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Abstract 

 

The relationship of Redlich and Kister between the chemical potential and the molar Gibbs free energy of a multi-

component mixture proves to be in contradiction with both fundamental concepts of chemical thermodynamics and 

mathematical principles. Hence, it is invalid. This invalidity corresponds with the thermodynamically inadequate 

representation of the prevalent Redlich-Kister polynomial for the mole fraction dependence of the excess Gibbs free 

energy of a mixture.  
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1. Introduction 

The relationship due to Redlich and Kister [1] between 

the chemical potential of a component of a mixture and the 

Gibbs free energy of the same mixture, or between the 

respective excess quantities, is widespread in chemical 

thermodynamics. It is based on the assumption that, mathe-

matically, the mole fractions of all N components 

comprising the mixture represent independent variables. 

This actually opposes the thermodynamic reality since at 

least one of these mole fractions can always be expressed 

by means of the sum of all others. Nevertheless, recently it 

has been shown by Näfe [2] that Redlich and Kister's 

relationship proves to be mathematically equivalent to those 

relationships that refrain from assuming total independence 

of all mole fractions and instead take the thermodynamic 

facts properly into account. This quite paradoxical situation 

with apparently equivalent results despite apparently 

conflicting assumptions, which has persisted in the 

literature for about 65 years, calls for clarification. 

In the following, the problem is resolved by demon-

strating that the relationship of Redlich and Kister is at 

variance with both thermodynamics and mathematics and 

that this is strongly related to the representation of the Red-

lich-Kister polynomial that is abundantly often employed in 

chemical thermodynamics for the description of multicom-

ponent systems. 

 

2. General Relationships 

The excess Gibbs free energy g
E
 is an extensive quantity 

depending on the pressure p and the temperature T as well 

as on all mole numbers ni of the thermodynamic system un-

der consideration with i ranging from 1 to N:  

 

 (1)  

 

Division of g
E
 by the total number of all moles com-

prising the particular system yields the molar Gibbs free 

energy G
E
 as an intensive quantity: 

 

 

 (2) 

 

 

In view of Eqs. (1) and (2), G
E
 can be represented by the 

same functional dependence as defined by Eq. (1): 

  

 (3) 

 

It will become obvious from the paragraph after the next 

that the extensive character of g
E
 is in accordance with Eu-

ler's homogeneous function theorem and thus with the rela-

tionship: 

 

 (4) 

 

 

In Eq. (4) the excess chemical potential 
  
mk

E
is defined as 

partial derivative of g
E
 with respect to the number of moles 

of the k-th sort upon holding constant all other mole num-

bers nj: 

 

 (5) 

 

 

 

By substitution of Eq. (2) into Eq. (5) it can be shown 

that: 

 

 (6) 

 

 

Instead of the mole number the respective mole fraction 

xk can be used as a composition variable. The definition is: 
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This definition implies that all xi are not independent of 

each other since:  
 

 (8) 

 
 

3. Relationship by Redlich and Kister 

As mentioned earlier [2] there is merely conjecture 

about the details of deriving the relationship as the authors 

did not at all dwell on that. It must be assumed, and this is 

confirmed by a later approach [3], that the starting point is 

the representation of the excess Gibbs free energy as a 

function of the intensive variables p, T and xi with i ranging 

from 1 to N: 

 

 (9) 

 

In order to distinguish this functional dependence from 

the definition (3) the index RK is used hereinafter. Ac-

cording to Eq. (9) the total differential of  GRK
E

 
under iso-

baric and isothermal conditions reads: 

 

 

 (10) 

 

 

Differentiation of Eq. (10) with respect to the mole 

number of one arbitrary sort of components of the system, 

e.g. nk, upon holding all other components' mole numbers 

constant leads to: 

 

 

 (11) 

 

 

From Eq. (7) it follows for the total differential of xk: 

 

 

 (12) 

 

 

 

Therefore: 

 

 

 (13) 

 

 

 

 

 (14) 

 

 

 

By equating the functional dependence of Eq. (3) with 

that of Eq. (9) it is assumed: 

 

 (15) 

 

Strictly, this assumption that Redlich and Kister needed 

to utilize in their course of derivation is subject to confirma-

tion, which is why the equality sign in Eq. (15) is 

supplemented by a question mark. To which extent this 

kind of questioning is really justified will be given due con-

sideration below. 

