
*Corresponding Author Vol. 17 (No. 2) / 53 

International Journal of Thermodynamics (IJoT) Vol. 17 (No. 2), pp. 53-59, 2014 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.511 
www.ijoticat.com  Published online: April 01, 2014 

 

 

Non-equilibrium Thermodynamic Extension of the  

Phenomenological Theories of First-order Phase Transitions  
 

1
Shutao Ai*, 

2
Yuanzhen Cai 

 

1
Shool of Science, Linyi University, Linyi 276012, People’s Republic of China 

2
Library, Linyi University, Linyi 276012, People’s Republic of China 

E-mail: 
1
aist@lyu.edu.cn, 

2
caiyuanzhen@lyu.edu.cn 

 

Abstract 

 

Because the phenomenological theories of phase transitions which are based on the equilibrium thermodynamics 

cannot describe the first-order phase transition processes accurately, the non-equilibrium thermodynamics was 

applied to extending the existing phenomenological theories of first-order phase transitions. First, the internal 

interactions of system at a first-order phase transition were considered. The nominal stress, the nominal volume 

force, the internal electric field and the internal magnetic field were introduced to characterize them. Then, the most 

general Gibbs equation except the factor of chemical reactions was established. Based on the conservation of energy 

and the transformation between internal energy and kinetic energy, the rate of local entropy production was 

deduced. Then based on the principle of minimum entropy production and the generalized Onsager reciprocal 

relations, the local, evolving characteristics of a first-order phase transition (e.g. a first-order ferroelectric phase 

transition) were described well. It makes up the inadequateness of the older phenomenological theories.   

 

Keywords: First-order phase transition; phenomenological theory; non-equilibrium thermodynamics; internal field.  

 

1. Introduction  

It is well known that the phase transitions are studied 

theoretically from the macroscopic and microscopic points 

of view, respectively. The studies from the macroscopic 

point of view involve the correlations of phenomena only 

but not the microscopic nature. So the corresponding 

theories are called “phenomenological” theories. Generally 

speaking, they include two parts: one is the phase transition 

thermodynamics and the other is the phase transition 

dynamics [1-3]. Here, we pay attention to the former one 

only. 

The existing theories of phase transition 

thermodynamics, varying from the Clausius-Clapeyron 

equation that describes the first-order phase transitions to 

the Landau theory for continuous phase transitions, are 

limited in the range of equilibrium thermodynamics [1, 2]. 

The appearances of phase transitions show that the 

fundamental distinctions between the first-order and the 

continuous phase transitions are having the latent heat or 

not and the coexisting of two phases or not. Here, we 

emphasize such a factor that the phase transitions occurring 

in the nature or laboratories are often achieved by altering 

the temperatures of systems. Then, the existence of latent 

heat or not and the transfer of latent heat in system will 

make differences of thermodynamic pictures between the 

first-order and the continuous phase transitions. For the 

former, the systems are out equilibrium, and for the latter, 

the systems are in equilibrium. 

So, we should apply the non-equilibrium 

thermodynamics to processing the first-order phase 

transitions. In addition, the theories and methods of non-

equilibrium thermodynamics have been applied to many 

problems successfully [4, 5]. But it is a pity that the Landau 

theory for continuous phase transitions was generalized 

unrealistically to process the first-order phase transitions 

(especially the first-order ferroelectric phase transitions) 

instead of applying the non-equilibrium thermodynamics to 

the first-order phase transitions directly [6, 7]. The later 

study reveals that though this generalization is successful in 

mathematics the real physical processes are distorted [8]. 

Moreover, the whole process of a first-order phase 

transition can be regarded as a stationary-states-process 

mentioned often in the non-equilibrium thermodynamics as 

long as the phase transition is achieved by the quasi-static 

heating or cooling [8]. 

One goal of this article is to study how to apply the non-

equilibrium thermodynamics to describing the first-order 

phase transitions on the basis of the classical phase 

transition thermodynamics so as to obtain a more objective 

physical picture of phase transitions. Meanwhile, we 

examine the reliability of the utilized theoretical method 

and look for new possible methods. 

