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Abstract 

This study aims to investigate the dynamic behavior of the sandwich type bottom plate, which 

were not addressed before, attached to a rigid cylindrical fluid container resting on Pasternak type 

elastic foundation. Thin plate assumptions are incorporated with elastic foundation and 

plate/foundation interaction system is solved through a mixed finite element formulation. A 

boundary element procedure is also employed to determine the inertial effect of the involved 

fluid, which is considered to be ideal. The procedure is tested through the free vibration analysis 

of homogeneous circular bottom plates and some original results are presented regarding the 

properties of sandwich plates.  

 

 

Received: 01/02/2018 

Accepted: 20/09/2018 

 

 

Keywords 

Sandwich plate 

Hydroelasticity 
Free-vibration 

Elastic bottom 

Pasternak foundation 

 

 

1. INTRODUCTION 

 

Theories of structural elements are mainly based on their geometrical properties. As a two dimensional flat 

structural element, plates are frequently involved in many engineering disciplines, e.g. deck of bridges in 

civil engineering, tank bulkhead in marine engineering, splitter of engine entrance in aerospace engineering, 

etc. While reducing the formulation of structure from three dimensions to planar geometries; in order to 

achieve an adequate accuracy, many theories and solution procedures have been developed [1]. Due to their 

operating conditions plates commonly interact with external continuums, such as elastic foundation [2], 

fluid domain [3], or both of them [4] at the same time. Dynamic behavior of plates under such coupled 

states has been investigated extensively, with a special attention to the effect of interaction on the 

mechanical behavior. Early works based on the finite element analysis of the free vibration problem 

regarding Kirchhoff plate-Pasternak foundation interaction was initiated by Omurtag et al. [5] and Omurtag 

and Kadıoğlu [6]. A thorough review of the relatively early studies on the beam-foundation and plate-

foundation interaction problems can be followed from [7]. Three dimensional elasticity equations of small 

deformation are involved in the free vibration analysis of thick circular plates resting on Pasternak 

foundation by Zhou et al. [8]. Akhavan et al. [9] reported an exact-closed form solution for the free vibration 

problem of rectangular Mindlin plates interacting with Winkler/Pasternak type elastic foundation and 

exposed to in-plane forces. Ferreira et al. [10] derived a collocation method employing radial basis 

functions in order to investigate the vibration behavior of shear deformable plates resting on Pasternak 

foundation. Dehghan and Baradaran [11] incorporated finite element and differential quadrature methods 

for the evaluation of buckling and free vibration characteristics of rectangular thick plates resting on 

Pasternak foundation, by means of the 3D elasticity theory. Considering the last two decades, studies 

concerning plate-fluid interaction problems can be reported as follows. Ergin and Uğurlu [12] proposed a 

boundary element solution for the free vibration problem of clamped rectangular plates partially immersed 

in fluid domain. Free vibration response of partially filled fluid storage tanks was evaluated by Ergin and 

Uğurlu [13] through the solution of a boundary integral equation representing the problem. Jeong [14] 

incorporated Fourier-Bessel series expansion and Rayleigh-Ritz method to present wet frequency 
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parameters of two identical circular plates constraining a fluid domain laterally bounded by rigid walls. The 

same problem replacing circular plates by rectangular ones is solved by Jeong and Kim [15]. Askari et al. 

[16] performed analytical and experimental analyses of circular plates submerged in fluids regarding the 

free vibration response. Askari and Daneshmand [17] presented an analytical assessment of the dynamic 

parameters of a rigid cylindrical fluid storage tank’s bottom plate while a rigid cylindrical body is 

submerged concentrically and partially into the fluid domain. Kwak and Yang [18] obtained the virtual 

added mass matrix representing the inertia of the fluid domain by implementing the Mathieu functions and 

analyzed the free vibration behavior of thin rectangular clamped plate partially immersed in fluid 

continuum. The free vibration analysis of elliptical bottom plate attached to a rigid fluid container was 

conducted by Hasheminejad and Tafani [19], where the container was partially filled with inviscid and 

incompressible fluid. In a recent study, Ugurlu [3] presented a dual reciprocity boundary element 

formulation for the free vibration analyses of Kirchhoff plates interacting with fluid. 

