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Abstract 

 

Some implications of a scale invariant model of statistical mechanics to the mechanical theory of heat of Helmholtz 

and Clausius are described. Modified invariant definitions of heat and entropy are presented closing the gap between 

radiation and gas theory. Modified relativistic transformations of pressure, Boltzmann constant, entropy, and density 

are introduced leading to transformation of ideal gas law. Following Helmholtz, the total thermal energy of 

thermodynamic system is decomposed into free heat U and latent heat p V and identified as modified form of the 

first law of thermodynamics Q = H = U + p V.  Subjective versus objective aspects of Boltzmann thermodynamic 

entropy versus Shannon information entropy are discussed. Also, modified thermodynamic properties of ideal gas 

are presented.  The relativistic thermodynamics being described is in accordance with Poincaré - Lorentz dynamic 

theory of relativity as opposed to Einstein kinematic theory of relativity since the former theory that is based on 

compressible ether of Planck is causal as was emphasized by Pauli.  
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1. Introduction 

Although the universality of statistical nature of 

problems of stochastic quantum fields [1-17] and classical 

hydrodynamic fields [18-30] is well known, the extent to 

which exact correspondence exists between the laws of 

nature amongst the diverse scales of space and time from 

cosmic to photonic schematically shown in Figure 1 is as 

yet not recognized. Similarities between the statistical fields 

shown in Figure 1 resulted in recent introduction of a scale-

invariant model of statistical mechanics [31] and its 

application to the fields of thermodynamics [32-34], fluid 

mechanics [35-38] and quantum mechanics [35, 39-40]. 

In the present study, further implications of the model to 

the physical foundations of classical and relativistic 

thermodynamics will be examined. The properties of ideal 

gas and subjective versus objective nature of entropy are 

investigated. Also, Helmholtz decomposition of thermal 

energy into free and latent heat is applied to define the 

nature of mass, dark matter, and dark energy. 

 

2. A Scale invariant model of statistical mechanics 

The scale-invariant model of statistical mechanics for 

equilibrium galactic-, planetary-, hydro-system-, fluid-

element-, eddy-, cluster-, molecular-, atomic-, subatomic-, 

kromo-, and tachyon-dynamics corresponding to the scale 

g, p, h, f, e, c, m, a, s, k, and t is schematically shown 

on the left hand side of Figure 1.  The corresponding non-

equilibrium hence non-statistical laminar flow fields are 

shown on the right-hand-side of Figure 1.  Each statistical 

field is identified as the "system" that is composed of an 

spectrum of "elements".  Each element is composed of an 

ensemble of small particles called the "atoms" of the field   

that are viewed as point-mass and governed by distribution 

 

 
 

 

Figure 1.  A Scale-invariant model of statistical mechanics. 

Equilibrium--Dynamics on the left-hand-side and non-

equilibrium Laminar--Dynamics on the right-hand-side 

for scales  = g, p, h, f, e, c, m, a, s, k, and t as defined in 

Section 2. Characteristic lengths of (system, element, 

“atom”) are (L, , 
) and  is the mean-free-path.   

 

function
i i i i i

( , , t )d df
      x u x u . The most probable element 

(system) velocity of the smaller scale (J) becomes the 

velocity of the atom (element) of the larger scale (J+1). 

Since invariant Schrödinger equation was recently derived 

from invariant Bernoulli equation [39], the entire hierarchy 

of statistical fields shown in Figure 1 is governed by 

quantum mechanics. There are no physical or mathematical 
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reasons for the hierarchy shown in Figure 1 not to continue 

to larger and smaller scales ad infinitum.  Hence, according 

to Figure 1, contrary to the often quoted statement by 

Einstein that God does not play dice; the Almighty appears 

to be playing with infinite hierarchies of embedded dice. 

Following the classical methods [19, 41-45] the 

invariant definition of density , and velocity of atom u, 

element v, and system w (Figure 1) at the scale  are [39, 

40]  

 

ρ n m m duf
     
    , 

mp 1 
u v   (1) 

 

1

m duf


     
  v u  , 

mp 1 
w v   (2) 

 

Similarly, the invariant definition of the peculiar and 

diffusion velocities are introduced as  

 

  
  V u v  , 

  
 V v w   (3) 

 

such that 

 

1 
V V     (4) 

 

3. Stochastic definitions of Planck and Boltzmann 

constants 

At thermodynamic equilibrium the mean velocity of 

particles, Heisenberg-Kramers virtual oscillators [46], 

vanish 
mx

= 0u      such that the kinetic energy of particle 

oscillating in two directions (x+, x) is expressed as   

 
2 2

x x
m u / 2 m u / 2

      
       

 

   
2 2 1/2 2 1/2

x
m u p

     
         (5) 

 

where 
2 1/2

x
p m u
  
   is the root-mean-square momentum 

of particle and <u
2
x> =<u

2
x> by Boltzmann 

equipartition principle.  At any scale , the result in Eq. (5) 

can be expressed in terms of either frequency or 

wavelength   

 
2 2 1/2 2 1/2

 m u p h
       
               (6a) 

 

2 2 1/2 2 1/2
 m u p k

       
               (6b) 

 

when the definition of stochastic Planck and Boltzmann 

factors are introduced as [35] 

 
2 1/2

h p
  
    (7a) 

 

2 1/2
k p

  
        (7b) 

 

At the important scale of EKD (Figure 1) corresponding 

to Casimir vacuum [47] composed of photon gas, the 

universal constants of Planck [48, 49] and Boltzmann [32] 

are identified from Eqs. (7a)-(7b) as 
 

2 1/2 34

k k k
h h m c 6.626 10  J-s 
       (8a) 

2 1/2 23

k k k
k k m c 1.381 10 J/K  
       (8b) 

 

Next, following de Broglie hypothesis for the 

wavelength of matter waves [2]   

 

h / p
 

   (9) 

 

the frequency of matter waves is defined as [32] 

 

k / p
 
         (10) 

 

When matter and radiation are in the state of 

thermodynamic equilibrium Eq. (8) leads to 

 

k
h h h


    ,    

k
k k k


       (11) 

 

 The definitions in Eqs. (8a) and (8b) result in the 

gravitational mass of photon [32] 

 
3 1/2 41

k
m (hk / c ) 1.84278 10 kg 

         (12) 

 

that is much larger than the reported [50] value of 
51

4 10


  

kg. The finite gravitational mass of photons was anticipated 

by Newton [51] and is in accordance with Einstein-de 

Broglie theory of light [52-56]. Avogardo-Loschmidt 

number was predicted as [32]  

 
o 2 23

k
N 1/ (m c ) 6.0376 10           (13) 