By invoking Eqs. (6), (13), (14) as well as (15), rela-

tionship (11) can be rewritten in the form: 

 

 

 (16) 

 

 

Eq. (16) is identical with the relationship first published 

by Redlich and Kister [1]. Since in Eq. (15) it is contro-

versial to equate the quantities  GRK
E

 
and G

E
 and since Eq. 

(16) is based on that controversial relationship, uncertainty 

about the validity of the equality sign is likewise main-

tained in Eq. (16). 

The particularity of Eq. (16) lies in the partial deriva-

tives that require the differentiation to be carried out with 

respect to the mole fraction of a definite component while 

the mole fractions of all remaining components are held 

constant. As recently pointed out [2] this mathematical 

operation appears to be in contrast to the thermodynamics-

related interdependence of all mole fractions according to 

Eq. (8). 

Obviously independent of Redlich and Kister, Brown 

[3] later derived the same equation as that given by Eq. 

(16). Rowlinson [4] (p. 115) referred to Brown and propa-

gated this relationship as the most convenient way of 

determining an expression for the excess chemical potential 

of one of the components from the excess Gibbs free energy 

of the whole system. The same view has been kept in the 

latest edition of Rowlinson's book [5] (p. 90). Eq. (16) is 

also met in van Ness and Abbott's treatises on thermo-

dynamics of nonelectrolyte solutions ([6], p. 90; [7], p. 47), 

even though the authors recognized the above-mentioned 

conflict between thermodynamics and mathematics. Never-

theless, all of these authors preferred to make use of Eq. 

(16) instead of or in addition to the alternative relationship 

that goes back to Haase [8] and that really reconciles ther-

modynamics with mathematics. Implemented in computer 

programs, until now Redlich and Kister's relationship and 

the pertaining polynomial have a thousand times served as a 

basis for the purpose of thermodynamic optimization of 

phase equilibria in chemical engineering [9] and materials 

science [10]. 

 

4. g
E
 as a Homogeneous Function 

Mathematically, the extensive character of the quantity 

g
E
 is expressed by the fact that g

E
 obeys the conditions of a 

homogeneous function of first degree in all mole numbers 

ni. It means that the value of g
E
 is increased by the factor  

if each ni is multiplied by the same factor. This is well sub-

stantiated by practical experience. Each homogeneous func-

tion results in Euler's theorem according to which the func-

tion multiplied by the degree of homogeneity is equal to the 

sum of all products between the variables of the function 

and its partial derivatives with respect to the same variables. 

For g
E
 this theorem takes the form as given in Eq. (4). 

Provided that both the excess Gibbs free energy in the 

initial state, i.e. g
E
, and the same quantity in the state after 

the multiplication of each ni with  are represented by the 

functions 
 
1  and 

 
2 , respectively, then it holds that: 
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ous function, in the present case of first degree. This be-

comes apparent by differentiating Eq. (17): 

 

 

 

 

 

 

 

 (18) 

 

Substitution of: 

 

 (19) 

 

into Eq. (18) and rearrangement of terms yield: 

 

 

 

 

 

 

 (20) 

 

 

 

 

 

 

 

 

As p, T,  and all ni are independent variables, the sum 

of Eq. (20) is equal to zero only if each of the bracket terms 

is separately equal to zero. Therefore, two of the relevant 

conclusions of Eq. (20) are: 

 

 

 (21) 

 

 
 
 

 (22) 

 

 

Consideration of the equivalence between 
 
1  and g

E
 as 

agreed at the beginning and substitution of Eqs. (5) and (21) 

into Eq. (22) lead to Euler's theorem of Eq. (4). As it be-

comes obvious from the mathematical approach, the valid-

ity of Eqs. (4) and (17) depends on the premise that  is an 

arbitrary quantity independent of all other variables of the 

supposed homogeneous function. 