 

Compared to the studies on plate-fluid and plate-foundation interaction problems, it can be easily noticed 

that the number of studies conducted on the dynamic problem of the plate-fluid-foundation was limited 

until recently. In a relatively early period, Chiba [20] presented the solution of axisymmetric vibration 

problem associated with a thin elastic bottom plate attached to a cylindrical fluid tank resting on Winkler 

foundation considering the free surface effect. Ugurlu et al. [4] presented a combined mixed finite element-

boundary element solution procedure for determination of the free vibration parameters associated with a 

rectangular thin plate in contact with Pasternak foundation at one face and completely or partially coupled 

with an unconfined fluid domain on its other face. Following this work, Hashemi et al. [21] handled the 

same problem employing the Mindlin plate assumptions and adopting the Rayleigh-Ritz method through 

Timoshenko beam functions, where the fluid domain is assumed to be limited along depth and width, but 

infinite in its longitudinal direction. Then, Hashemi et al. [22] presented the buckling loads and free 

vibration characteristics of an elastic bottom attached to a rigid rectangular fluid container under linearly 

varying in-plane loads. Kutlu et al. [23] replaced the thin plate assumptions and isotropic foundation in 

Ugurlu et al. [4] by a first order shear deformable plate model and a newly proposed orthotropic three 

parameter foundation, respectively. Dynamic characteristics of symmetrically laminated cross-ply Mindlin 

plates leaning towards Pasternak foundation and vertically interacting with fluid were investigated by 

Shahbaztabar and Ranji [24]; they adopted the Rayleigh-Ritz method by employing the Chebyshev 

polynomials and considered also the influence of uniform in-plane load acting on the plate. Ugurlu [25] 

presented a higher order boundary element solution procedure to examine the free vibration behavior of 

elastic bottom plates of rigid fluid containers lying on Pasternak foundation. Hasheminejad and 

Mohammadi [26] improved the study of Ugurlu [25] by adopting active control applications through a 

semi-analytical approach, where the system is modeled to reflect 3D dynamic response characteristics. In 

a very recent study, Kutlu et al. [27] investigated the free vibration characteristics of a moderately thick 

bottom plate of rigid fluid storage tank by taking the free surface effect into account; they stated that the 

influence of the free surface on the natural frequencies of the bottom plate can be neglected. 

 

The main purpose of this study is to display the free vibration characteristics of sandwich type bottom plates 

attached to rigid fluid storage tanks resting on elastic foundation. Sandwich structures are known for their 

lightweight architecture while presenting very high flexural stiffness compared to monocoque structures. 

Therefore, instead of using the same face material in monocoque construction, employing a core and 

increasing the distance between two face sheets is a more economical option that can provide lower lateral 

deformations, higher overall buckling loads, and higher natural frequencies [28]. A comprehensive review 

of the recent studies dealing with the free vibration behavior of sandwich plates can be found in [29]. In 

this study, the sandwich bottom plate is considered symmetric in stacking and modeled by Kirchhoff 

assumptions. The cylindrical rigid container rests on a Pasternak type foundation and it is filled by an ideal 

quiescent fluid. Bottom plate-foundation interaction is established through a mixed finite element 

formulation based on the Hellinger-Reissner principle. The fluid problem is solved by employing a 

boundary element scheme that expresses the fluid loading in terms of plate’s lateral deflections and its 

effect on the dynamic behavior is considered by incorporating the associated added mass into the equation 

of motion of the overall system. A convergence and comparison study is presented to reveal the features of 

the proposed solution procedure first, and then in order to reveal the dynamic characteristics of the bottom 

plate-fluid-foundation system, some sensitivity analyses over numerical solutions are reported for key 
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parameters of the system, such as stiffness ratio of core and face material, tank filling ratio, and foundation 

stiffness. 

 

2. FORMULATION OF THE PROBLEM 

 

2.1. Mixed Finite Element Formulation of the Plate-Foundation System 

 

2.1.1. Equilibrium and Constitutive Equations 

 

According to the Kirchhoff plate assumptions the displacement field of a thin plate is represented by a 

single transverse translation ( )wU  and stress resultants ( , , )xx yy xyM M MM  , those are the integrals of the 

moments of the in-plane stresses ( )T
xx yy xy  =σ  through the plate thickness. The positive directions 

of the field variables and orientation of the plate’s global coordinates ( , , )x y z  are depicted in Fig. 1a. 