 

leading to the modified value of the universal gas constant  

 
o o

R N k 8.338 kJ/(kmol-K)           (14) 

 

Also, by Eq. (13) the atomic mass unit becomes 

 
2

k
amu m c  

        
1/2 27

(hkc) 1.6563 10  kg/kmol


        (15) 

 

Since all baryonic matter is known to be composed of 

atoms, Eqs. (12) and (15) suggest that all matter in the 

universe is composed of light [33].  By Eqs. (8a)-(8b) the 

wavelength and frequency of photon in vacuum 
2 1/ 2 2 1/ 2

k k
c      are  

 
2 1/2 o

k k
1/ R 0.119935                  

           
2 1/ 2 9

k k
2.49969 10 Hz        (16) 

 

4. Modified definitions of thermodynamic temperature 

and pressure 

The classical definition of thermodynamic temperature 

is based on three translational degrees of freedom such that 

 

2 2 2 2 2

x y z t
3kT mv m(v v v ) mv            (17) 

 

One may have two possible interpretation of the above 

formula.  First is that there are translational kinetic energy 
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due to simultaneous motion in (x, y, z) coordinate 

directions which is physically impossible.  In reality 

translational motion of particle only takes place in one 

arbitrary direction, say x. Therefore, a second interpretation 

of Eq. (17) is that the translational energy of motion along a 

single arbitrary direction is decomposed into three 

independent coordinate directions.  The assumption of 

isotropy of space leads to Boltzmann principle of 

equipartition of energy and hence
t1 t 2 t 3
    . 

According to Eq. (3), particle translational velocity is 

the sum of the mean or cluster velocity and the random 

peculiar velocity   

 

mj mj mj cj mj
    u v V u V         (18) 

 
The above definition is in the same spirit as in cosmology 

where the peculiar velocity of a galaxy is defined as the 

difference between its velocity and the mean velocity of the 

cluster of galaxies to which it belongs. The thermodynamic 

system being considered herein is composed of a spectrum 

of molecular clusters under stochastically stationary state.  

In a recent study [39], it was shown that three different 

flow regimes based on the nature of cluster velocity 
m

v  in 

Eq. (3) could be identified.  For a system of ideal gas at 

thermodynamic equilibrium all three velocities in Eq. (18) 

are random such that Eq. (18) when squared, averaged, and 

multiplied by particle mass leads to the kinetic energy 

 
2 2 2 2 2

mxj mxj mxj cxj mxj
m m m m m    u v V u V     (19) 

 

since 
cxj mxj

0 u V . First the internal energy of particle due 

to translational motion of “cluster” in two directions 

(x , x )
 

 
is expressed as 

 

2 2

mx mx

1 1
ˆ mv mv

2 2
t

u
 

    

 

  
2 2 2

cx cx mx

1 1
mu mu mv

2 2
  

       (20) 

 

Next, the potential energy due to “stress” is related to the 

kinetic energy of peculiar velocity as 

 

2 2

mx mx

1 1
ˆ mV mV

2 2
p
ε

 
     

 

    
2 2

mx m

1
ˆmV mV pv

3
 

      (21) 

 

where pressure is defined as
2

m
p nmV / 3



 .  Hence, the total 

energy associated with harmonic translational motion of 

particle will become 

 

t
ˆ ˆ ˆ ˆ ˆpv

t p t
ε = u +ε = u   (22) 

 Clausius in his investigation of the mechanical theory 

of heat emphasized that the energy due to rotation and 

vibration of particles are significant [57] 

 

"In liquids, therefore, an oscillatory, a rotatory, and 

a translator motion of the molecules take place, but 

in such a manner that these molecules are not 

themselves separated from each other, but even in 

the absence of external forces, remain within a 

certain volume" 

 
Thus far the history of physics has shown that there are no 

such things as absolutely rigid elementary particles.  

Therefore, following Clausius the internal kinetic energy of 

rotational and vibrational motion of particles in two 

directions are written as [58] 

 

2 2 2

m m m

1 1
ˆ

2 2
r r

u = ε I I I
  

       (23) 

 

2 2 2

m m m

1 1
ˆ r r r

2 2
v v

u = ε
  

       (24) 

 

where ( ,  )I  are respectively the moment of inertia and 

the spring constant.   The dissipation of translational, 

rotational, and vibrational (pulsational) motions are 

schematically shown in Figure 2.   

 

          
 

Figure  2. Dissipation of energy from global (V, , W, K) 

to local (v, , w, ): (a) translational (b) rotational (c) 

vibrational (d) gravitational degrees of freedom. 

 
According to Figure 2, energy of global average 

translational, rotational, and vibrational motions could be 

dissipated into the corresponding local random motions 

thus being “transformed” to what Helmholtz called free 

heat.  The last dissipation mechanism (d) of Figure 2 refers 

to dissipation of scalar curvature and hence will be 

ultimately connected to what is referred to as gravitational 

viscosity [59, 40]. 

Following the classical methods, the internal “atomic” 

energy of particle is defined as the sum of its translational, 

rotational, and vibrational kinetic energy from eqs. (20), 

(23), and (24)  

 

2 2 2

x
ˆ ˆ ˆ ˆ mv r

t r v
u = u +u +u I

  
      (25) 

 

Finally, by Eqs. (22) and (25) the total atomic energy or 

atomic enthalpy is defined as the sum of internal kinetic 

energy and external potential energy and written as [40] 

TRANSLATIONAL  

DISSIPATION

ROTATIONAL 

DISSIPATION

PULSATIONAL 

DISSIPATION

GRAVITATIONAL 
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(a)

(b)

(c)

(d)
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
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
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ˆ ˆ ˆ ˆ ˆ ˆ ˆpv pv
t r v

h u +u +u u     (26) 

 

such that the total enthalpy becomes 

 

pH U V    (27) 

 

where ˆ ˆ ˆN( v(H, U, V) h, u, ) . 

According to Eq. (26) the system has four degrees of 

freedom and at equilibrium Boltzmann principle of 

equipartition of energy requires 

 

ˆ ˆ ˆ ˆpv
t r v

u = u = u   (28a) 

 

Also, equipartition principle of Boltzmann in Eq. (28a) can 

be extended to include all translational degrees of freedom 

such that 

 

x y z
ˆ ˆ ˆ ˆ ˆpv

t
u = u = u = u   (28b) 

 

that is in accordance with the virial theorem of Clausius 

[60].   

Since harmonic translational oscillations are considered 

to occur in two directions (x+, x-), (y+, y-), (z+, z-), Eq. 

