) = ∑ [r𝑛𝑝

𝑖 𝐶𝑛𝑝
+ (𝜆, 𝜇) − (−1)𝜆+𝜇+1s𝑛𝑝

𝑖 𝐶𝑛𝑝(𝜆, −𝜇)]𝑝,𝑛                 (9) 

 

The excited states 𝜔𝑖 energies and the amplitudes of the r𝑛𝑝
𝑖 , s𝑛𝑝

𝑖  wave functions are found by solving the 

following equation of motion, taking into account the normalization condition: 

 

[𝐻0, 𝑄𝑖
+(𝜆, 𝜇)]|0⟩ = 𝜔𝑖𝑄𝑖

+(𝜆, 𝜇)|0⟩                (10) 

 

The beta matrix elements of even-even mass nuclei from ground state to neighbour nuclei 𝜆𝑖
− excited states 

are given as follows 

𝑀𝑖
±(0+ → 𝜆𝑖

−) = ⟨0|[𝑄𝑖(𝜆, 𝜇), Tλμ
± ]|0⟩ {

∑ (�̅�𝑝𝑛r𝑛𝑝
𝑖 + 𝑏𝑝𝑛s𝑛𝑝

𝑖 )𝑝𝑛

(−1)𝜆+𝜇+1 ∑ (𝑏𝑝𝑛r𝑛𝑝
𝑖 + �̅�𝑝𝑛s𝑛𝑝

𝑖 )𝑝𝑛

        (11) 

 

2.2 The pn-QRPA Equation In Odd Mass Nuclei 

 

The first term of Tλμ
±  operator (belonging to C) are given as follows 

 

𝑇𝜆𝜇
+ (𝐶) = ∑ [𝑀𝑖

+(0+ → 𝜆𝑖
−)𝑄𝑖

+(𝜆, 𝜇) + 𝑀𝑖
−(0+ → 𝜆𝑖

−)𝑄𝑖(𝜆, 𝜇)]𝑖 ,          (12a) 

𝑇𝜆𝜇
− (𝐶) = ∑ [𝑀𝑖

−(0+ → 𝜆𝑖
−)𝑄𝑖

+(𝜆, 𝜇) + 𝑀𝑖
+(0+ → 𝜆𝑖

−)𝑄𝑖(𝜆, 𝜇)]𝑖             (12b) 

 

Firstly, the nucleus consisting of odd-neutron, even-proton investigated. The wavefunction of this nuclei is 

composed of one-quasiparticle + one quasi particle phonon terms in the pn-QRPA method and are given as 

follows 

|𝑗𝑘𝑚𝑘⟩ = Ω𝑗𝑘𝑚𝑘

𝑗+
= 𝑁𝑗𝑘

𝑗
𝛼𝑗𝑘𝑚𝑘

+ + ∑ R𝑗𝑖
𝑘𝜈′

𝑗′𝜈,𝑚′𝜈,𝑖,𝜇
(𝑗′

𝜈
𝑚′𝜈𝜆𝜇/𝑗𝑘𝑚𝑘)𝑄𝑖

+(𝜆, 𝜇)𝛼𝑗′𝜈𝑚′𝜈
+                       (13) 

 

The Hamilton operator of even mass nuclei and the effective interactions in the particle-hole channel are 

given 
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𝐻 = 𝐻0 + ℎ𝐶𝐷,                (14) 

 

ℎ𝐶𝐷 = 2𝜒𝑝ℎ ∑ [𝑇𝜆𝜇
+ (𝐶)𝑇𝜆𝜇

− (𝐷) + 𝑇𝜆𝜇
+ (𝐷)𝑇𝜆𝜇

− (𝐶)]𝜇              (15) 

 

The equation of motion the pn-QRPA may be written as follow 

 

[H, Ω𝑗𝑘𝑚𝑘

𝑗+
] = 𝑊𝑗𝑘

𝑗
Ω𝑗𝑘𝑚𝑘

𝑗+
                (16) 

 

The secular equation for the 
k

nω  energies is found as follows 

 

 