According to the kinematical description of the Kirchhoff plate, in-plane strains ( )T
xx yy xy  ε  at an 

arbitrary point z  is obtained from z=ε ε , where ( )xx yy xy  =ε  collects the corresponding curvatures 

,=xx xxw − , ,=yy yyw − , and ,=xy xyw −  [30]. Here, ,(...) x  denotes the partial derivative with respect to 

the variable following the comma, e.g., ,(...) (...) /x x=   . Fig. 1b shows how the sandwich plate section is 

decomposed into layers of core and face materials. In-plane stress developed in each layer is related to the 

associated in-plane stress by =σ Qε  , where Q  represents the material properties of each individual layer. 

For a layer of isotropic material, it is given as 
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modulus, Poisson’s ratio, and shear modulus of the layer, respectively. Stress resultants through each layer 

( )iL  are obtained as 

 

 
Figure 1. Thin sandwich plate; a) Positive directions of stress resultants and transverse displacement b) 

Decomposition of the sandwich plate section: :fh  face layer thickness, :ch  core layer thickness, h : 

plate’s thickness, :L  number of layer 
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Replacing the stresses in Eq. (2) by the strains according to the constitutive equations, stress resultants can 

be represented in the form =M Dε . Here, the elasticity matrix D  of the entire section becomes 

3 31
13 1

( ) ( )
N

ij ij L LL L
D Q z z −=

= − . In order to express the midplane deformations of the plate in terms of the 

kinematic ( )u
ε  and constitutive ( )σε  relations, the inverse of the matrix D  is evaluated to express 

1−=ε D M  in the equality =u σ
ε ε . Constitutive relations in explicit form are: 
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The equilibrium equation of the Kirchhoff plate resting on Pasternak foundation is given by [4] 

 

( ), , , , ,2 0xx xx yy yy xy xy xx yyM M M kw G w w− − − + − + =  (4) 

 

where k  and G  are the Winkler foundation parameter and shear foundation parameter, respectively. 

 

2.1.2. First Variation of the Energy Functional 

 

According to the Hellinger-Reissner principle, the first variation of the energy functional is obtained as 

 

 (5) 

 

where  denotes the problem domain or space. Employing constitutive equations (3) and equilibrium 

equation (4) in Eq. (5) yields the first variation of the functional associated with the plate-foundation 

interaction as 
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Here,  represents the plate midplane. 

 

2.1.3. Finite Element Equations of the Plate-Foundation System 

 

Numerically computing the integrals given in Equations (6) over four noded quadrilateral finite elements 

(Figure. 2a) by employing shape functions with  continuity generates the system matrix  in the 

form: 
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Here, u  and s  corresponds displacement type and stress resultant type field variables, respectively, in the 

mixed finite element formulation. 

 

2.1.4 Mass Matrix of the Plate 

 

For the isoparametric element, consistent mass matrix associated with the transverse displacement w  is 

obtained for the sandwich construction as 

 

  ( ) 12 f f c ch h  = +
 

m k  (8) 

 

Here, f  and c  denote the mass densities of the face and core materials of the plate, respectively, and 

, with  denoting the bilinear shape functions. 

 

2.2. Fluid-Structure Coupling 

 

Assuming that the fluid domain interacting with plate is ideal and its motion is irrotational, the fluid velocity 

field can be defined in terms of the velocity potential function  as . Continuity 

condition assures   to be a harmonic function, yielding  Here, 
T( , , )x y z=x  and t  represent 

position and time, respectively. Linear form of the Bernoulli’s equation defines the fluid pressure on the 

plate’s wet surface by 

 

 (9) 

 

where f  is the fluid density. Kinematic boundary condition defined at the plate-fluid interface equalizes 

the normal velocity of the contacting fluid with the velocity of the plate: 
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Here, n  represents the normal on the plate surface , directed from the fluid domain, and w  denotes the 

deflection of the plate’s mid-plane. Assuming that the plate vibrates in relatively high frequencies, the free 

surface effects are neglected by imposing the infinite frequency condition at the fluid free surface [27]: 
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The Laplace equation and boundary conditions specified in Eqs. (10) and (11) can be represented by a 

boundary integral equation defined at the plate surface as 
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plate surface. Here,  is the distance between the field point and free 

surface image of the source point. 