(17) becomes  

 

2 2 2

x y z
3kT 2m(v v v )

  
      

     ˆ ˆ ˆ ˆ2( ) 2
x y z

u + u + u u   (29a) 

 

If one attributes the rotational and vibrational kinetic 

energy 
r v

( ,  )ˆ ˆu u to the kinetic energy of translational 

motions 
y z

( ,  )ˆ ˆu u  along the coordinates (y, z) the classical 

form of internal energy in Eq. (29a) and the modified form 

in Eq. (25) become equivalent with the exception of a 

factor of 2 due to inclusion of motion in two directions (x+, 

x-) according to the modified theory. Hence, one can 

express Eq. (29a) as   

 
2 2 2 2

t t t t
3kT ˆmv mv mv 2mv 2u

  
       (29b) 

 

leading to the classical expression for the internal energy 

 

T
3

Nk
2

U     (30) 

 

Recently, a modified definition of thermodynamic 

temperature T based on two translational degrees of 

freedom was introduced as [40]  

 
2

t
kT ˆ ˆ ˆ ˆ3 mv

t r v
u +u +u = u


   (31) 

 

that results in the modified form of internal energy 

 

3NkTU   (32) 

 

As a result, the classical and modified definitions of 

temperature and pressure are related by   
 

T 2T      ,      p 2p   (33) 

  

Although the equivalence of 
r v

( ,  )ˆ ˆu u and 
y z

( ,  )ˆ ˆu u  leads to 

identical particle internal energy it is suggested herein that 

the classical model does not correspond to the true motion 

of particles.  This is because in reality each particle can 

physically move only in one arbitrary translational 

coordinate direction at any instant of time.  Therefore, only 

translational, rotational, and vibrational motions can 

constitute three simultaneous independent degrees of 

freedom.  It could be argued that according to the classical 

practice all energy is attributed to a single arbitrary 

translational degree of freedom and Eq. (29a) merely 

represents a vector decomposition of this total translational 

kinetic energy into three independent coordinate directions 

due to principle of equipartition of energy.  However, while 

isotropy of space does require stochastic equipartition of 

energy along any arbitrary direction clearly this does not 

mean presence of actual physical motion along such 

coordinate directions. For example, if one considers 

harmonic translation of a particle confined to a spherical 

vessel, space isotropy requires that for time durations much 

longer than the period of oscillations particle should touch 

the surface area of the vessel homogeneously. Also, as 

argued above and according to Clausius [57] the rotational 

and vibrational kinetic energy of particles are significant 

and cannot be properly neglected.   

The factor 2 in Eq. (33) results in the predicted speed of 

sound a in standard air [58, 61] 

 

rmsx
v p / ρ p / (2ρ)a


      

o
3kT / (2m) 3R T / 2W 358 m/s      (34) 

 

in close agreement with observations.  Also, Eq. (34) leads 

to calculated r.m.s. molecular speeds (1365, 341, 365, 305, 

965, 291) m/s that are in reasonable agreement with the 

observed velocities of sound (1286, 332, 337, 308, 972, 

268) m/s in (H
2
, O

2
, N

2
, Ar, He, CO

2
) at standard 

temperature [61]. 

The square root of 2 in Eq. (34) resolves the classical 

problem of Newton concerning his prediction of velocity of 

sound as  

 

p / ρa    (35) 

 

discussed by Chandrasekhar [62]  
 

 “Newton must have been baffled, not to say 

disappointed.  Search as he might, he could find no 

flaw in his theoretical frameworkneither could Euler, 

Lagrange, and Laplace; nor, indeed, anyone down to 

the present” 
 

Indeed, the expression introduced by Euler
2

p ρv / 3 , 

Lagrange 
4/3

p ρ  as well as Laplace’s assumption of 

isentropic relation p b


  , where b is a constant and

p v
c / c  , that leads to the conventional expression for the 

speed of sound in ideal gas 
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RTa    (36) 

 

where 
o

R R / W  and W  is molecular weight, are all 

found to deviate from the experimental data as described by 

Brush [63].  

For example, the predictions of the speed of sound in 

Helium and Argonne (He, Ar) with  = (1.667, 1.667)

based on classical theory in Eq. (36) versus the modified 

theory in Eq. (34) are 

 

kT / m = (1018, 322) m/sa    (37a) 

 

3kT / (2m)  = (965, 305) m/sa   (37b) 

 

to be compared with the measured values [58] 

 

 = (972, 308) m/sa  (37c) 

 

Although predictions of Eq. (37a) based on isentropic 

process are reasonable those of the modified theory in Eq. 

(37b) based on isothermal process are closer to the 

observed values given in Eq. (37c).  

 

5. The First law of thermodynamics and mechanical 

equivalent of heat 

Some of the implications of the result of the previous 

section to the first law of thermodynamics for a closed 

system composed of ideal gas and mechanical equivalent 

of heat are examined in this section. It is first noted that 

both Helmholtz [64] and Clausius [57, 60]) based the 

foundation of the first law of thermodynamics on the 

application of the virial theorem to a system composed of 

weakly interacting gas. 

Historically, in his pioneering 1847 paper concerning 

the first law of thermodynamics Helmholtz argued that the 

thermal energy of the system may be decomposed into two 

parts, namely the kinetic energy or vis viva of particles and 

their potential energy due to the stress caused by their 

interactions [64] 

 
 “That which has been heretofore named the quantity 

of heat, according to this, be the expression, first, of 

the quantity of vis viva of the caloric motion, and 

secondly, of the quantity of those tensions between 

the atoms, which, by changing the arrangement of the 

latter, such a motion can develop. The first portion 

would correspond to that which has been heretofore 

called free heat, the second with that which has been 

named latent heat” 

 

Therefore, following Helmholtz [64] the first law of 

thermodynamics is expressed as 
 

System thermal energy = Free heat + Laten heat   (38) 

 

Hence, if one identifies U and pV as free heat and latent 

heat respectively enthalpy becomes the total thermal 

energy of the system H = Q and Eq. (27) may be viewed as 

the modified form of the first law of thermodynamics 

 

Q U W
  
   (39) 

 

In Eq. (39) the reversible heat and reversible work are both 

state functions and defined as [32, 40] 

 

TQ S    Reversible heat (40) 

 

pW V    Reversible work (41) 

 

Eq. (39) is only valid for ideal gas at equilibrium G = dG = 

0 and for non-ideal or non-equilibrium systems in the 

presence of “chemical” reactions it must include Gibbs 

chemical potential and becomes Euler equation [40] 

 

j j

j

ˆT NQ S U W H G       (42) 

where 
i i
ˆ ĝ  is chemical potential. 