𝑊𝑗𝑘

𝑗
− 𝜀𝑗𝑘

=
2𝜆+1

2𝑗𝑘+1
∑

{2𝜒𝑝ℎ[𝑀𝑖
+(0+→𝜆𝑖

−)𝑑𝜈𝑘+𝑀𝑖
−(0+→𝜆𝑖

−)�̅�𝜈𝑘]}
2

𝑊
𝑗𝑘

𝑗
−𝜔𝑖−𝜀𝑗𝜈

𝑖,𝑗𝜈
             (17) 

 

also, quasiparticle + phonon amplitudes for each energy value are found by the following 

 

R𝑗𝑖
𝑘𝜈 = 2𝜒𝑝ℎ

2𝜆+1

2𝑗𝑘+1

𝑀𝑖
+(0+→𝜆𝑖

−)𝑑𝜈𝑘+𝑀𝑖
−(0+→𝜆𝑖

−)�̅�𝜈𝑘

𝑊
𝑗𝑘

𝑗
−𝜔𝑖−𝜀𝑗𝜈

𝑁𝑗𝑘

𝑗
              (18) 

 

And 

(𝑁𝑗𝑘

𝑗
)

2

+ ∑ (R𝑗𝑖
𝑘𝜈)

2
𝑖,𝑗𝜈

= 1                 (19) 

 

2.3 One Proton State 

One particle and one hole nuclei allow of the simplest possible theoretical description of their states. The 

structure of one-particle nuclei within the simple mean field approximation is the following. One-proton 

states |〉 and one-neutron states |𝑘〉 are described as  

 

|〉 = C
†|core〉,       |𝑘〉 = Ck

†|core〉                        (20) 

 
where |core〉 is the core with its Fermi level at some magic number. In one proton state are done the k↔ν 

transformation for all of above equations.  
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The negative beta decay transition matrix element 
n

νν

βn

kk mjmj 


 (state non-changing the 

number of pair) from a neutron state 
kkmj  to proton state ννmj  are calculated as follow  

 

⟨⟨𝑗𝜈𝑚𝜈|[Ω𝑗𝜈𝑚𝜈

𝑗
, 𝑇𝜆𝜇

− ]|𝑗𝑘𝑚𝑘⟩ =
<𝑗𝜈‖𝑇𝜆

−‖𝑗𝑘>

√2𝑗𝜈+1
〈𝑗𝑘𝑚𝑘𝜆𝜇/𝑗𝜈𝑚𝜈〉             (21) 

 

and the reduced matrix element is written  

 

< 𝑗𝜈‖𝑇𝜆
−‖𝑗𝑘 > = 𝑁𝑁 + 𝑁𝑅 + 𝑅𝑁 + 𝑅𝑅.                         (22) 

 
The reduced matrix element is composed of four terms and every term was separately considered. These 

terms are given as 

 

RR = Njk

j
Njν

j
√

(2λ+1)(2jν+1)

2jk+1
dνk         (23a) 

𝑁𝑅 = 𝑁𝑗𝜈

𝑗
√2𝑗𝜈 + 1 ∑ R𝑗𝑖

𝑘𝜈
𝑖,𝜈 𝑀𝑖

+(0+ → 𝜆𝑖
−)        (23b) 

𝑅𝑁 = (−1)𝑗𝜈−𝑗𝑘+𝜆+1𝑁𝑗𝑘

𝑗 2𝑗𝜈+1

√2𝑗𝑘+1
∑ R𝑗𝑖

𝜈𝑘
𝑖,𝑘 (−1)𝜆+𝜇+1𝑀𝑖

−(0+ → 𝜆𝑖
−)     (23c) 

𝑅𝑅 = 𝑁𝑗𝜈

𝑗
√2𝑗𝜈 + 1 ∑ (−1)𝑗𝜈+𝑗′𝑘+𝜆√(2𝜆 + 1)(2𝑗′

𝑘
+ 1)(2𝑗𝜈 + 1)R𝑗𝑖

𝑘𝜈′
𝑖,𝜈′,𝑘′ R𝑗𝑖

𝜈𝑘′�̅�𝜈′𝑘′ (
𝑗′𝑘 𝜆  𝑗𝜈

𝑗𝑘  𝜆   𝑗′𝜈
)  (23d) 

 

The beta decay transition matrix element 
n

νν

βn

kk mjmj 


 (state changing the number of pair) for 

an odd neutron state kkmj  changing the number of pair are done the dνk ↔ d̅νk and Mi
+(0+ → λi

−) ↔

Mi
−(0+ → λi

−) transformations in the above equations. 
 