For an arbitrary plate geometry, the plate surface over which Eq. (12) is defined can be discretized by 

surface elements and the variation of   and q  can be expressed over each element in terms of nodal 

values: 

 

1 1

,
i in n

i i
j ij j ij

j j
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= =

= =   (13) 

 

Here,  stands for the number of nodes of a boundary element,  and  represent the potential and flux 

distribution over the ith element, respectively,  and  are the potential and flux values of the jth node 

of the element, respectively, and  denotes the associated shape functions. The presented solution 

employs four noded quadrilateral elements involving bilinear shape functions. Assigning all nodal points 

used in the discretization as the source point in Eq. (12), substituting the kinematic boundary condition Eq. 

(10), and accomplishing the approach in Eq. (13) generates the following algebraic set of equations for the 

potential function distribution over the plate surface: 

 

 (14) 

 

Here,  and  are the total numbers of nodes and boundary elements, respectively,  identifies the area 

of the ith element,  denotes the potential value at kth node, and  represents the deflection at the jth 

node of the ith element. The product i  on the right hand side of Eq. (14) is due to the harmonic time 

dependence and results from the boundary condition. By evaluating the integrals in Eq. (14) numerically, 

the algebraic set of equations becomes 

 

 ijh  (15) 

 

In matrix notation, it can be expressed in the following form: 
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Here,  and  are the vectors of potential values and deflection, respectively. G and H matrices involve 

the double summed integrals containing the Green function and its flux, respectively, where 
ijg  and  are 

the terms of these matrices. 

 

Even though expression (12) is derived considering the interaction of the fluid with the vibrating plate, it 

can be arranged in the following form to be applicable in cases such as rigid walls confine the fluid domain: 

 

 (17) 

 

Here, p  and  indices represent the plate surface and rigid walls, respectively, where  

condition is imposed instead of Eq. (10), respecti r vely. Coefficient matrices H  and G , and vectors  

and  are decomposed into sub segments associated with elastic and rigid surfaces. From the decomposed 

matrix representation, the potential distribution over the plate surface can be obtained as 
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 (18) 

Here, . The dynamic fluid pressure p  exerted on the 

plate surface is determined by employing Eq. (18) in Eq. (9): 

 

 (19) 

 

 is the added mass matrix representing the inertial effect of the fluid on plate dynamic behavior. 

 

2.3. Eigenvalue-Problem 

 

The set of equations defining the harmonic motion of plate structure is established by the inclusion of the 

plate’s consistent mass matrix  and the added mass matrix A in the global system matrix of the plate as 

follows: 

 

 (20) 

 

Here,  represents the natural frequencies of the plate interacting with the fluid and foundation. Due to the 

nature of the two field mixed finite element formulation, displacement and stress resultant type field 

variables are involved in Eq. (20). By eliminating stress resultant type variables from the expression, the 

condensed system matrix takes the form: 
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3 2/12(1 )fD E h = − Hence, the eigen-value equation of the problem is obtained in terms of displacements 

only: 
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3. NUMERICAL RESULTS 

 

The presented combined solution procedure is first verified by considering a homogeneous circular bottom 

plate of a cylindrical rigid container resting on a Winkler foundation where the convergence of the solution 

is also examined. Then, by employing a sandwich plate as the bottom of the cylindrical tank, some original 

results are presented and some sensitivity analysis are performed regarding the governing parameters of the 

system. For the generalization of the solutions, parameters and results are presented in nondimensional 

form. The nondimensional frequency parameter is given by 2 / ,b h D  =  where  and  denotes the 

elasticity modulus of the face material. 
4 /k kb D=  and 

2 /G Gb D=  represent dimensionless Winkler 

foundation parameter and shear foundation parameter, respectively, where b  stands for the radius of the 

circular plate. Unless stated otherwise, throughout the examples the Poisson’s ratio is taken as 0.3 = , 

plate’s face material- fE fluid density ratio is set to / 10f f  = , and plate thickness ratio / 0.01h b=  is 

chosen with / 0.1fh h = . Clamped boundary conditions are imposed for the bottom plate attached to the 

rigid container wall (Fig. 2b). 
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                         (a)                                                                           (b) 