 

5. Violation of the Premises  

In the following let the preceding considerations repeat 

by assuming that  is equal to the reciprocal of the sum of 

all mole numbers: 

 
 
 (23) 

 

 

 

In view of Eq. (23), the shape of 
 
2  in relationship (17) 

changes into the right side of Eq. (9), which is equal to  GRK
E

 

while 
 
1  

remains the same as defined in the preceding 

paragraph, i.e. g
E
. Consequently, it follows from Eq. (2) 

that the right side of relationship (17) becomes identical 

with G
E
. As a result, Euler's homogeneous function theorem 

in the form of Eq. (17) confirms the correctness of Eq. (15) 

which, however, is only true for the special case that  is 

defined according to Eq. (23). 

It follows from Eq. (23) that: 
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Eq. (24) means that the factor  becomes a function of 

ni and, hence, loses its status as an independent variable, 

which in the preceding paragraph was recognized to be the 

prerequisite for the validity of Euler's homogeneous func-

tion theorem. Is that theorem no longer valid, Eq. (17) is 

not obeyed and neither are Eqs. (21) and (22). Much more 

important for the validity of the Redlich-Kister approach is 

that Eq. (15) also loses its justification, inasmuch as Eq. 

(15) is the consequence of Eq. (17). With Eq. (15) being 

controversial, the Redlich-Kister relationship of Eq. (16) 

becomes questionable as well. 

There is another striking argument against the validity 

of the Redlich-Kister relationship. Let Eq. (17) be tenta-

tively assumed to remain valid until further notice and let 

this be expressed by labeling all of the following equality 

signs by a question mark. Then, with  according to Eq. 

(23) and with the total differential of  according to Eq. 

(24), Eq. (20) converts into: 
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Since p, T and all ni are independent of each other, Eq. 

(25) is fulfilled only if each bracket term is equal to zero. 

Therefore: 
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By invoking Eqs. (5) and (23) and by equating, respec-

tively,
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2  with  GRK
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 and 
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xi , it 

follows from Eq. (26): 
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 (27) 

 

 

In view of Eqs. (2) and (15), the rearrangement of terms 

yields that Eq. (27) becomes identical with Eq. (16) by 

Redlich and Kister. In other words, Redlich and Kister's 

relationship is the consequence of mathematical operations 

that under normal circumstances would prove g
E
 to be a 

homogeneous function of first degree in all mole numbers. 

However, these circumstances are not given in the present 

case. The conditions under which the mathematical opera-

tions are applied invalidate the premises underlying the 

proof for the existence of a homogeneous function and, 

thus, nullify the results based on these operations. There-

fore, in all preceding equations the equality signs labeled by 

a question mark are false implying that the relationship of 

Redlich and Kister between the excess chemical potential 

and the molar excess Gibbs free energy has no mathemati-

cal justification. 

If, in order to exemplify the implications of the above 

statement, Eq. (17) were assumed to be a homogeneous 

function even for  according to Eq. (23), then Eq. (9) 

would have been valid and, moreover, Eqs. (21) and (22) 

should have been obeyed under the same conditions as dis-

cussed before, i.e. equating 
 
1  with g

E
, 

 
2  with  GRK

E
 and 

   
(a ni )  with 

 
xi . In this case, it would follow from Eq. 

(21) together with Eq. (5) that: 

 

 

 (28) 

 

 

The preceding relationship is undoubtedly at variance 

with the definition of the chemical potential and, thus, at 

variance with an elementary aspect of chemical thermody-

namics. 

 

6. Practical Consequences 

Inasmuch as Eq. (15) is based on the validity of Eq. 

(17), which is no longer fulfilled if  obeys Eq. (23), Eq. 