The system energy in Eq. (39) is not to be associated 

with U but rather with the enthalpy Q = H.  The potential 

energy or work W in Eq. (39) through dissipation becomes 

also “thermal” in nature and relates to the kinetic energy 

due to random peculiar motion of particles by Eq. (21).  

When external thermal energy dQ is added to the system or 

mechanical work dW is done by the system Eq. (39) 

relates the changes of the three state functions by  

 

dQ dU dW   (43) 

 

As a result, the paradox as to how the path-dependence of 

heat and work exactly cancel each other according to 

classical thermodynamics 

 

( 0Q W)     (44) 

 

is now resolved because both reversible heat and reversible 

work are state functions.  This weakness of the classical 

formulation of the first law of thermodynamics is 

significant.  This is because heat relates to microscopic 

random motions whereas work relates to macroscopic 

ordered motions such that the exact cancellation of their 

path-dependence is indeed paradoxical. 

By Eq. (40) heat can be decomposed as 

 

T S
T dTdQ dS + S = dQ + dQ  (45) 

 

involving isothermal 
T

dQ  and isentropic 
S

dQ  heat.  

Decomposition of work from Eq. (41) is  

 

p v
p dpdW dV +V = dW + dW  (46) 

 

that involves isobaric (dilatational) work 
p

dW  and 

isochoric (pressure  or stress) work
V

dW .   

 For equilibrium condition at constant temperature and 

constant pressure by Eqs. (39), (45) and (46) the first law of 

thermodynamics becomes 

 

T p
dQ = dU dW  ,  dT = dp = 0 (47) 

 

and involves the conventional dilatational work  

 



238 / Vol. 17 (No. 4)  Int. Centre for Applied Thermodynamics (ICAT) 

p 2 1
p p( )W dV V V     (48) 

 

Similarly, under equilibrium condition at constant 

temperature and constant volume by Eqs. (39), (45) and 

(46) the first law of thermodynamics becomes 

 

T V
dQ = dU dW   ,       dT = dV = 0 (49) 

 

and involves pressure work such as the work done by a 

pump on incompressible fluid 

 

V 2 1
dp (p p )W V V     (50) 

 

In classical thermodynamics the isochoric work defined 

above is neglected and in the analysis of pumps such work 

called “flow work” is related to the change of fluid 

enthalpy. More general implications of the new paradigm 

require further future investigations. 

Next, the impact of the above results on mechanical 

equivalent of heat is examined.  The factor of 2 in Eq. (33) 

also leads to the modified value of Joule-Mayer mechanical 

equivalent of heat J [39] 
 

c
  J 2J 2 4.169 8338 Joule/kcal      (51) 

 

where the value 
c

J 4.169 4.17 [kJ/kcal] is the average of 

the two values Jc = (4.15, 4.19) reported by Pauli [65].  The 

number in Eq. (51) is thus identified as the universal gas 

constant in Eq. (14) when expressed in appropriate MKS 

system of units  
 

o o
 R kN J 8338  Joule/(kmol K)      (52) 

 

The modified value of the universal gas constant in Eq. 

(52) was recently identified [66] as De Pretto number 8338 

that appeared in the mass–energy equivalence equation of 

De Pretto [67] 
 

2 2
Joulemc      = mc / 8338  kcal E   (53) 

 

Unfortunately, the name of Olinto De Pretto in the 

history of evolution of mass energy equivalence is little 

known. Ironically, Einstein’s best friend Michele Besso 

was a relative and close friend of Olinto De Pretto’s brother 

Augusto De Pretto.  The relativistic form of Eq. (53) was 

first introduced by Poincaré [68] 
 

2

r
m cE   (54) 

 

where 
2 2

r o
m m / 1 v / c  is Lorentz relativistic mass. 

Since the formula (53) is the only equation in the paper by 

De Pretto [67], the exact method by which he arrived at the 

number 8338 is not known even though one possible 

method was recently suggested [66]. The important 

contributions by Hasenöhrl [69] and Einstein [70] as well as 

the equivalence principle, equivalence of the rest or 

gravitational mass and the inertial mass were discussed in a 

recent study [33]. 

 

 

6. Thermodynamic properties of ideal gas 

Before a critical comparison between entropy as 

defined in thermodynamics versus information theory is 

made, the exact nature of entropy for a simple system 

namely an ideal gas will be presented.  The partition 

function Z and Helmholtz free energy F of an ideal gas are 

given by Kardar [71] as 

 
NN

3N/ 2

2 3

2 mkT 1
Z(T, , N) ( )

N! h N!

V V
V


 

 
 
 

 (55) 

and 

 

2

e 3 2 mkT
NkT ln ln

N 2 h

V
F


  

    
        

  (56) 

 

with the characteristic wavelength defined as  

 

h / 2 mkT    (57) 

 

According to Eq. (8a) the characteristic wavelength 

associated with Planck constant h is de Broglie wavelength 

of matter waves in Eq. (9). 

If one assumes that for an ideal gas at thermodynamic 

equilibrium the atomic volume v̂  is precisely defined in 

terms of particle de Broglie wavelength in Eq. (9) as 

 
3

v̂    (58) 
 

the volumetric number density of particles becomes 

 

3

N 1
n

V
 


  

3
N

v̂

V V
 


 (59) 

 

Therefore, for ideal gas at a given temperature and volume 

(T, V) the number of particles, Heisenberg-Kramers virtual 

oscillators [46] is given by 

 

eq

eq

eq

3

3

3

N < N

N = N

N > N

v̂       

v̂       

v̂       



















 (60)  

 

In other words, at equilibrium for a given temperature T 

Eq. (9) gives de Broglie matter wavelength such that 

atomic 
3
 and system V volumes by Eqs. (58)-(59) lead to 

the equality 

 
3
n 1  (61)  

 

Substituting from Eqs. (58)-(59) into Eq. (55) gives the 

partition function for ideal gas 

 
N N

N

N

N N
Z W e

N! (N / e)
     (62) 

 

With equations (58) and (62) one obtains Helmholtz free 

energy for an ideal gas from Eq. (56) as 

 

NkTF    (63) 
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By substitution for Helmholtz free energy from Eq. (63) 

and in view of Eq. (58) the chemical potential of ideal gas 

at equilibrium becomes  

 

3

T,

ˆ kT kT ln(n ) 0
N NV

F F
    


   (64) 

 

The vanishing of Gibbs chemical potential ˆ ˆ 0g  for an 

ideal gas in Eq. (64) establishes an exact correspondence 

between ideal gas and photon gas thus closing the gap 

between radiation and gas theories [40]. This 

correspondence suggests that like photons the ideal gas 

system energy only weakly depends on the number of 

oscillators because of their exceedingly large numbers, 

about 10
26

 per one kmol meaning 10
13

 average-size clusters 

each containing 10
13 

particles.  Since each cluster can break 

up into many smaller ones just like photons the number of 

Heisenberg-Kramers [46] virtual oscillators is practically 

infinite.  One notes that just like photons non-conservation 

of number of oscillators of ideal gas means vanishing of the 

second Lagrange multiplier and hence chemical potential in 

the classical derivation of Boltzmann distribution [40, 72]. 