 

2. Processing of Internal Fields  

The common first-order phase transitions include the 

solid-liquid phase transitions, the liquid-vapor phase 

transitions, the partial ferroelectric or ferroelastic phase 

transitions, the superconducting phase transitions affected 

by an external magnetic field, and the martensite 

transformations, etc. A new standard can be adopted to 

classify so many first-order phase transitions: the first-order 

phase transitions involve electromagnetic effects and the 

other first-order phase transitions that do not involve 

electromagnetic effects. Then , the solid-liquid phase 

transitions, the liquid-vapor phase transitions, the 

ferroelastic phase transitions and the martensite 

transformations belong to the latter, while the ferroelectric 

phase transitions, the superconducting phase transitions 

affected by an external magnetic field belong to the former. 

By the way, the ferromagnetic phase transitions do not 
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belong to the first-order phase transitions at all but to the 

second-order phase transitions. 

In experiments, it is discovered that the occurrence of 

whichever of first-order phase transitions is accompanied 

with the changes of the system’s volume and shape, more 

or less. Even the condensation states of matter will change 

for the solid-liquid and liquid-vapor phase transitions. The 

changes of the system’s volume and shape should be 

studied in the range of mechanics. The mechanics of 

continuous media has given us such a physical picture that 

the stresses and the strains  are correlated by some certain 

constitutive relations. If there are no the strains, the stresses 

do not exist. But this is the picture without the occurrences 

of phase transitions. If a phase transition occurs, the picture 

changes. There is no harm in considerations as the follows. 

After a phase transition finishes, the volume and shape of 

the system change, i.e., the strain comes into being. But the 

system is mechanically-free, i.e., there is no the stress. On 

the contrary, there are some strong internal actions which 

force the system’s volume and shape to change though 

there is no the strain when the phase transition begins. The 

actions exist in the system and should be regarded as some 

“internal” fields. There is no harm in characterizing the 

internal fields by using the concepts of stress and volume 

force, i.e., regarding them as the nominal stress and volume 

force. The sums of the nominal and the real stresses (or 

volume forces) give out the general mechanical effects, i.e., 

 

                                           (1) 

 

              (2) 
 

where  ,   is the stress, the volume force (per unit mass), 

respectively;      ,     ,      ,     is the real stress, the 

nominal stress, the real volume force (per unit mass) and 

the nominal volume force (per unit mass), respectively. 

     and      are not zero when the phase transition 

begins but reduce to zero when the phase transition finishes. 

For the first-order phase transitions which involve 

electromagnetic effects, besides the mechanically-internal 

fields there are the electromagnetically-internal fields. The 

most naive concept related to them originated from the 

“molecular field”, which was put forward by Weiss to 

explain the ferromagnetism [9, 10]. In fact, this is easy to be 

understood. The polarization or magnetization of system 

without the external electric or magnetic field in some 

certain temperature ranges can only be attributed to some 

certain internal actions, which can be equated to the electric 

or magnetic field existing in the system. As for their 

microscopic nature, we do not consider too much, here. So, 

we can imitate the processing of mechanical type and write 

 

         (3) 

 
         (4) 

 

where  ,   is the total electric field and the total magnetic 

field, respectively;   ,   ,   ,    is the internal electric 

field, the external electric field, the internal magnetic field 

and the external magnetic field, respectively. Moreover, we 

assume that the internal electric field and the internal 

magnetic field are static fields, i.e., there are the internal 

electric potential   
  and the internal magnetic scalar 

potential   
  which satisfy 

       
   (5) 

 
       

   (6) 

 

3. Non-equilibrium Thermodynamic Extension 

There are mainly two thermodynamic approaches to 

deal with the irreversibility, i.e., the entropy generation 

approach and the entropy production approach. The former 

one is a global theory method, which allows us to obtain the 

information directly about the mean values of physical 

quantities [11]. It is a method for modeling the irreversible 

processes and devices, and can optimize the finite size and 

finite time constraints , and it has been developed in 

thermal science and engineering in order to describe the 

heat transfer processes and energy devices. It is based on 

the consideration that the destroyed power is proportional to 

the total rate of entropy generation. In order to optimize the 

efficiency of engineering systems, it is necessary to design 

them in such a way that the entropy generation rate is 

extremum. A great number of applications of this method 

such as [12, 13] have been made successfully. The latter 

one is a local theory method, which yields the information 

about the distribution of physical quantities. It is a classical 

one and well known to people. Here, we care for the local, 

evolving characteristics of first-order phase transitions, so 

we utilize the latter one to investigate them.  

