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Abstract 

 

The thermodynamic behavior of gases confined in nano structures is considerably different than those in macro ones 

due to the effects of both particle-wall interactions and the wave character of particles. The homogeneous density 

distribution of a gas at thermodynamic equilibrium is disturbed by these effects. Because of particle-wall 

interactions, the local density of a gas changes drastically near the domain boundaries. Also, the wave character of 

the particles causes an inhomogeneous density distribution, especially near the boundaries. Consequently, the 

apparent density (number of particles over the domain volume) is different than the real one. All the density-

dependent thermodynamic properties are affected by the inhomogeneity in the density distribution. Therefore, it is 

important to consider these effects on local density to analyze the thermodynamic behaviors of gases confined in 

nano structures. The detailed analysis of these effects on local density also gives a base of knowledge for the 

experimental verification of quantum size effects on local density due to the wave character of particles. In this 

study, the density distributions of classical (Maxwellian) and quantum (both Fermi and Bose) gases are calculated 

and investigated by considering both particle-wall interactions and quantum size effects. The results can be used for 

experimental verification of quantum size effects on gas density as well as the modeling of nano heat engines. 
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1. Introduction 

Today, especially in parallel to progress in 

semiconductor technology, the development of 

nanotechnology makes the mechanical systems and 

structures at the micro/nano scale possible. Mechanical 

structures at the micro/nano scale such as gas turbines, 

pumps, mixers, heat exchangers, valves, etc., bring the 

following topics into consideration: how do the 

thermodynamic properties of gases at the nano scale differ, 

how  can they be modeled, how can one make use of these 

differences, and how new devices and technologies can be 

developed at this scale. In this perspective, the subject of 

quantum size effects (QSE) on the thermodynamics of 

gases at the micro/nano scale is a new research area and has 

many potential applications from the technologies of 

genetics, space, and energy to military ones (Kang, Hwang, 

Lee, & Lee, 2004; Kang & Hwang, 2004; Moriarty, 2001; 

Terrones, Kamalakaran, Seeger, & Rühle, 2000; Cumings 

& Zettl, 2000; Hoummady & Fujita, 1999; Lijima & 

Ichihashi, 1993; Lijima, 1991). 

At the nano scale, the thermodynamic properties (TP) of 

gases differ from those at macro scales. One of the reasons for 

this difference is the QSE, which become important when the 

thermal de Broglie wavelength of particles ( T ) is not 

negligible in comparison with the characteristic length of the 

system (L=V/A, V volume, A surface area). In such a case, the 

continuum approximation for the energy eigenvalues of 

particles becomes invalid and the discrete nature of energy 

eigenvalues causes QSE, which are noticeable at the nano 

scale. QSE make the thermodynamic state functions depend on 

the geometry (shape) and size of the system, and QSE causes 

some new and interesting behaviors, which are not observed at 

the macro scale. Some of them are anisotropic gas pressure, 

gas diffusion due to size and geometry differences, thermosize 

effects like thermoelectric effects and the disappearance of the 

additivity of extensive quantities (Molina, 1996; Gutierrez & 

Yanez, 1997; Pathria, 1998; Dai & Xie, 2003; Sisman & 

Müller, 2004; Dai & Xie, 2004; Sisman, 2004; Pang, Dai, 

& Xie, 2006). 

The homogeneous density distribution of a gas at 

thermodynamic equilibrium is disturbed by the wave 

character of particles. All the density dependent 

thermodynamic properties are affected by the 

inhomogeneity in the density distribution (Sisman, Ozturk, 

& Firat, 2007; Firat, Sisman & Ozturk, 2010; Firat & 

Sisman, 2009). 

The density distribution is disturbed also by particle-

wall interactions. The interactions occurring between the 

gas particles and the particles of the walls cause local 

density changes near the boundaries and, therefore, another 

size effect appears besides the quantum size effects. The 

modeling of the change in local density due to particle-wall 

interactions as well as the wave character of particles 

allows one to distinguish these different effects on the 

density distribution from each other. Therefore, model 

results provide a basis for an experimental verification of 

quantum size effects on the thermodynamic properties of 

gases at the nano scale. In this study, for this purpose, the 

local density changes in both classical (Maxwellian) and 

quantum (Fermi and Bose) gases are calculated and 

examined by considering particle-wall interactions and 

QSE. To consider QSE, energy eigenvalues and 

eigenfunctions of particles are obtained by solving the 

Schrödinger equation. For different temperatures, local 

density changes due to only particle-wall interactions are 
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compared to the density changes due to both QSE and 

particle-wall interactions. 