For non-ideal or multicomponent mixtures that are 

“reactive” the chemical potential will be finite and Eq. (64) 

assumes its classical form [72] 

 

3 oi i

i o i

o o

n p
ˆ ˆkT ln[ n ( )] kT ln( )

n p
      (65) 

 

Hence, at a given (T, V) if the equilibrium criteria (60) and 

hence (64) are not satisfied such that N > Neq  (N < Neq), 

then the number of Heisenberg-Kramers virtual oscillators 

will decrease (increase) through changes in cluster sizes 

until the state of equilibrium is achieved and Gibbs free 

energy is minimized dG = 0.              

Next, entropy of ideal gas is determined directly from 

Eqs. (63) and (32) and the definition of Helmholtz free 

energy 

 

T 3NkT T NkT pF U S S V         (66) 

 

as 

 
4NkS   (67) 

 
in exact agreement with the recent results obtained for 

photon gas [40].  The origin of the number 4 in Eq. (67) 

may be connected to the total number of complexions W  

associated with four independent degrees of freedom 

namely translational, rotational, vibrational, and potential 

and defined as 

 
4

t r v p
W W .W .W .W W   (68) 

 
Substituting from Eq. (68) into Eq. (85) of the next section 

gives the total number of complexions [34]  

 
4

N

4 NN
W e

N!
 
 
 
 

 (69) 

 

that by Boltzmann Eq. (84) gives the same result as in Eq. 

(67).   

At the end of this section some implications of what we 

call Helmholtz decomposition of thermal energy into free 

versus latent heat is examined.  For example, it is possible 

to introduce a modified form of Boltzmann thermodynamic 

entropy in Eq. (84) starting from Boltzmann distribution 

function [40] expressed in normalized form as 

 

j
ˆ( ) / kT

j
N Ne

H 




  (70) 

 

where the energy 
j

( )E E-  is identified as transition 

enthalpy Hj that by Eq. (32) and for an ideal gas 

j j
p N kTV = becomes 

 

j j j j
p 4N kTH U V =   (71) 

 

Next, by equations (64) and (71) Eq. (70) gives 

 

j j
/ kT 4 N

j
N Ne Ne

H 

   (72) 

 

thus leading to the definition of probability of state j  

 

j
4 N

j j
N / N ep



   (73) 

 

The alternative form of Boltzmann thermodynamic entropy 

is now introduced as 

 

j j
k lnS p    (74) 

 

Substitution from Eq. (73) into Eq. (74) gives  

 

j j
4kNS   (75) 

 

in exact agreement with Eq. (67).  The reason for 

equivalence of Boltzmann theory in Eq. (84) versus the 

modified theory in Eq. (74) is that Boltzmann distribution 

in Eq. (70) is itself derived on the basis of maximization of 

W [40, 72].  

The result in Eq. (67) differs from the entropy of an 

ideal gas according to Sackur-Tetrode formula [73] 

 

3

3 2 mkT 5
Nk ln ln

N 2 h 2

V
S


   

     
         

 (76) 

 

One can express Eq. (76) as  

 

3

e 3 2 mkT 3
Nk ln ln

N 2 h 2

V
S


   

     
         

 (77) 

 

that after substitutions from Eqs. (57)-(59) reduces to 

 

3 5
Nk(1 ) Nk

2 2
S      (78) 

 
Also, substituting the result in Eq. (78) into the expression 

for chemical potential gives 
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U,V

ˆ 5
k 0

T N N 2

S S 
    



 (79) 

 
in agreement with Eq. (64).   

However, when the modified definition of temperature 

in Eq. (33) that changes the factor 3/2 to 3 in the internal 

energy U according to Eq. (32) is taken into account the 

result in Eq. (78) becomes identical to that in Eq. (67) and 

Eq. (79) is modified as 

 

U,V

ˆ
4k 0

T N N

S S
    



 (80) 

 
in accordance with the equilibrium criteria 

 
ˆN T 4NkT T 0G S S H =        (81) 

 
Finally, from Eq. (63) the thermodynamic pressure 

becomes 

 

T,N

NkT
p

T

F

V


  


 (82) 

 
that is the ideal gas law. 

 

7. Objective versus subjective nature of thermodynamic 

entropy 

Possible subjective versus objective nature of entropy 

has been subject of much debate ever since 1948 when 

Shannon [74, 75] used the name entropy in his information 

theory.  The objective nature of thermodynamic entropy is 

evident from its classical definition first introduced by 

Clausius 

 

rev
/ TdS dQ  (83) 

 
In other words, direct connection between entropy S and 

heat Q clearly establishes the objective nature of the 

former.   

The misunderstandings concerning possible subjective 

nature of entropy is in part because of its statistical 

definition first introduced by Boltzmann. [76, 77] 

 

k ln WS    ,  
j j

k ln WS   (84) 

 

The total number of complexions is 

 

j

j

W W  (85) 

 
and the number of complexions for distributing Nj 

indistinguishable particles among gj distinguishable cluster 

[40] or “quantum state” j according to combinatoric 

methods [78] of Boltzmann [76, 77] and Planck [49] is 

 

 

j j

j

j j

(N g 1)!
W

N ! (g 1)!

 



  (86) 

 

If following the ideas of Onnes and Ehrenfest the 

quantity 
j j

(N g 1)   is viewed as the total number of 

symbols  composed of 
j

N  indistinguishable particles and 

j
(g 1)  available distinguishable clusters one may consider 

the inverse of Eq. (86) as probability of complexion j [34] 

 

 

j j

j

j j j

N ! (g 1)! 1

(N g 1)! W
p


 

 
 (87) 

 

such that Eq. (84) could be expressed as 

 

k lnS p     , 
j j

k lnS p   (88) 

 

when probability of  all complexions are independent of 

one another and hence 

 

j

j

1

W
p p       (89) 

 

 According to the information theory of Shannon [74, 

75] the amount of information H also referred to as 

information entropy is expressed by Shannon formula 

 

j j

j

H lnK p p    (90) 

 

where K is a positive constant.  On the other hand, 

thermodynamic entropy of mixture is obtained from Eqs. 