(15) is wrong and, hence, the identity between  GRK
E

 and G
E
 

is an incorrect presumption. Consequently, any considera-

tion that proceeds from proposition (9) and tacitly assumes 

this equation to be obeyed is not justified and leads to inap-

propriate inferences. One of these inferences is the equiva-

lence recently demonstrated [2] between Redlich and Kis-

ter's relationship and those of other authors insofar as the 

proof of equivalence is based on Eq. (9). It is logical that if 

the basis of the equivalence is invalid, the same is true for 

the equivalence itself. 

Another inference is more far-reaching with respect to 

fundamental relevance as the formulation of Eq. (9) can be 

found in modern thermodynamics textbooks (cf. [11]), p. 

319; Eq. (9-6)) and elsewhere in the literature as a basis for 

thermodynamic calculations. Eq. (9) is the generalized form 

of the most-accepted function for the mole fraction depend-

ence of G
E
, which is usually called the Redlich-Kister 

polynomial
1)

: 

                                                           

 

 

 
1) The nomenclature used in the literature for the variously trun-

cated power series of Eq. (29) totally misjudges the real 
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where xg and xh stand for all possible pairs of mole fractions 

in a system of N components, Aghn are the coefficients and 

(P+2) is the degree of the polynomial. 

The problem with Eq. (29) is that it strictly meets 

thermodynamic requirements only after taking Eq. (8) into 

account. In other words, the polynomial has to be recast in 

such a way that the mole fraction of the k-th component of 

the system is substituted by the mole fractions of all 

remaining components. As a result, Eq. (29) changes its 

appearance and takes the following form: 

 

 

 

                                                                                                 

 

 

 

authorship. Redlich and Kister [1] themselves did never make 

a secret of the fact that they adopted this polynomial point by 

point from others, namely from Wohl [12]. Wohl for his part 

had correctly referred to the empirical ansatz of Margules [13] 

and to the work of van Laar [14] who had given an 

approximate theoretical confirmation of Margules's formula. 

While these authors had only focused on the mole fraction 

dependence of the vapor pressure over liquid mixtures, the 

power series concept was later generalized in terms of the 

excess Gibbs free energy of arbitrary mixtures and was 

successively advanced by adding new coefficients to the poly-

nomial or by omitting or rearranging some of them selectively 

(e.g. [12; 15; 16]). It is in the nature of such a power series 

that, in fact, the accuracy of numerical description changes 

due to the manner of truncation, nevertheless, the mathe-

matical essence of the approach always remains the same. 

Therefore it is not surprising when Haase [17] (p. 360) showed 

that the polynomial nowadays ascribed to Redlich and Kister 

is completely identical with the conventional ansatz of 

Margules. The same was later underlined by others ([7], p. 

225; [18]). This very fact throws a questionable light on the 

authorship of Redlich and Kister.  

  Moreover, Scatchard [19] pointed out that the Redlich-

Kister polynomial is the same as what Guggenheim [20] had 

proposed before. The new quality inherent in Guggenheim's 

approach compared to that of Margules was due to a 

comparatively broader scope and a slightly higher degree of 

theoretical foundation. Guggenheim proceeded from the sim-

plest possible form of an empirical power series for an energy 

term of an arbitrary mixture rather than merely for the fugacity 

coefficient of a vapour, as Margules had done. Strictly, Gug-

genheim concentrated on that part of the total Gibbs free en-

ergy of any mixture that causes this mixture to deviate from 

Raoult's law, for which later the term excess function was 

coined. By customizing the questionable energy term in such a 

way that it represents a homogeneous function of first degree 

in the mole numbers, Guggenheim ensured that the empirical 

mathematical function meets the same fundamental thermody-

namic requirements as any other thermodynamic state function 

does. For the above-mentioned reasons and in order to ac-

knowledge the true value of the contributions to the field it is 

more appropriate to associate the polynomial with the author-

ship of Margules and Guggenheim rather than Redlich and 

Kister. 
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Interestingly, after having transformed the thermody-

namically inadequate representation of Eq. (29) into Eq. 

