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Abstract: The thermodynamic and transport properties of gases confined at the nano scale are considerably 

different than those at the macro scale. At the nano scale, quantum size effects (QSE) become important and 

changes the behavior of gases. In this study, the diffusion coefficients of monatomic Fermi and Bose gases are 

analytically derived by considering QSE. The influences of QSE and quantum degeneracy on the diffusion 

coefficients are examined separately to analyze these effects individually. The variations of the ratio of diffusion 

coefficients of He3 and He4 gases with the concentration of He3 are analyzed for both low and high density 

conditions. 
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1. Introduction 
There has been a great deal of interest in understanding 

the electric, optic, thermodynamic and transport properties 

of nano scale systems in recent years. In these systems, size 

induced quantum confinement plays an important role 

affecting electron transport in thin films (Trivedi & 

Ashcroft, 1988) and metallic nano wires (Liu, Chien & 

Searson, 1998; Arora, 1981; Barati & Sadeghi, 2001), the 

transport properties of gases and water in carbon nano tubes 

(Jakobtorweihen, Keil & Smith, 2006; Skoulidas, 

Ackerman, Johnson & Sholl, 2002; Striole, 2006), the 

density distributions of ideal gases (Sisman, Ozturk & Firat, 

2007), the optical properties of small metals (Oleshko 2008; 

Wood & Ashcroft, 1982), the thermodynamic properties of 

gases confined in nano structures (Firat & Sisman, 2009) 

and the transport properties of gases in nano channels 

(Ozturk & Sisman, 2009). 

At the nano scale, the wave character of particles 

becomes important and modifies some fundamental 

quantities such as the probability density, the momentum 

components and the momentum spectrum of the particles. 

Quantum size effects (QSE) arise due to these 

modifications. Furthermore, in statistical mechanics, the 

infinite volume approximation is often used and infinite 

sums are replaced by integrals. However, when the size of 

the domain is scaled down to the nanometer, the thermal de 

Broglie wavelength of particles becomes comparable with 

the dimensions of the domain. In this case, infinite sums 

cannot be replaced by integrals and some more precise 

formulas, like Poisson’s formula, must be used. In this case, 

results show that the shape and size of the domain affect the 

transport and thermodynamics properties of the system. 

Finite size effects on the thermodynamic properties of ideal 

Maxwellian and quantum gases have been examined in the 

literature (Sisman 2004; Dai & Xie, 2004, Molina, 1996; 

Pathria, 1998). 

The classical and quantum mechanical descriptions use 

the particle and wave character of matter, respectively. 

There are some differences between these two viewpoints 

and the classical results differ considerably from those 

obtained by using quantum mechanics at the nano scale. 

From the classical viewpoint, the probability density of 

particles confined in a domain is constant. From the 

quantum mechanical viewpoint, however, the probability 

density is not homogeneous even at thermodynamic 

equilibrium and particle density goes to zero near the 

boundaries if the boundaries are impenetrable. In other 

words, due to the wave character of matter, the particle 

feels the boundaries when the distance between the particle 

and the boundary is on the order of the thermal de Broglie 

wave length. This behavior can also be modeled by 

introducing an effective quantum potential which keeps the 

particle away from the boundaries (Ozturk & Sisman, 

2009). In the absence of an external potential field, 

chemical and effective quantum potentials together affect 

the particle distribution. In the inner part of the domain, the 

effective quantum potential is negligible even though it is 

very high near the boundaries. The inhomogeneous density 

region near the boundaries has been called a quantum 

boundary layer (Sisman, Ozturk & Firat, 2007) whose 

thickness has been found independent of the domain shape 

for an ideal Maxwellian gas (Firat & Sisman, 2009). 

In this study, the diffusion coefficients of monatomic 

Fermi and Bose gases in a rectangular transport domain are 

analytically derived by considering QSE. To solve the 

problem analytically, mixtures of ideal monatomic gases 

with different concentrations of He3 and He4 confined in 

large containers connected with a rectangular nano channel 

is considered. In the transport direction, the nano channel is 

assumed to be much longer than the thermal de Broglie 

wave length and the mean free path of the gas particles. 

Thus, QSE can be neglected only in the transport direction. 

The diffusion process inside the channel is supposed to be 

carried out at constant temperature and pressure. The 

particle flux due to the density gradient at constant 

temperature and pressure is derived for Fermi and Bose 

gases by considering QSE. It is shown how the shape and 

size of the transport domain affect the diffusion process at 

the nano scale and how this behavior can in particular be 

used to enhance the isotropic enrichment for light elements. 
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2. Derivation of diffusion coefficient  

The equilibrium distribution function of Fermi and Bose 

gases can be written in a closed form as 
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where w  and w  are the energy eigenvalue and the wave 

eigenfunction of a particle in quantum state w, respectively, 
s  is the chemical potential of species s (s=He4, He3), bk  

is Boltzmann’s constant, T  is the temperature and the upper 

(lower) sign is used for a Fermi (Bose) gas. By considering 

the rectangular geometry and infinite potential 

representation for the boundaries, eigenvalues and 

wavefunctions are obtained by solving the Schrödinger 

equation. Therefore, Tkbw in Eq.(1) is written as 
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where 11 LLc , 22 LLc , 33 LLc , the length 

TkmhL b
s

c 8  is one half of the most probable de 

Broglie wavelength of the particles, h is Planck’s constant, 
sm  is the rest mass of a gas particle of specie s , 

and 321  and, LLL  are the sizes of the rectangular domain. 