2.4 Investigation Of The Relativistic Moment Matrix Elements  

The relativistic beta moment matrix elements has an important role when the non relativistic beta moment 

matrix elements is small, depending on microscopic structure of the states. The relativistic beta moment 

matrix element for the 0− ↔ 0+ and 1− ↔ 0+ transitions have been investigated. These matrix elements 

are given as follows [1] 

 

𝑀(𝜌𝐴, 𝜆 = 0) =
1

√4𝜋

𝑔𝐴

𝑐
∑ 𝑡−(�⃗�(𝑘) ∙ �⃗�(𝑘))𝑘 ,                        (24a) 

𝑀(𝜌𝐴, 𝜆 = 0) =
1

√4𝜋

𝑔𝐴

𝑚𝑐
∑ 𝑡−(�⃗�(𝑘) ∙ 𝑝(𝑘))𝑘                         (24b) 

𝑀∓(𝑗𝑣, 𝜅 = 0, 𝜆 = 1, 𝜇) =  
𝑔𝐴

√4𝜋𝑐
∑ 𝑡∓(𝑘)𝑟𝑘(𝜗𝑘)1𝜇 ,𝑘                     (25a) 

 

𝑀∓(𝜌𝑣 , 𝜆 = 1, 𝜇) =  𝑔𝐴 ∑ 𝑡∓(𝑘)𝑟𝑘𝑌1𝜇(𝑟𝑘),𝑘                          (25b) 
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𝑀∓(𝑗𝑣 , 𝜅 = 1, 𝜆 = 1, 𝜇) =  𝑔𝐴 ∑ 𝑡∓(𝑘)𝑟𝑘{𝑌1(𝑟𝑘)𝜎𝑘}1𝜇 ,𝑘                        (25c) 

 

The reduced matrix elements are needed to calculate the beta transition matrix element (<𝑗2‖𝑝‖𝑗1 >). But, 

Pyatov et al. used a different approach. Using the following commutation condition, the momentum reduced 

matrix elements can be expressed in terms of the reduced matrix elements of the dipole moment [35]. 

This commutation is written  

 

[𝐻, �⃗⃗�] = −
𝑖ℏ

𝑚𝐴
�⃗⃗�                 (26) 

 

also, the matrix form of this commutation is given as 

 

(𝑗2‖�⃗�‖𝑗1) = 𝑖
𝑚

ℏ
√

4𝜋

3
(𝜀𝑗2

− 𝜀𝑗1
)(𝑗2‖𝑟𝑌1‖𝑗1)             (27) 

 

and this equation can be written with pairing interaction terms 

 

(𝑢𝑗2
𝑣𝑗1

− 𝑢𝑗1
𝑣𝑗2

)(𝑗2‖𝑝‖𝑗1) = 𝑖
𝑚

ℏ
√

4𝜋

3
(𝐸𝑗1

+ 𝐸𝑗2
)(𝑢𝑗2

𝑣𝑗1
+ 𝑢𝑗1

𝑣𝑗2
)(𝑗2‖𝑟𝑌1‖𝑗1)           (28) 

 

where A, n, 𝜀𝑗, Ej, u and v are the atomic mass of nucleus, the mass of nucleon, the single particle energy, 

the one quasi particle u and v energies, the Bogoliubov coefficient, respectively. 