Figure 2. Mesh and problem definitions; a) Discretization of plate geometry by four noded elements b) 

Physical problem, :H  fluid height 

 

3.1. Homogeneous Bottom Plate Resting on Winkler Foundation: Convergence Behavior and 

Verification Through Axisymmetric Modes 

 

In order to verify the proposed solution procedure, a comparison study is performed by considering 

homogeneous plate and replacing the foundation by Winkler model so that the same configuration with 

Chiba [20] is provided. Chiba [20] reported only the natural frequency values for the axisymmetric modes 

while taking the effect of in-plane forces due to the fluid static pressure into consideration. Three different 

finite element discretization (Fig. 2a) involving 108, 300, and 432 elements are employed. Choosing the 

Winkler foundation parameter as 100k = , first two nondimensional frequency parameters ( 1  and 2 ) 

associated with the axisymmetric modes are presented in Fig. 3 with respect to the filling ratio ( / )H b  of 

the tank. The plate surface discretizations are also employed for the boundary element solutions, where 

wetted lateral tank surface is covered by additional elements to impose rigid-wall boundary condition. 

 

The results given in Fig. 3 show that the employed solution procedure ensures a consistent convergence 

behavior and produces quite compatible results with Chiba [20]. Although, the first mode frequencies 

convergence very quickly, for higher modes, a refined mesh configuration would be more suitable. 

Furthermore, it must be pointed out that the second axisymmetric mode correspond to the sixth mode in 

regular mode sequence. 

 

 
                                     (a)                                                                           (b) 

Figure 3. Variation of the natural frequency for the axisymmetric modes of the homogenous plate on 

Winkler foundation with respect to fluid height; a) First mode b) Second mode 

3.2. Circular Sandwich Plate: The Effect of Elasticity Modulus Ratio of Face and Core Material 

( / )f cE E  on the Free Vibration Behavior 
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In order to show the effect of sandwich plate configuration on the natural frequencies of the bottom plate, 

four different modulus ratios /f cE E  are chosen as 1, 10, 100, and 1000, and the density of the core material 

is selected as the same of the fluid density, c f = . 432 finite elements are employed over the plate domain 

due to the convergence analysis. Nondimensional foundation parameters are choosen as ( , ) (100,5)k G = . 

Nondimensional frequencies corresponding to the first and third axisymmetric modes of the plate are given 

in Fig. 4a and Fig. 4b, respectively. 

 

 

                                     (a)                                                                       (b) 

Figure 4. Variation of the natural frequency for the axisymmetric modes of the sandwich plate on 

Pasternak foundation with respect to fluid height; a) First mode b) Third mode 

 

It is well documented that the frequency parameters of elastic bottom plates decrease with increasing fluid 

height and approach to asymptotic values. This behavior is also observed here for sandwich plates, where 

as the /f cE E  ratio increases the frequency parameters become less sensitive and it can be stated that after 

a certain value of /f cE E  the parameters are not affected. The approach to the asymptote is quite rapid for 

the first symmetric mode, and as the corresponding mode gets higher a slower approach to the asymptotic 

values is observed. It can be perceived from the figure that the effect of /f cE E  ratio on the change in 

frequency parameters with respect to a variation in fluid level is almost negligible, notwithstanding that for 

the first mode, as the fluid level increases the effect of /f cE E  also increases but it is quite limited. 

 

3.3. Circular Sandwich Plate: The Effect of Foundation Parameters and Density Ratio of Face and 

Core Material ( / )f c   on the Free Vibration Behavior 

 

This example investigates the effect of face and core material densities and Pasternak foundation parameters 

on the dynamic characteristics of sandwich bottom plates. Throughout the study / 10f cE E =  is selected. 