By introducing an effective quantum potential, the quantum 

mechanical probability density, 
2

)(x , is replaced by the 

classical probability density V/1 . Thus the equilibrium 

distribution function is expressed as  
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where
sss

q   and 
s

  is the effective quantum 

potential (Ozturk & Sisman, 2009). Under the relaxation 

time approximation for the steady state case, the particle 

flux in direction 1 is given by 
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where 1v is the velocity of the particle in direction 1 and 

 is the relaxation time. Since the sizes of the domain in the 

transverse directions are much smaller than the mean free 

path of the particles, the relaxation time is determined by 

vLg  where gL  is the geometric mean free path of the 

particles defined in terms of the volume V and surface area 

A, i.e., AVLg /2 . If Eq. (2) and Eq. (3) are used in Eq. 

(4) and the summation in Eq. (4) is calculated with the 

Poisson summation formula, the diffusive particle flux is 

derived as 
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where sc  is the concentration of the species s defined by 

nnc s
s  , sn and n  are the species and total number 

density of particles, respectively, and Li is the 

polylogarithm function with an exponential argument 

 Tkb
s
qexp . The details of the non-equilibrium 

distribution function in terms of driving forces are given in 

reference (Ozturk & Sisman, 2009). It should be noted that 

1
s

sc  and the chemical potentials of He3 and He4 can 

be expressed in terms of the He3 concentration 3Hec  and 

the total density n,  ncHeHe
q ,33  and  ncHeHe

q ,1 34  . By 

using Eq.(5), the normalized diffusion coefficient of species 

s is written as 
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The normalization is done by dividing the diffusion 

coefficient by 

Tk

TknL

b

bg
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4
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Here, the mixture consists of He3 and He4 gases which 

obey Fermi-Dirac and Bose-Einstein statistics, respectively. 

If the first and second brackets of Eq. (6) are represented by 

QD  and SE , respectively, the dimensionless ratio of the 

diffusion coefficients of He3 to He4 is obtained as 
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Eq.(7) can be rewritten as 
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where 34
ˆ

HeHecl mmD  , 43
ˆ

HeHeQD QDQDD   and 

43
ˆ

HeHeSE SESED  . Therefore, clD̂ , QDD̂  and SED̂  

represent the influences of mass, degeneracy and size 

effects on diffusion, respectively. Before examining the 

variation of QDD̂  and SED̂  versus 
3Hec  and n, it is better to 

define the dimensionless total number density of particles 

as qnnn ~  where nq is the quantum density given by 

31 thqn   and  cth L2 . During the calculations, the 

relation between the alpha values of He3 and He4 is used 

and is given by  
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3. Results 

Figure 1 shows the variation of the influence of weak 

quantum degeneracy on the diffusion coefficients ratio at 

low density conditions ( 1.0~ n ) where Maxwellian 

statistics is valid. It seems that the diffusion coefficient of 

He3 increases more than that of He4 with increasing values 

of 3Hec . Chemical potential of He3 increases with 

increasing He3 concentration and this causes a linear 

increment of QDD̂  since QDD̂  linearly depend on density at 

Maxwellian limit. The opposite behaviour is seen in Figure 

2 for high density conditions ( 2~ n ). Diffusion ability of 

He3 atoms decreases with increasing degeneracy. 

Therefore, QDD̂  is getting smaller values for higher He3 

concentrations. It is seen that the variation of QDD̂  with 

3Hec  becomes stronger for higher values of the total 

density.  
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Figure 1. Variation of QDD̂  vs 3Hec  for 1.0~ n . 
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Figure 2. Variation of QDD̂  vs 
3Hec  for 2~ n . 

 

The influence of QSE on the diffusion coefficient ratio 

at low density conditions ( 1.0~ n ) is shown in Figure 3 

for 2.03
3

3
2  HeHe  . It is seen that the ratio is nearly 

constant, at 0.99. On the other hand, in Figure 4, the 

variation of SED̂  for high density conditions ( 2~ n ) is 

much greater than that in Figure 3. The de Broglie wave 

length decreases with increasing 
3Hec  due to Fermi 

degeneration and the influence of QSE on the diffusion 

coefficient ratio decreases. Therefore SED̂  goes to unity 

with increasing 3Hec .  