The transition probabilities 𝐵(𝜆𝜋 =  0−, 1−;  𝛽∓) are calculated by  

 

𝐵(𝜆𝜋 =  0−, 𝛽∓) =  |〈0𝑖
− ‖𝑀

𝛽∓
0 ‖ 0+〉|

2
, 

 

𝑀
𝛽∓
0 =  ∓𝑀∓(𝜌𝐴, 𝜆 = 0) − 𝑖

𝑚𝑒𝑐

ℏ
𝜉𝑀∓(𝜌𝐴, 𝜅 = 1, 𝜆 = 0)                       (29) 

 

𝐵(𝜆𝜋 =  1−, 𝛽∓) =  |〈1𝑖
− ‖𝑀

𝛽∓
1 ‖ 0+〉|

2
 

 

𝑀
𝛽∓
1 =  𝑀∓(𝑗𝑣, 𝜅 = 0, 𝜆 = 1, 𝜇) ± 𝑖

𝑚𝑒𝑐

√3ℏ
𝑀∓(𝜌𝐴, 𝜆 = 1, 𝜇) + 

𝑖√
2

3

𝑚𝑒𝑐

ℏ
𝜉𝑀∓(𝑗𝐴, 𝜅 = 1, 𝜆 = 1, 𝜇)                                               (30) 

 
In eqs. (29) and (30), the upper and lower signs refer to 𝛽−and 𝛽+decays, respectively 
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The ft values are given by the equation 

 

(𝑓t)𝛽∓ =  
𝐷

(
𝑔𝐴
𝑔𝑣

)
2

 4 𝜋𝐵(𝐼𝑖→𝐼𝑓,𝛽∓)
                         (31) 

 
where  

 

𝐷 =  
2𝜋3ℏ2𝑙𝑛2

𝑔𝑣
2𝑚𝑒

5𝑐4
= 6250𝑠𝑒𝑐.           

𝑔𝐴

𝑔𝑣
=  −1.254 

 
 

3. RESULTS AND CONCLUSIONS 
 

The corresponding life-times for the first-forbidden beta decay of some odd-mass spherical nuclei are 

obtained within the framework of pn-QRPA (WS) with a separable residual schematic particle-hole 

interaction. The logft values of beta decay transitions have been calculated for the states of 𝜒𝑝𝑝 = 0. The 

pairing correlation constants were taken a 𝐶𝑝 = 𝐶𝑛 = 12 √𝐴⁄ . The strength parameters of the effective 

interaction are 𝜒𝑟𝑎𝑛𝑘0 = 30𝐴−5/3𝑀𝑒𝑉𝑓𝑚−2 and 𝜒𝑟𝑎𝑛𝑘1 = 55𝐴−5/3𝑀𝑒𝑉𝑓𝑚−2 for rank0 and rank1, 

respectively. The relativistic beta decay matrix elements have been calculated without any assumption. The 

calculated results are compared with the other calculations and available experimental data. The first 

forbidden energy values (i) in intermediate nuclei for dipole and spin-dipole transitions and the FF β-decay 

calculated logft values are given in table 1. As seen from the table, the calculated theoretical logft values 

are closer to the experimental data. 

 

Table 1. First Forbidden Beta Transitions of 1/2+ → 1/2-  states for ∆J=0 in some odd mass nuclei. The 

experimental values are taken from B. Singh et al. [36]. The E,  and i are used in the MeV unit. 

Transitions 

Parent Daughter States 

n→p 

 

exp. 

logft 

exp. 

0-   (SD) 1- (D) 1- (SD) 

E J π E  J π i logft i logft i logft 

𝑆𝑟5738
95 → 𝑌5639

95  0 ½+ 0 ½- 3001→2101 6.08 6.16 5.93 6.01 6.12 6.55 6.01 6.44 

𝐴𝑔6447
111 → 𝐶𝑑6348

111  0 ½- 0 ½+ 2101→3001 1.03 7.3 1.07 6.22 

1.07 6.40 1.06 5.92 

4.53 7.45 4.53 6.92 

𝐼𝑛6649
115 → 𝑆𝑛6550

115  0.32 ½- 0 ½+ 2101→3001 0.49 6.7 1.27 6.01 1.25 6.17 1.59 5.69 

𝐼𝑛6849
117 → 𝑆𝑛6750

117  0.31 ½- 0 ½+ 2101→3001 1.45 6.71 1.13 5.80 1.13 5.97 

1.11 5.49 

3.47 6.64 

𝐼𝑛7249
121 → 𝑆𝑛7150

121  0.31 ½- 0 ½+ 2101→3001 3.36 6.22 5.77 5.29 3.36 5.96 3.31 6.82 
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