The common function used for the interaction potential 

for particle-wall interactions is the Lennard-Jones, LJ (12- 

6), potential (Hirschfelder, Curtiss & Bird, 1954; 

Israelachvili, 1992). Therefore, in this study, the LJ (12-6) 

potential is used for the calculations. Here, the local density 

distribution of a gas (e.g., He) confined in a rectangular box 

with wall of, e.g., Si, and having dimensions of Lx, Ly and 

Lz is investigated. The wall-gas interaction is represented 

by the LJ. In a rectangular domain, 3D density distribution 

is simply represented here by the production of 1D result 

for each direction. Therefore, in this study, a one-

dimensional problem is discussed. One-dimensional 

problems are not only simplified problems. In fact, in nano 

systems, often only one of the dimensions is at a nano scale 

and therefore, most of the systems can be examined by 

considering one-dimensional problem. On the other hand, 

2D and 3D quantum simulations, which are beyond the 

scope of this work, are also needed to fully understand the 

complexity of nano-scale particle-wall interactions as well 

as the wave character of particles. 

2. Particle-wall interaction in a 1D domain 

In this section, density distributions of both classical 

(MB) and quantum (FD and BE) gases are investigated 

under a LJ (12-6) potential in the 1D and 2D domains. 

2.1 Lennard-Jones (12-6) interaction potential 

For a 1D confinement domain, the LJ (12-6) potential 

function can be written as follows (Hirschfelder, Curtiss & 

Bird, 1954; Israelachvili, 1992): 
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where the parameters 0r  and LJ  are the characteristic 

constants in unit length and energy, respectively, L is the 

domain size and x refers to the position in the domain. 

Instead of using the numerical values of the parameters 

used in the calculations directly, the purpose there is to 

obtain generalized conclusions by using their dimensionless 

values. Thus all lengths are divided by the domain length, L 

and all energies are divided by kbT to obtain the 

dimensionless values. In this case, the dimensionless LJ 

(12-6) potential can be written as follows: 
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In this expression, the dimensionless function and 

variables are defined 

as     TkxUxU b
~~~

 , Lrr 00
~  , Lxx ~ , LJTTT 

~
 with 

bLJLJ kT  , and kb equals to the Boltzmann constant. 

The dimensionless interaction potential between the wall 

and gas atoms confined in a one-dimensional domain (for 

L=Lx=1 nm) is given in Figure 1.  

 

In this study, helium gas confined in a domain made of 

silicon is considered. The LJ parameters for the He-Si 

interaction are r0=0.2855 nm, LJ=0.2413 kJ mol
-1

, and 

TLJ=29 K (Nagy, Tunega & Liska, 1996). 

 

Figure 1.  Dimensionless LJ(12-6) potential function for the 

He-Si interaction. 

 

2.2 Derivation of the density distribution equations 

For Fermi (FD) and Bose (BE) gases, the local density 

obtained by using dimensionless energy eigenvalues r
~  

and eigenfunctions  xr
~ , which are the solutions of 

Schrödinger equation for the LJ potential, is expressed as 

follows (Sisman, Ozturk, & Firat, 2007; Firat, Sisman & 

Ozturk, 2010; Firat & Sisman, 2009): 
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where Tkb , is the dimensionless chemical potential 

in the absence of the LJ potential and is a (global) constant 

which is independent of the position. 

The domain integral of Eq. (3) is equal to the total 

number of particles. Thus the apparent density (classical 

density) is written as follows: 
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Here, it should be noted that the integral of   2~xr  is 

equal to one. Remembering that all the lengths are divided 

by the domain size, the dimensionless density for both 

Fermi and Bose gases is written as follows ( 1
~
L ): 
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In this equation, the eigenfunctions are also in 

dimensionless form. The dimensionless Schrödinger 

equation can be written as follows (Griffiths, 1995): 
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In this expression, Tkb ~  and LLc  where 

 TmkhL bc 22  half of the most probable de Broglie 

wavelength and m is the mass of a particle. 
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For a potential function given by Eq. (2), Eq. (6) cannot 

be solved analytically. The eigenfunctions and eigenvalues 

can be obtained only by numerical methods. By using the 

numerical solution of the Schrödinger equation, the 

dimensionless local density distribution of a gas confined in 

a one dimensional domain is obtained. 

In order to determine how much the local density 

distribution changes due to the existence of QSE, the 

distribution is calculated first by considering only the LJ 

potential and then by including the QSE. 

To calculate the former, the classical probability is used 

instead of the quantum probability density to calculate the 

density distribution in the absence of QSE. Thus, a 

continuous approximation for the energy eigenvalues is 

used, i.e.,  xU ~~~~
0     xUi ~~

  
2
   where i is a 

continuous quantity running from zero to infinity. 

Integration over i is used to calculate the summation, so that 

Eqs. (3) and (4) are rewritten as follows, respectively; 
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where    xUxL
~~~  and Li1/2 is the poly-logarithmic 

function.  