In the Maxwell limit, the ratio of the polylogarithm 

functions in Eq. (6) goes to unity. Substituting Eq. (9) into 

Eq.(6) and using 4343 HeHe mm , QDD̂  and SED̂  

simplify to 1ˆ QDD  and  
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where 33
3

3
2

HeHeHe    is used for simplicity. For 

2.03 He , 9901.0ˆ SED  which agrees with Figure 3. 
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Figure 3. Variation of SED̂  vs to 3Hec  for 1.0~ n  and 
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4. Conclusion 

 Figure 3 and Figure 4 show that SED̂  is different than 

unity especially for high density condition. It means that 

the diffusion coefficients of He3 and He4 are different due 

to QSE. QSE depends on the de Broglie wave length which 

is inversely proportional to the square root of particle mass. 

Therefore, QSE in the diffusion process can be used for the 

isotropic enrichment of especially light elements and 

supplements the classical method based on the mass 

dependency of diffusion coefficients. Furthermore,  

Figure 1 and Figure 2 show that the diffusion coefficients 

of He3 and He4 are different also due to quantum 

degeneracy. This difference becomes higher especially 
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when the total density is high and He3 concentration is 

low. Therefore, the influence of quantum degeneracy on 

the diffusion process can also be used for isotropic 

enrichment. The quantum degeneracy effect on diffusion 

provides a more effective way for the separation of 

isotopes. 
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Nomenclature 

A   area 
sc   concentration of species s 

D̂   dimensionless ratio of the diffusion coefficient 

   of He3 and He4 

sD  normalized diffusion coefficient for species s 

sf0  equilibrium distribution function for species s 

h   Planck’s constant 

kji ,,  integer numbers run from one to infinity 

sJ   particle flux for species s 

bk   Boltzmann’s constant 

iL   size of the rectangular domain in direction i 

cL   one half of the most probable de Broglie 

   wavelength 

gL   geometric mean free path 

Li   polylogarithm function 
sm  rest mass of a gas particle of species s 

n   total number density of particles  

sn   number density of particles for species s 

qn   quantum density 

T   temperature 

v   velocity 

V   volume 

 

Greek symbols 

   LLc  

w   energy eigenvalue in quantum state w  

th  thermal de Broglie wavelength 

   relaxation time 
s   chemical potential for species s 

s   effective quantum potential for species s 

w  wave eigenfunction in quantum state w  

 

References: 

Arora, V. K., (1981). “Quantum Size Effects in Thin-Wire 

Transport”, Physical Review B, 23(10), 5611-5612. 

Barati, M. and Sadeghi, E., (2001). “Study of Ordinary 

Size Effect in the Electrical Conductivity of Bi 

Nanowires”, Nanotechnology, 12, 277-280. 

Dai, W. S. and Xie, M., (2004). “Geometry Effects in 

Confined Space”, Physical Review E, 70, 016103. 

Firat, C. and Sisman, A., (2009). “Universality of the 

Quantum Boundary Layer for a Maxwellian Gas”, 

Physica Scripta, 79(6), 065002. 

Jakobtorweihen, S., Keil, F. J., and Smit, B., (2006). 

“Temperature and Size Effects on Diffusion in Carbon 

Nanotube”, Journal of Physical Chemistry B, 110, 

16336-16336. 

Liu, K., Chien, C. L. and Searson, P. C., (1998). “Finite 

Size Effects in Bismuth Nanowires”, Physical Review 

B, 58(22), 1468114684. 

Molina, M. I., (1996). “Ideal Gas in a Finite Domain”, 

American Journal of Physics, 64(4), 503-505. 

Oleshko, V. P., (2008). “Size Confinement Effects on 

Electronic and Optical Properties of Silver Halide 

Nanocrystals as Probed by Cryo-EFTEM and EELS”, 

Plasmonics, 3, 41-46. 

Ozturk, Z. F. and Sisman, A., (2009). “Quantum Size 

Effects on the Thermal and Potential Conductivities of 

Ideal Gases”, Physica Scripta, 80(6), 065402. 

Pathria, R. K., (1998). “An Ideal Quantum Gas in a Finite-

Sized Container”, American Journal of Physics, 66(12), 

1080-1085. 

Sisman, A., (2004). “Surface Dependency in 

Thermodynamics of Ideal Gases”, Journal of Physics: 

Math. and Gen., 37, 11353-11361. 

Sisman, A., Ozturk, Z. F. and Firat C., (2007). “Quantum 

Boundary Layer: A Non-Uniform Density Distribution 

of an Ideal Gas in Thermodynamic Equilibrium”, 

Physics Letters A, 362(1), 16-20. 

Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. and 

Sholl, D. S., (2002). “Rapid Transport of Gases in 

Carbon Nanotubes”, Physical Review Letters, 89(18), 

185901. 

Striole, A., (2006). “The Mechanism of Water Diffusion in 

Narrow Carbon Nanotubes”, Nano Letters, 6(4), 633-

639. 

Trivedi, N. and Ashcroft, N. W., (1988). “Quantum Size 

Effects in Transport Properties of Metallic Films”, 

Physical Review B, 38(17), 12298-12309. 

Wood, D. M. and Ashcroft, N. W., (1982). “Quantum Size 

Effects in the Optical Properties of Small Metallic 

Particles”, Physical Review B, 25(10), 6255-6274.

 