Because of the mathematical complexity of the non-

equilibrium thermodynamic theories and methods and that 

the system is in the vicinity of “global equilibrium”, we 

choose the primary non-equilibrium thermodynamics, i.e., 

the linear thermodynamics to extend the phenomenological 

theories of first-order phase transitions and expect to obtain 

a result that a better extension can be made by others. 

 

3.1 Establishment of Gibbs Equation 

One of the fundamental hypothesizes of the linear 

thermodynamics is the local equilibrium hypothesis that 

some local thermodynamic quantities satisfy the Gibbs 

equation i.e., the thermodynamic, mechanical, 

electromagnetic forces are small. We consider both the 

mechanical effects and the electromagnetic effects in order 

to establish the most general Gibbs equation except the 

factor of chemical reactions. 

First, let’s consider the work done by the mechanical 

forces. The mechanical power can be written as 

 
  

  
 ∯        ∭       

 ( ) ( )
                             (7) 

 

where   is the work done by the mechanical forces,   is the 

time,    is the surface force,   is the velocity,    is the 

surface element,   is the mass density,   is the volume 

force exerted on unit mass,    is the volume element. Let’s 

pay attention to the first term on the right side of Eq. (7) 

and we deduce 

 

                (   )   (   )        
                                                                                    (8) 

 

where the stress tensor   relates the pressure tensor   by 

     when the matter is fluid,    is the directed surface 

element,   is the unit normal vector directed outwards. The 

mechanical power done for unit mass can be obtained by 

using the Gaussian formula 
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  (   )               (9)  

 
Second, let us consider the work done by the 

electromagnetic fields. Generally speaking, the 

electromagnetic fields make the media polarized or 

magnetized or conduct the electric current. So, there are 

three terms related to the corresponding work (per unit 

mass) 

 
 

 
     

 

 
     

 

 
            (10)  

 
where  ,  ,   is the electric displacement, the magnetic 

induction and the conduction current density, respectively. 

Moreover, we pay attention to that the magnetic field does 

not do work to the electric current so there is no the 

corresponding term related to the work. 

     So, we obtain the most general Gibbs equation except 

the factor of chemical reactions 

 

    ∑        
 

 
     

 

 
     

 

 
        

    
 

 
  (   )          (11) 

 
where   is the temperature,   is the entropy density (per 

unit mass),   is the internal energy density (per unit mass), 

     ⁄  is the kinetic energy density (per unit mass),    is 

the molar number density (per unit mass),    is the chemical 

potential. 

 

3.2 Local Entropy Production 

The local entropy balance equation can be deduced from 

the Gibbs equation, i.e., Eq.(11) by considering the 

conservation of energy and the transformation between 

kinetic energy and internal energy (see Appendix) 

 

 
  

  
           (12) 

 
where the entropy flux 

 

   
  
    

       
           

 
  (13) 

 

and the local entropy production is 
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In the two equations above,   
    

 is the diffusion part of 

heat flux, i.e., the heat conduction,    is the electric 

potential,    is the magnetic scalar potential,    is the 

polarization current (in form),    is the magnetic charges 

current (in form),    
     

is the diffusion part of particle 

current. In Eq. (14), the independent fluxes are   
    

,    
    

, 

    ,    ,   and   ; and the corresponding independent 

forces are  (
 

 
),  

   

 
,  (

  

 
),  (

  

 
),    (

 

 
) and  

 

 
. 

In fact, from the classical point of view of physics, we 

know that the polarization of media and the electric 

conductance of those are repellent each other. So,     and   
can’t come into being simultaneously. Generally speaking, 

no electric field is exerted on the conductor which is in an 

external magnetic field. The ordinary state of conductor 

changes to be the super-conduction state with the decrease 

of temperature. So, neither    nor   can come into being. 