The dimensionless density distribution in the absence of 

QSE is thus, 
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In the case of Bose gas,     0~~~  xUxL , and 

therefore, the upper limit for the zero-dimensional global 

chemical potential is of the form T
~

1 . In the 

Maxwell-Boltzmann (MB) limit, Eq. (9) simplifies to, 
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2.3 Investigation of the density distribution for classical 

and quantum gases 

The dimensionless local density distributions of a 2He
4 

gas confined in a one-dimensional domain made of silicon 

material, 1 nm in length, are given in Figures 2, 3 and 4 for 

the case of MB statistics for different temperatures. The red 

curves in the figures show the density distribution with 

QSE calculated according to Eq. (5) and the blue curves 

show the densities without QSE calculated according to Eq. 

(10). 

As can be seen in Figures 2, 3 and 4, the contribution of 

QSE to the density distribution is negligible at high 

temperatures, while at low temperatures it causes a 

considerable difference. Both densities with and without 

QSE decrease to zero rapidly at the limit 0
~r . Thus, there is 

a boundary layer due to the repulsive part of the LJ 

potential. This layer may be called the LJ boundary layer, 

and it is about 0
~r  in thickness. In addition, the negative 

peaks of the LJ potential lead to the LJ peaks in density. 

However, it is seen that total boundary layer becomes 

thicker due to the presence of QSE. The wave character of 

the particles drives the gas towards the inner regions of the 

domain and, therefore, the LJ peaks decrease. 

 
Figure 2.  The dimensionless local density distribution of a 

Maxwellian gas in a one-dimensional domain with, 

=0.045 and T=300 K (figure is in color in the on-line 

version of the paper). 

 
Figure 3.  The dimensionless local density distribution of a 

Maxwellian gas in a one-dimensional domain with =0.14 

and T=30 K (figure is in color in the on-line version of the 

paper). 

 

 

Figure 4.  The dimensionless local density distribution of a 

Maxwellian gas in a one-dimension domain with =0.35  

and T=5 K (figure is in color in the on-line version of the 

paper). 
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In Figure 5, the local density distribution of a MB gas 

confined in a square domain, (1 nm
2
), subject to LJ 

potential is given for 300 K. Because TLJ=30 K, it can be 

seen that the LJ peaks are weakened at 300 K. In addition, 

the 2D distribution is obtained by multiplying the 1D 

distribution for each direction given in Figure 2. 

 

 
Figure 5.  The dimensionless local density distribution of a 

Maxwellian gas in a square domain subject to the LJ 

potential (
4
He and Si wall interaction), with =0.045 and 

T=300 K (figure is in color in the on-line version of the 

paper). 

In Figures 6, 7 and 8, the local density distribution of a 

degenerate Fermi gas is given at different temperatures. 

 
Figure 6.  The dimensionless local density distribution of a 

Fermi gas in a one-dimension subject to the LJ potential 

(
3
He and Si wall interaction), with =0.045,  T=300 K, and 

=5 (figure is in color in the on-line version of the paper). 

 

Figure 7.  The dimensionless local density distribution of a 

Fermi gas in a one-dimension domain subject to  the LJ 

potential (
3
He and Si wall interaction) with  =0.14, T=30 

K, and =5 (figure is in color in the on-line version of the 

paper). 

 

 
Figure 8.  The dimensionless local density distribution of a 

Fermi gas in a one-dmension domain subject to the LJ  

potential (
3
He and Si wall  interaction) with  =0.35, T=5 

K, and =5 (figure is in color in the on-line version of the 

paper). 

 

In Figures 9 and 10, the local density distribution, with 

QSE of a degenerate Fermi gas confined in a square domain 

subject to the LJ potential is given for 30 K and 5 K, 

respectively. It is clearly seen that the Friedel oscillations 

are dominant at 5 K, that the LJ peaks still exist, and that 

large peaks occur in the distribution due to overlapping 

with the first peak of Friedel oscillations and the LJ peak 

[Tüttő & Zawadowski, 1985]. 

In Figures 11, 12 and 13, the local density distributions 

of a degenerate Bose gas are given at different temperatures. 

In a Bose gas, the LJ peaks seem to be stronger in the 

absence of QSE even at 300 K relative to those with QSE 

and become even more so as the temperature decreases. The 

reason for this is the tendency of Bose particles to be in the 

same quantum state with the lowest energy. In addition, the 

QSE disturb the particle distribution by making the mid-

point of the domain as a preferred region. Since the total 

particle number is conserved, the LJ peaks are weakened. 