(88)-(89) as [34] 

 

j j j j

j j

N k N lnS S p    (91) 

 

leading to “mixture” entropy [34] per particle  

 

j j

j

/ N k lnS s p p      (92) 

 

where
j j

N / Np  . Changes in information could be 

viewed as changes in entropy in harmony with ideas of 

Brillouin [79]. Equations (90) and (92) only differ by 

Shannon constant K versus Boltzmann constant k.  

 The occurrence of the universal constant k in Eq. (92) 

has fundamental significance [34]. According to Equations 

(7)-(11) Planck and Boltzmann constants are two 

fundamental constants of nature that relate to spatial and 

temporal aspect of Casimir [47] vacuum fluctuations. 

Because all conceivable information must be transmitted by 

some physical entity, such as electron, photon, neutrino, 

etc. in space-time, it is expected that both constants (h, k) 

will play a central role in transmission of information.  

Therefore, it is not advisable to modify thermodynamic 

entropy in Eq. (92) to achieve correspondence with Eq. 

(90).  Instead, choosing Shannon “measure” as K = k leads 

to exact equivalence of Eqs. (90) and (92) as discussed in 

[34]. Such equivalence can also be achieved by defining 

dimensionless Shannon information entropy and 

Boltzmann thermodynamic entropy as   
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j j

j

/H / k lnK s p p     (93) 

 

Recently, it was suggested by Ben-Naim [80] that to 

achieve exact correspondence between Boltzmann entropy 

in thermodynamics in Eq. (92) and Shannon entropy in 

information theory in Eq. (90) the dimension of 

thermodynamics absolute temperature be changed [80] 

 

“One should redefine a new absolute temperature; 

denote it tentatively as T  to replace kT. The new 

temperature T  would have the units of energy and 

there would be no need for Boltzmann constant.  The 

equation for entropy will be simply S = lnW, 
21

 and 

entropy would be rendered dimensionless”; “This will 

automatically expunge the Boltzmann constant kB from 

the vocabulary of physics” 
 

Some of the reasons as to why such a change of dimension 

of absolute thermodynamic temperature is not advisable are 

discussed in the sequel.  

Equations (4)-(10) clearly show that the universal 

constants (h, k) are intimately related to the energy of 

stochastically stationary fluctuations of Casimir [47] 

vacuum with the dimensions 

 
2 1/2

h h
   
         [J-s].[Hz] = [J]  (94a) 

2 1/2
k k

   
       [J/m].[m]= [J]    (94b) 

 

Therefore, neither Planck constant h nor what he defined as 

Boltzmann constant k could be expunged from the 

vocabulary of physics.  Also, according to Eqs. (6) and (10) 

Kelvin absolute temperature is identified as a length scale 

associated with mean wavelength of thermal oscillations 

 
2 1/2

k kT
 
            (95) 

  
The identification of dimension of absolute thermodynamic 

temperature as [meter] rather than [degree K] is a step 

towards clarification of the exact physical nature of this 

intensive property.   

Because temperature is a measured quantity ultimately 

it is the theory that must determine the significance of such 

a variable and its dimension according to Planck [81]. 

 
“Every measurement first acquires its meaning for 

physical science through the significance which a 

theory gives it” 

 

Therefore, following Planck’s suggestion, it is reasonable 

to change the dimension of absolute thermodynamic 

temperature T from [degree K] to [meter]. The exact 

correspondence between H and s could be achieved by 

dimensionless entropy in Eq. (93) or the choice of Shannon 

measure as K = k [34].  

Arguments have also been made that the very name 

entropy first coined by its discoverer Clausius should be 

changed [82] 

 
“It is also time to change not only the units of entropy 

to make it dimensionless, but the term “entropy” 

altogether. Entropy, as is now recognized, does not 

mean “transformation, or “change” or “turn”.  It 

does mean information.  Why not replace the term that 

means “nothing” as Cooper noted, and does not even 

convey the meaning it was meant to convey when 

selected by Clausius? Why not replace it with a simple, 

familiar, meaningful, and precisely defined term 

“information?” 

 

It is emphasized however that contrary to the above 

quotation the name entropy has been chosen most 

appropriately by Clausius to represent precisely what it 

should namely “transformation”.  According to the result in 

Eq. (67) for ideal gas, entropy relates to the number of 

Planck [48] or Heisenberg-Kramers [46] oscillators. 

Therefore, the second law of thermodynamics suggests that 

in all natural processes there is a tendency to transform 

energy and hence motion from ordered macroscopic 

motions of a few large-scale oscillators to random 

microscopic motions of many small-scale oscillators thus 

increasing the entropy of the system.  In other words 

entropy according to its macroscopic definition by Clausius 

is directly related to heat  

 

rev T

T T

dQ dQ
dS    (96) 

 

Therefore, all types of energy dissipation due to plastic 

deformation, friction, viscosity, etc. will lead to 

transformation of energy of ordered (correlated) motions 

into that of disordered (uncorrelated) random motions that 

is heat thus leading to increase of entropy by Eq. (96). It 

seems that if we follow the changes of dimensions and 

notations suggested by Ben–Naim [80, 82] the state of our 

scientific terminology may become void and hence 

approach what he calls “Tohu Vavohu” [80] meaning total 

chaos. 

 

8. The foundation of relativistic thermodynamics  

In this section some of the implications of the dynamic 

theory of relativity of PoincaréLorentz as opposed to 

kinematic theory of relativity of Einstein [39] to relativistic 

thermodynamics will be examined.  Historically,   Planck 

[83], Mosengeil [84], Einstein [85], Laue [86], and Jüttner 

[87] first established the foundation of relativistic 

thermodynamics through the introduction of the relativistic 

transformations of thermodynamic quantities  

 

2 2

1 v / c
o

Q = Q   (97) 

 

2 2

o
T T 1 v / c   (98) 

 

o
p p  (99) 

 

o
S = S  (100) 

 

The transformation of heat in Eq. (97) was also maintained 

by both de Broglie [3] as well as Pauli [88]. 

Because reversible heat is defined by Clausius as dQrev 

= TdS, on the basis of Carnot cycle Kelvin arrived at the 

equality of ratios of heat and absolute temperature  

o o
T / TQ / Q 

?