Three different set of parameters for both foundation ( , )k G =  (100,5), (100,10), (200,5) and density ratios 

( / 5,10,20)f c  =  are chosen. Nondimensional frequencies corresponding to the first three axisymmetric 

modes of the bottom plate are tabulated in Table 1. It is observed that the change in the frequency 

parameters due to the change in foundation parameters is independent of the /f c   ratio. In the case that 
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the fluid is absent ( / 0)H b = , the effect of the ratio /f c   on natural frequencies is identical. This is due 

to the fact that the existence of foundation increases the plate stiffness, while the fluid related terms are 

only included in the mass matrix of the system. Table 1 also reveals that as the ratio /f c   increases the 

effect of a change in that ratio on the frequency parameters decreases, in other words for smaller values of 

/f c  , frequency parameters are more sensitive to a variation in this ratio and it is more apparent in the 

higher modes. 

 

Table 1. First three axisymmetric mode frequencies of sandwich bottom plate for various /f c   ratios 

and foundation parameters ( , )k G  

   
1Ω    

2Ω   
3Ω  

   
 

( , )k G  
 

 
 

( , )k G  
 

 
 

( , )k G  
 

/f c    H/b  (100,5) (100,10) (200,5)  (100,5) (100,10) (200,5)  (100,5) (100,10) (200,5) 

5 0.00  23.054 25.001 28.448  56.665 60.666 59.065  119.389 124.069 120.547  
0.25  8.550 9.264 10.549  23.713 25.378 24.718  55.902 58.105 56.448 

 
0.50  6.699 7.244 8.255  21.295 22.802 22.216  53.494 55.642 54.032 

 
0.75  5.782 6.243 7.113  20.554 22.027 21.472  52.882 55.027 53.425 

 
1.00  5.169 5.576 6.351  20.214 21.675 21.141  52.602 54.746 53.148 

  
            

10 0.00  26.141 28.348 32.257  64.252 68.789 66.973  135.374 140.681 136.687 

 0.25  8.684 9.408 10.714  24.188 25.886 25.213  57.327 59.587 57.887 

 0.50  6.763 7.313 8.333  21.644 23.175 22.581  54.778 56.979 55.330 

 0.75  5.822 6.286 7.162  20.879 22.374 21.812  54.147 56.345 54.704 

 1.00  5.197 5.607 6.385  20.531 22.014 21.474  53.862 56.058 54.422 
  

            
20 0.00  28.235 30.620 34.841  69.400 74.301 72.339  146.221 151.953 147.639 

 0.25  8.753 9.483 10.799  24.437 26.152 25.473  58.082 60.371 58.650 

 0.50  6.795 7.347 8.372  21.826 23.369 22.771  55.456 57.685 56.016 

 0.75  5.842 6.308 7.187  21.047 22.554 21.989  54.816 57.041 55.380 

 1.00  5.212 5.622 6.403  20.695 22.190 21.646  54.527 56.752 55.095 

 

4. CONCLUSIONS 

 

This study employs a numerical solution strategy incorporating a mixed finite element and a 

boundary element formulation to solve the free vibration problem of plate-fluid-foundation 

interaction. Using the proposed method, dynamic characteristics of a sandwich bottom plate 

attached to a rigid cylindrical fluid container resting on elastic foundation is investigated. 

Kirchhoff plate assumptions with Pasternak foundation model are employed in the Hellinger-

Reissner variational principle based mixed finite element formulation and added mass matrix 

representing the inertia of the fluid is included in the eigenvalue problem through a boundary 

element formulation. Plate domain and plate surface are discretized by matching quadrilateral four 

noded finite and boundary elements, respectively. Stress resultant type field variables due to the 

mixed formulation are then eliminated from the set of eigenvalue equations by following a 

condensation process. Nondimensional frequency parameters of the sandwich bottom plate are 

presented after the convergence and verification of the methodology are demonstrated. The 

influence of the key parameters of sandwich plates is investigated through some parametric 

analyses, which were not addressed before. The effect of face and core materials rigidity and 

density is examined. The frequency parameters get lower as the ratio of elasticity moduli of face 

and core material increase and approaches to asymptotic values which happens quicker for lower 
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modes compared to higher modes. It is also observed that as the densities of face and core materials 

get closer, frequency parameters become more sensitive to a change in their ratio. 
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