In Figures 14 and 15 the local density distribution, with 

QSE, of a degenerate Bose gas confined in a square domain 

subject to the LJ potential is given for 30 K and 5 K, 

respectively. It is observed that the LJ peaks continue to be 

the preferred region in the case of the Bose gas. It is clearly 

seen that QSE cause the distribution to be much smoother 

and force the particles to be accumulated the inner region of 

the domain. 
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Figure 9.  The dimensionless local density distribution of a Fermi gas in a square-shaped domain subject to the LJ 

potential (
3
He and Si wall interaction) with  =0.14, T=30 K, and =5 (figure is in color in the on-line version of the 

paper). 

 

 

 

 
  

 

Figure 10.  The dimensionless local density distribution of a Fermi gas in a square-shaped domain subject to the LJ 

potential (
3
He and Si wall interaction) with =0.35, T=5 K, and =5 (figure is in color in the on-line version of the paper). 

 

 

 

 

Figure 11.  The dimensionless local density distribution of 

a Bose gas in a 1D domain subject to  the LJ potential (He-

4 and Si wall interaction) with =0.045, T=300 K, and =-

0.11 (figure is in color in the on-line version of the paper). 

 
Figure 12.  The dimensionless local density distribution of 

a Bose gas in a 1D domain subject to the LJ potential (
4
He 

and Si wall interaction) with =0.14, T=30 K, and =-1.11 

(figure is in color in the on-line version of the paper). 
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Figure 13.  The dimensionless local density distribution of 

a Bose gas in a 1D domain subject to the LJ potential (
4
He 

and Si wall interaction) with =0.35, T=5 K, and =-6.14 

(figure is in color in the on-line version of the paper). 

 

 

 
 

 

 
Figure 14.  The dimensionless local density distribution of 

a Bose gas in a square-shaped domain subject to the LJ 

potential with =0.14, T=30 K, and =-1.11 (figure is in 

color in the on-line version of the paper). 

 

 
Figure 15.  The dimensionless local density distribution of 

a Bose gas in a square-shaped domain subject to the LJ 

potential (
4
He and Si wall interaction) with =0.35, T=5 K, 

and =-6.14 (figure is in color in the on-line version of the 

paper). 

 

 

Conclusion 

In this study, the local density distribution in 1D and 2D 

for both classical (MB) and quantum (FD and BE) gases 

subject to a LJ (12-6) interaction potential are examined by 

considering the existence of QSE. Both density 

distributions with and without QSE decrease to zero rapidly 

before the limit 0
~r . Thus, there is a boundary layer with 

thickness 0
~r  due to the LJ potential which is called here the 

LJ boundary layer. In addition, the negative peaks of the LJ 

potential lead to the LJ peaks in density. However, it is seen 

that the boundary layer observed in density becomes thicker 

due to the existence of QSE and drives the gas towards the 

inner regions of the domain with the result that the LJ peaks 

reduce. 

All of the density-dependent thermodynamic properties 

are thus, affected by the inhomogeneity in the density 

distribution. Therefore, it is important to consider these 

effects on local density to analyze the thermodynamic 

behaviors of gases confined in nano structures. A detailed 

analysis of these effects on local density also provides a 

basis for the experimental verification of QSE on local 

density due to the wave character of particles. 
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Nomenclature 

A Surface area of the domain (nm
2
) 

i continuous quantity running from zero to infinity 

kb Boltzmann’s constant  (1.38x10
-23

 J/K) 

L domain size (nm) 

Lc half of the most probable de Broglie wavelength 

(nm) 

Li poli-logarithmic function 

n particle number density (#/nm
3
) 

N total number of particles 

r0 distance at which the inter-particle potential is zero 

(nm) 

T temperature (K) 

U energy (kJ/mol) 

V Volume of the domain (nm
3
) 

x distance between particles (nm) 

 

Greek Symbols 

 dimensionless Lc 

ε energy eigenvalue (J) or depth of the potential well 

(kJ/mol) 

 dimensionless chemical potential 

L dimensionless local chemical potential 

 de Broglie wavelength of particle (nm) 

ψ eigenfunction 

 

Sub- and superscripts 

~ dimensionless property 

cl Classical 

LJ Lennard-Jones 

r quantum state 

T thermal 

 

 

Abbreviations 

BE Bose-Einstein 

FD Fermi-Dirac 

LJ Lennard-Jones 

MB Maxwell-Boltzmann 

QSE quantum size effects 
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