 (101) 
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Historically the satisfaction of Kelvin formula (101) was 

perhaps the main motivation behind the choice of 

relativistic transformations (97) and (98). However, one 

expects the transformation for heat Q that is energy to 

follow Poincaré-Einstein relativistic energy transformation 

[68, 89-91] 

 

2 2

o
/ 1 v / cE = E   (102) 

 

In 1952 Einstein in his correspondence with Laue [92] 

challenged the relativistic transformations for heat and 

temperature in Eqs. (97) and (98) and proposed instead the 

modified formulas 

 

2 2

o
/ 1 v / cQ = Q   (103) 

 

2 2

o
T T / 1 v / c   (104) 

 

The discrepancy between Eqs. (97)-(98) and (103)-(104) 

resulted in some major controversies concerning the 

foundation of relativistic thermodynamics [93-96].   In fact, 

recently Landsberg and Matsas [95] questioned the very 

existence of a continuous relativistic temperature 

transformation.   

Because of the definition of Boltzmann constant in Eq. 

(8b) by Eq. (6) the absolute thermodynamic temperature is 

identified as a length scale  

 
2 1/ 2

T
 
      (105) 

 

Since wavelengths transform by the Lorentz-FitzGerald 

contraction [97] as 

 

2 1/2 2 1/2 2 2

o
1 v / c        (106) 

 

by Eqs. (105) and (106) one obtains 

 

2 2

o
T T 1 v / c   (107) 

 

that is in accordance with Planck formula (98) rather than 

Einstein formula (104).   

The transformations for heat and temperature in Eqs. 

(13) and (107) are not compatible with Kelvin formula 

(101). To address this, one requires relativistic 

transformation of Boltzmann constant k.  The stochastic 

definition of Boltzmann constant from Eq. (10) could be 

written as 

 
2 1/2 2 2 1/2

k k
k mc mc /       (108) 

 

By the transformation of wavelengths in Eq. (106) and the 

Lorentz relativistic mass [97] 

 

2 2

o
m m / 1 v / c   (109) 

 

one obtains from Eq. (108) the transformation for the 

Boltzmann constant 
2 2

o
k k / (1 v / c )   (110) 

 

It is interesting that recently Avramov [98] anticipated the 

fact that the Boltzmann constant is not relativistically 

invariant and suggested the transformation  

 

2 2

B u B o
(k ) (k ) 1 v / c   (111) 

 

that does not agree with the formula (110) of the present 

theory.  However, only by the formula (110) does Eq. (107) 

lead to the consistent energy transformation 

 

o o o

2 2 2 2

k T
kT

1 v / c 1 v / c

  

 


  (112) 

 

By the expressions for reversible heat Q = TS in Eq. (40) 

and entropy S = 4Nk in Eq. (67) and the transformations of 

T and Q in Eqs. (107) and (103) Kelvin formula (101) 

becomes 

 

o o o oo

4NkT kT

4N k T k T
o

Q

Q
  






 (113) 

 

Therefore, a consistent relationship between Kelvin 

formula (101) and the transformation of Q and T is only 

possible through the inclusion of the correct transformation 

of Boltzmann constant in Eq. (110). 

Next, from the stochastic definition of Planck constant 

in Eq. (8a) 

 
2 1/2

k k
h m c    (114) 

 

and the transformations of wavelength in Eq.  (106) and 

Lorentz relativistic mass in Eq. (109) one obtains 

relativistic invariance of Planck constant  

 

o
h h  (115) 

 

The invariance of Planck universal constant and the Planck 

formula for energy quanta  = h along with the energy 

transformation  

 

o o o

2 2 2 2

h
h

1 v / c 1 v / c


   

 


  (116) 

 
lead to the frequency transformation 

 

2 2

o
/ 1 v / c      (117) 

 
The frequency dilatation in Eq. (117) leads to 

contraction of time duration or period  as 

 

2 2

o
1 v / c     (118) 

 
Thus, space extensions and time durations both contract by 

Eqs. (106) and (118) such as to maintain a constant velocity 

of light 

o o
/ / c       (119) 
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Therefore, the terminology “time dilatation” often used in 

physics literature is misleading since time durations 

actually contract due to motion.  It is also important to note 

that strictly speaking the speed of light is not a constant but 

varies with the temperature of Casimir [47] vacuum as the 

universe expands.  However, since the expansion of cosmos 

occurs through eons the velocity of light appears as a 

constant for time durations relevant to human civilization.  

In accordance with Eq. (102), all energy related 

thermodynamic parameters f = (Q, H, U, W, G, F, p, m, R
o
,

R , N ) transform as  

 
2 2

o
f f / 1 v / c=    (120) 

 

where (p = mv, 
o

R , 
o

R R / W ,
o

N N / N ) are 

momentum, universal gas constant, gas constant, number of 

moles, and W  is the molecular weight.  Since physical 

space or Aristotle’s ether is considered to be compressible 

in accordance with Planck’s compressible ether [39-40], 

volume contracts according to the Lorentz-FitzGerald 

contraction [97]  

 
2 2

o
1 v / cV = V   (121) 

 
Also, whereas energy per particle follows Eq. (102) 

 
2 2

o
ˆ ˆ / 1 v / cε = ε   (122) 

 

energy per unit mass ε  and energy per unit volume ε  

transform as 

 

o
ε = ε        ,          

2 2

o
/ (1 v / c )ε = ε     (123) 

 
From the ideal gas law and the definition of reversible 

work in Eq. (41) the potential energy 

 
p NkTW V   (124) 

 
must transform by Eq. (120) and due to volume 

transformation in Eq. (121) pressure transforms as  

 
2 2

o
p p / (1 v / c )   (125) 

 
thus modifying the classical result in Eq. (99).   

The transformations of volume and pressure by Eqs. 

(121) and (125) lead to density and specific volume 

transformations 

 
2 2

o
/ (1 v / c )         ,    

2 2

o
v v (1 v / c )    (126) 

 
Hence, higher local densities will be measured by an 

observer moving with respect to a compressible medium as 

schematically shown in Figure 3.  

                   
 

Figure 3. Density of a medium as measured by an observer 

that is (A) stationary (B) moving with respect to the 

medium. 

 
In view of transformations for temperature and Boltzmann 

constant in Eqs. (107) and (110) entropy transforms as 
 

2 2

o
/ (1 v / c )S = S   (127) 

 

that modifies the classical result in Eq. (100).  Also, the 

transformations in Eqs. (110) and (127) and Boltzmann 

formula (84) result in relativistic invariance of the number 

of complexions  

 
W = Wo   (128) 

 
Finally, the transformations for Avogadro-Loschmidt 

number 
o

N 1/ amu  and molecular weights 
o

W mN  

are 

 

o o 2 2

o
N N 1 v / c   (129) 

 

o
W W  (130) 

 

Recently, it was shown [40] that the invariant form of 

the first law of thermodynamics for ideal gas hence Eqs. 