The second term on the right hand of Eq. (14) should be 

considered when one processes the phase transitions 

controlled by the diffusion of particles. Nevertheless, it 

need not to be considered for the phase transitions which 

are not controlled by the diffusion of particles (e.g. the 

ferroelectric phase transitions). 

  

3.3 Description of First-order Phase Transitions (e.g. 

Ferroelectric Phase Transitions) 

Because the ferroelectric phase transitions involve both 

the mechanical effects and the electromagnetic effects, we 

study how to process the first-order phase transitions, e.g., 

the first-order ferroelectric phase transitions by using the 

non-equilibrium thermodynamics. To get the common 

knowledge of ferroelectrics, one may refer to [6]. Assume 

there are no the external electromagnetic fields exerted on 

the system, i.e., the phase transition is affected by the 

internal electric field only, the local entropy production, 

i.e., Eq. (14) can be reduced to 
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where the thermodynamic fluxes   
    

      (  )   ( 

  ) and the corresponding thermodynamic forces        

      are 
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  (         ) can be expanded linearly with   (  

       ) 
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                                    (21) 

 

                                     (22) 

 

                                 (23) 

 

where                                     are nine 

second-order tensors,                         are six 

third-order tensors, and    is a fourth-order tensor. Then 

the local entropy production can be written as 
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If the system is in a stationary state, the principle of 

minimum entropy production is satisfied. Yet, the phase 

transition process can be regarded as a stationary-states-

process (i.e. the system can pass a series of stationary states 

continuously by changing the external conditions). So,  

 

(
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                          (           

                )         (28) 

 
The generalized Onsager reciprocal relations [14]  

 

       
   (29)  

 

(the superscript “T” means transposition) are used in the 

four equations above. These extremum conditions reveal 

that: (i) If keep a part of thermodynamic forces to be 

constants, we know the thermodynamic fluxes 

corresponded to the rest thermodynamic forces are zero; (ii) 

If there are no any restrictions on all the thermodynamic 

forces, all the thermodynamic fluxes are zero. 

We may describe a ferroelectric phase transition by 

using the two paradigms above. For a first-order 

ferroelectric phase transition, the forces          of the 

region where the phase transition is occurring (i.e., a thin 

region adjacent to the phase boundary) can be regarded as 

three large constants roughly in the characteristic times of 

phase transition because the electric displacement, the 

volume and the shape change suddenly. So the flux   
    

of 

the region should be zero (but              ). This 

states clearly that the pure heat conduction and the heat 

conduction induced by the thermo-electric coupling and the 

thermo-mechanical coupling cancel out each other so as to 

release or absorb the latent heat (Just see Eq. (25)). The 

phase transition occurs at the surface layer firstly, which is 

mechanically-free. So, when the phase transition occurs in 

this region, the flux   maybe the nominal stress      only, 

which does work to realize the transformation from the 

internal energy to the kinetic energy. When the phase 

transition occurs in the inner part, the flux   should be the 

sum of       and      because the sudden changes of the 

inner part’s volume and shape have to overcome the bound 

of the outer part then       arises. The region where the 

phase transition is occurring, is accompanied with the real 

stress       usually, which does work to realize the 

transformation from the kinetic energy to the internal 

energy. This has been predicted and described with a 

propagating stress wave in [15]. 

It is certain that the latent heat passes through the 

region where the phase transition has occurred at the 

outside of the region and exchange itself with the thermal 

bath. For         
    

       (where   is the latent 

heat per unit mass,    is the average velocity of phase 

boundary,   is the coefficient of heat conduction), a 

constant temperature gradient    is kept in the region 

where the phase transition has occurred, i.e., the force    at 

every site is constant (which does not change with the time 

but may vary with the position). So, the fluxes      

     (but the flux   
    

   ). This states clearly that the 

electric displacement   will not change but keep the value 

at the Curie temperature or zero until the phase transition 

finishes and             in this region. Because the 

electric displacement   and the strain are all determined by 

the crystal structure of system,      reveals that   of this 

region does not change so does not the crystal structure then 

does not the strain. According to [15], we know the region 

where the phase transition has occurred is unstressed, i.e., 

       , then       . This reveals that the eigen (or 

free) strain of system induced by the thermo-electro-

mechanical coupling of phase transition is complete and the 

change of it terminates before the phase transition finishes. 