(30) the application of Redlich and Kister's 
  
mk

E
 vs. G

E
 rela-

tionship according to Eq. (16) becomes impossible from 

mathematical point of view since the conditions required 

for the validity of the partial derivatives of Eq. (16) are no 

longer fulfilled by the formulation of Eq. (30). Therefore, in 

order to derive from Eq. (30) an analytical expression for 

the mole fraction dependence of the excess chemical poten-

tial, the only applicable 
  
mk

E
 vs. G

E
 relationship is the one of 

Haase ([8]; see also [2]). Haase's relationship reads: 
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Application of Eq. (31) to the expression of G
E
 accord-

ing to Eq. (30) delivers: 
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Strangely enough, Eq. (16) although being incorrect in 

the sense described above yields the same analytical ex-

pression as Eq. (32) if applied to the thermodynamically in-

adequate formulation of Eq. (29). This has to do with the 

mathematical feature of Eq. (29). As remarkable as this 

point is with respect to practical implementation, it does not 

detract from the fact that Redlich and Kister's relationship 

and the pertaining polynomial contradict fundamental prin-

ciples of chemical thermodynamics and mathematics. 

Regarding these principles the most important conse-

quence of the present investigation is the non-existent justi-

fication of Eq. (15) which makes Eq. (9) a thermodynami-

cally irrelevant formulation. As it becomes apparent above, 

the only reason why Eq. (9) and its representation by Eq. 

(29) get in conflict with fundamental principles is that they 

both ignore Eq. (8), with Eq. (8) expressing a purely ther-

modynamic fact. Indeed, without any thermodynamic back-

ground knowledge nothing could be objected to Eq. (9) 

from mathematical point of view. The same is true as to the 

premises for the validity of Euler's homogeneous function 

theorem by introducing the factor  according to Eq. (23). 

Thus, it is a thermodynamic aspect that causes mathemati-

cal rules to be violated and not the other way around. A cor-

rect mathematical operation will not necessarily yield a 

mathematically incorrect result by merely disobeying ther-

modynamic principles. Therefore, Eq. (16), despite contra-

dicting thermodynamic facts, results in the mathematically 

correct expression of Eq. (32), if it is applied to the thermo-

dynamically inadequate polynomial of Eq. (29). That Eq. 

(32), apart from being mathematically correct, additionally 

proves to be correct from thermodynamic point of view can 

only be demonstrated and is demonstrated above by apply-

ing Haase's thermodynamically consistent 
  
mk

E
 vs. G

E
 rela-

tionship to the polynomial form of Eq. (30). 

Considering the significance that the Redlich-Kister 

polynomial has in chemical thermodynamics, the analysis 

described above requires to recast this polynomial into a 

thermodynamically compatible form. That means, the rep-

resentation of Eq. (29) has to be replaced by Eq. (30) for 

which the term Margules-Guggenheim polynomial is pro-

posed. The Margules-Guggenheim polynomial in its turn is 

inevitably incompatible with the questionable 
  
mk

E
 vs. G

E
 re-

lationship of Redlich and Kister and, thus, the circle closes. 

The paradoxical situation outlined at the beginning, with 

mathematical assumptions contradicting thermodynamic re-

ality, is ultimately due to non-strictly taking account of 

thermodynamic reality in one important respect, i.e. the 

definition of what has so far been called the Redlich-Kister 

polynomial. 

 

7. Conclusions 

Mathematically the relationship of Redlich and Kister 

results from a special case of treating the excess Gibbs free 

energy of a multicomponent mixture as a homogeneous 

function of first degree in the mole numbers due to which 

the mole numbers are transformed into mole fractions. The 

consequence of this particular kind of transformation is that 

the premises for the existence of a homogeneous function 

become violated so that the outcome and the related infer-

ences lose mathematical justification. The thermodynamic 

inconsistency of Redlich and Kister's 
  
mk

E
 vs. G

E
 relation-

ship has its equivalent in the thermodynamically inadequate 

representation of the Redlich-Kister polynomial. 
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