(39), (41) and (67) also apply to photon gas or the radiation 

field within which it resides 

 
T 4NkT p 3NkT NkTS = U + V =   (131) 

 

Therefore, closure of the gap between gas theory and 

radiation theory [40] results in identical Helmholtz 

decomposition of thermal energy for ideal gas  

 

Free heat

Latent heat

3
T 3NkT

4

1
p T = NkT

4

  

U = S

V = S 








Ideal

gas

  (132a) 

 
as well as photon gas  

 

w

w

3
T 3NkT

4

1
p T NkT

4

,   

,   

U = S =

V = S 

  

  







Photon

gas

   (132b) 

 
It is known that exactly ¾ and ¼ of the total spectral energy 

of Planck black body or equilibrium radiation fall on > w 
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and < w sides of Wien wavelength w given by Wien 

displacement law [40]  

 

w o 2
 m.K

0.2014
T 0.002897  

R
     (133) 

 

in agreement with Eq. (132b).  In view of the scale 

invariant nature of the model shown in Figure 1, it is 

reasonable to anticipate that parallel to molecular dynamics 

at scale  = m in Eq. (132a) and chromo-dynamics at scale 

= k in Eq. (132b), Helmholtz decomposition should also 

be valid in cosmology at galactic-dynamics scale  = g, and 

in isotropic turbulence at equilibrium eddy-dynamics EED 

scale = e [39].  

The results in equations (132a)-(132b) suggest that in 

harmony with the concept of dark energy and dark matter 

in cosmology [99-104] one can express Eq. (131) as sum of 

dark energy and dark matter 

 

3 1
T T

4 4
E = S + S DE DM

      
   (134) 

 

Hence, of the total energy of the field TS, ¾ is associated 

with free heat and identified as electromagnetic mass hence 

dark energy and ¼ is associated with latent heat and 

identified as gravitational mass or dark matter [40].  The 

predicted [33] fractions ¾ and ¼ were found to be in close 

agreement with the recent observations by Riess et al., 

[105, 106], Schmidt et al., [107], and Perlmutter et al., 

[108].  

 The result in Eq. (134) is also in accordance with 

general theory of relativity [109-110] as described by Pauli 

[110] 
 

 “The energy of a spatially finite universe is three-

quarters electromagnetic and one-quarter 

gravitational in origin” 
 

Scale invariance of the model suggests that dark matter 

in Eq. (134) may be expressed as [33] 

 

1 1 1
DM E DE DM

   
     (135) 

 

Therefore, according to Equations (134) and (135) all 

matter in the universe is composed of dark energy hence 

electromagnetic mass as anticipated by both Lorentz [97] 

and Poincaré [68, 89-90]. 

 
9. Concluding remarks  

Some implications of a scale-invariant model of 

statistical mechanics to classical and relativistic 

thermodynamics were investigated. Modified 

transformations for thermodynamic properties were 

introduced.  Helmholtz decomposition of heat into what he 

called free and latent heat was shown to lead to a modified 

form of the first law of thermodynamics. Also, modified 

properties of ideal gas were presented.  Subjective versus 

objective aspects of Boltzmann thermodynamic entropy and 

Shannon information entropy were discussed. Finally, it 

was shown that of the total energy constituting matter ¾ is 

dark energy and represents electromagnetic mass and ¼ is 

dark matter and represents the gravitational mass in 

accordance with general theory of relativity.  
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Nomenclature 

a speed of sound p / ρ  [m/s] 

a  speed of sound RT  [m/s] 

a  speed of sound p / ρ  [m/s] 

c speed of light [m/s] 

pc  specific heat at constant pressure [J/kg.K] 

vc  specific heat at constant volume [J/kg.K] 

DM dark matter [J] 

DE dark energy[J] 

E energy [J] 

f velocity distribution function 

f arbitrary function 

F Helmholtz free energy [J]  

G Gibbs free energy [J] 

ĝ  atomic Gibbs free energy [J/particle] 

g specific Gibbs free energy [J/kg] 

g number of degeneracy 

H Shannon entropy 

H enthalpy [J] 

h  molar absolute enthalpy [J/kmol] 

ĥ  atomic absolute enthalpy [J/particle] 

h Planck constant [j-s] 

I information entropy 

I moment of inertia [kg.m
2
] 

Jc mechanical equivalent of heat [J/kcal] 

J modified mechanical equivalent of heat [J/kcal] 

K Shannon constant measure 

k Boltzmann constant [J/K] 

L system length [m] 

 atomic free path [m]

m atomic mass [kg] 

mr Lorentz relativistic mass [kg] 

mk photon gravitational mass [kg] 

N number of particles 

N
o
 Avogadro-Loschmidt number [molecules/mole] 

p  root-mean-square momentum [N/m
2
] 

p modified pressure [N/m
2
] 

p  classical pressure p = 2p  [N/m
2
] 

p probability 

Q reversible heat [kcal] 
o

R  universal gas constant [J/kmol.K] 

R  gas constant 
o

R / w   [J/kg.K] 

S entropy [J/K] 

ŝ  atomic entropy [J/K] 

T  classical absolute temperature [K]  

T modified absolute temperature T /2  [K] 

t time [s] 

U internal energy [J] 

u “atomic” velocity [m/s] 

û  “atomic” internal energy [J/particle] 

V  diffusion velocity [m/s] 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Deustua,+S&fullauthor=Deustua,%20S.&charset=UTF-8&db_key=AST
http://adsabs.harvard.edu/cgi-bin/author_form?author=Deustua,+S&fullauthor=Deustua,%20S.&charset=UTF-8&db_key=AST
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V  peculiar velocity [m/s] 

V volume [m
3
]

v element velocity [m/s] 

v̂  “atomic” volume [m
3
/particle] 

W number of complexions 

W  total number of complexions 
4

W  

W  molecular weight [kg/kmol] 

W reversible work [J] 

w convective velocity [m/s] 

x  space coordinate [m] 

Z partition function 

 

Greek Letters 

 index for scale 

  specific heat ratio =
p v

c / c  

  thermal energy density = h  [J/ m
3
] 

 angular coordinate [rad]

 wavelength [m]

w Wien wavelength [m]

̂  atomic Gibbs chemical potential [J/particle] 

 frequency [Hz] = [1/s] 

 mass density [kg/m
3
] 

 period [s]

  spring constant [J/m
2
] 
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