The two deductions coincide with each other.       may 

relaxes via the free surface. 

The region where the phase transition will occur should 

be in equilibrium because there are no restrictions on the 

forces            . Whereas, according to [15], the 

region is stressed, i.e.,        . For the heating process of 

phase transition, this may lead to a change of spontaneous 

polarization of this region because of the electro-

mechanical coupling (piezoelectric effect). 

 

4.  Conclusions 

Because the existing phenomenological theories of first-

order phase transitions which are based on the equilibrium 

thermodynamics and cannot describe the non-equilibrium 

thermodynamic processes of phase transitions accurately, 

we extended the phenomenological theories by using the 

non-equilibrium thermodynamics. In particular, we paid 

attention to the “internal” fields of first-order phase 

transitions, which is characterized by introducing the 

nominal stress, the nominal volume force, the internal 

electric field and the internal magnetic field. We established 

the most general Gibbs equation except the factor of 

chemical reactions, and from which we deduced the most 

general local entropy production. The various first-order 

phase transitions can be processed on the basis of reducing 

the most general local entropy production according to the 

various cases. In particular, we showed the description of 

the local, evolving characteristics of phase transitions by 

using the non-equilibrium thermodynamic theory and 

method, which make up the inadequateness of the old 

phenomenological theories effectively. (On the contrary, 

the old theories can only describe the static, global 

characteristics). 

The non-equilibrium thermodynamics used here is the 

most basic one, i.e., the linear thermodynamics. Because 

the forces and fluxes are large at phase transitions, the 

description above maybe not accurate enough. In order to 

get the more accurate approaches, there is no harm in using 

the two new theories of non-equilibrium thermodynamics: 
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the thermodynamics with internal variables [16] and the 

extended (irreversible) thermodynamics [17]. They all 

expand the fundamental variables spaces to describe the 

irreversible processes more accurately. Whereas, the 

relevant theoretical processing must be more complicated 

without doubt. This situation needs very much effort.  
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Nomenclature 

         Magnetic induction (T) 

         Electric displacement (C m
-2

) 

         Strain rate (s
-1

) 

         Total electric field (V m
-1

) 

         External electric field (V m
-1

) 

         Internal electric field (V m
-1

) 

          Total energy density (J kg
-3

) 

         Total volume force exerted on unit mass (N kg
-1

) 

      Nominal volume force exerted on unit mass (N 

kg
-1

) 

        Real volume force exerted on unit mass (N kg
-1

) 

         Total magnetic field (A m
-1

) 

         External magnetic field (A m
-1

) 

          Internal magnetic field (A m
-1

) 

           Conduction current (A m
-2

) 

          Total energy flux (J m
-2

 s
-1

) 

  
    

    Diffusion part of total energy flux (J m
-2

 s
-1

) 

  
    

    Drift part of total energy flux (J m
-2

 s
-1

) 

          Thermodynamic flux (N m
-3

) 

          Magnetic charges current (T s
-1

) 

   
    

     Diffusion part of particle current (mol m
-2

 s
-1

) 

           Polarization current (C m
-2

 s
-1

) 

  
    

     Diffusion part of heat flux (J m
-2

 s
-1

) 

            Entropy flux (J K
-1 

m
-2

 s
-1

) 

  
    

     Diffusion part of internal energy flux (J m
-2

 s
-1

) 

           Thermodynamic flux (N m
-2

) 

            Kinetic energy density (J kg
-3

) 

                                          

                          Transport coefficients 

             Latent heat per unit mass (J kg
-1

) 

            Unit vector 

            Molar number density (mol kg
-1

) 

            Polarization (C m
-2

); Pressure tensor (N m
-2

) 

            Mechanical power per unit mass (J kg
-1

 s
-1

) 

             Entropy density (J K
-1

 kg
-1

) 

             Time (s) 

             Internal energy density (J kg
-1

) 

            Volume (m
3
) 

            Velocity (m s
-1

) 

           Average velocity of phase boundary (m s
-1

) 

           Work (J) 

                    Thermodynamic forces 

 

Greek Symbols 

           Coefficient of heat conduction (J K
-1

 m
-1

s
-1

) 
          Chemical potential (J mol

-1
) 

          Mass density (kg m
-3

) 

          Area (m
2
) 

          Stress (N m
-2

) 

         Surface force (N m
-2

) 

       Nominal stress (N m
-2

) 

        Real stress (N m
-2

) 

         Heat production (J m
-3

 s
-1

) 

          Entropy production (J K
-1

 m
-3

 s
-1

) 

          Internal energy production (J m
-3

 s
-1

) 

         Total electric potential (V) 

        Total magnetic scalar potential (J m
-2

 T
-1

) 

  
        Internal electric potential (V) 

  
       Internal magnetic scalar potential (J m

-2
 T

-1
) 

 

Superscripts 

       Diffusion 

        Drift 

          Electric 

        Magnetic 

      Nominal 

        Real 

         Transposition 

 

Subscripts 

      Average 

      External; Total energy 

     Volume force 

      Internal; The i-th 

    Magnetic 

     The direction of   

ni    The i-th kind of particles 

     Polarization 

     Heat 

     Entropy 

     Internal energy 

     Stress 

 

 

Appendix: Derivation of Local Entropy Production 

In this appendix, we deduce the formula of local 

entropy production from Eq. (11). Make the material 

derivative of Eq. (11) with  , then obtain 

 

 
  

  
 

 

 
∑    

   

  
 

 

 
  

  

  
 

 

 
  

  

  
 

 

 
    

 

 
    

 

 
  (   )  

 

 

  

  
             (A1) 

 

where       is the total energy density (per unit mass). 

The equation of energy conservation in Eulerian form is 

 
 

  
(  )         (A2) 

 

where    is the energy flux, which consists of two parts: the 

diffusion part   
    

 and the drift part   
    

, i.e., 

 

     
    

   
    

  (A3) 

 

The term on the left hand of Eq. (A2) can be rewritten as 

 
 

  
(  )  

 

  
(  )     (  )   

  

  
  

  

  
    (  ) 

          
  

  
    (  )   

  

  
   (   )  

 (A4) 

 

where the equation of mass conservation in Lagrangian 

form 
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         (A5) 

 

is used. Paying attention to that     in Eq. (A4) is just the 

drift part of energy flux   
    

, we can obtain 

 

 
  

  
      

    
  (A6) 

 

  
    

  should consists of two parts: the diffusion of kinetic 

energy      [17] and the diffusion of the internal energy 

  
    

, i.e., 

 

  
    

        
    

  (A7) 

 

  
    

 can be worked out from the following deduction.    

consists of six parts 

      ∑     
 

 
 

 
     

 

 
     

 
 

 
      

 

 
            (A8) 

 

where   is the thermal quantity (per unit mass),   
(     )  ⁄  is the strain rate. Differentiating Eq. (A8) 

with   and paying attention to that       (where    is 

the electric potential), 

       (                                 potential), 

the polarization current (in form)        ⁄ , the 

magnetic charges current (in form)        ⁄ , 

 (     ⁄ )        
    

  (   
    

 is the diffusion part of 

particles current), we obtain 

 

 
  

  
  

  

  
 ∑  

 

     
    

               

       
 

 
  (     )     (A9) 

 

In order to deduce      ⁄ , we repeat the steps between 

Eq. (A2) and (A6), (with the addition of production of heat 

  ), then find that 

 

 
  

  
      

    
     (A10) 

 

where   
    

 is the diffusion of heat, i.e., heat conduction. 

So, 
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 )  ∑         
    

                     
(   )         (A11) 

 

Cast Eq. (A11) into the following form 

 

 
  

  
      

    
          (A12) 

 

where the internal energy flux (the diffusion part) 

 

  
    

   
    

 ∑  
 

   
    

           

          (A13) 

 

and the production of internal energy 

 

   ∑       
    

   

 

                  

 (   )        (A14) 

 

According to Eqs. (A1), (A6), (A7) and (A13), we deduce 

the following 
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  (A15) 

 

then we obtain the local entropy balance equation in 

Lagrangian form 

 

 
  

  
              (A16) 

 

where the entropy flux 
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and the local entropy production 
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The two equations above are Eqs. (13) and (14). 
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