
*Corresponding author, e-mail: muratbekar@gazi.edu.tr 

Research Article                 GU J Sci 32(1): 256-271 (2019) 

Gazi University 

Journal of Science 
 

http://dergipark.gov.tr/gujs  

Slant Helix Curves and Acceleration Centers 

 

Murat BEKAR1,* , Yusuf YAYLI2  

1Department of Mathematics, Polatli Faculty of Science and Letters, Gazi University, 06900 Polatli/Ankara, Turkey 

2Department of Mathematics, Faculty of Science, Ankara University, 06100 Ankara, Turkey 

 

Article Info 

 

Abstract 

In this study, an alternative one-parameter motion to Frenet motion of a rigid-body in 3-

dimensional Euclidean space 𝔼3 is given by moving the coordinate frame {𝑵, 𝑪,𝑾} instead of 

the Frenet frame {𝑻, 𝑵, 𝑩} along a unit speed curve 𝛼(𝑡), where 𝑵, 𝑪 and 𝑾 correspond, 

respectively, to unit principal normal vector field, derivative vector field of the unit principal 

normal vector field and Darboux vector field of the unit speed curve 𝛼(𝑡). Also the concepts fixed 

axode, striction curve, instantaneous pole points, acceleration pole points (or acceleration centers) 

and instant screw axis (ISA) of this alternative one-parameter motion are studied. 
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1. INTRODUCTION 

 

The theory of curves and motion of a rigid-body in 3-dimensional Euclidean space 𝔼3 are the most two 

fundamental areas in differential geometry. These areas have some applications in computer animation, 

rigid-body (i.e., robot) kinematics, mechanism, etc. An important reference for rigid-body kinematics is the 

study about Frenet and Bishop motions of Bottema and Roth, see [1]. Also, there are other studies about 

these areas, see [2-7]. 

 

The aim of this paper is to give and analyze some concepts (e.g., instant screw axis (ISA), instantaneous 

pole points, acceleration pole points, axode in the fixed space, striction curve) about an alternative one-

parameter motion of a rigid-body in 𝔼3 obtained by moving the frame {𝑵, 𝑪,𝑾} along a unit speed curve 

𝛼(𝑡), where 𝑵, 𝑪 and 𝑾 correspond, respectively, to unit principal normal vector field, derivative vector 

field of the unit principal normal vector field and Darboux vector field of the unit speed curve 𝛼(𝑡).  

 

The concepts instantaneous pole points and acceleration pole points up to second order of the alternative 

one-parameter motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) of a rigid-body are given by using the determinants of the 

derivative matrices 𝓐′, 𝓐′′ and 𝓐′′′, and the concept instant screw axis (ISA) of this alternative one-

parameter rigid-body motion is given by using rank𝓐′ and rank𝓐′′, where 𝓐 corresponds to the rotation 

matrix of the alternative rigid-body motion. 

 

Since the instantaneous pole points, first-order acceleration pole points and second-order acceleration pole 

points of the alternative one-parameter rigid-body motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) exist only, respectively, 

when 𝑑𝑒𝑡𝓐′ ≠ 0, 𝑑𝑒𝑡𝓐′′ ≠ 0 and 𝑑𝑒𝑡𝓐′′′ ≠ 0, it is examined whether or not these conditions are satisfied 

by taking the unit speed base curve 𝛼(𝑡) as cylindrical helix (or general helix), slant helix, constant 

precession slant helix, C-slant helix or constant precession C-slant helix.  
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2. PRELIMINARIES 

 

In this section, firstly some basic concepts of curves (e.g., unit speed curves, principal-direction curves, 

cylindrical helices (or general helices), slant helices, 𝐶–slant helices) and ruled surfaces (e.g., central 

point, striction curve) in 𝔼3 will be given. Afterwards definitions of one-parameter motion and its instant 

screw axis (ISA), instantaneous pole points and acceleration pole points in 𝔼3 will be given. 

 

2.1. Curves in 𝔼𝟑 

 

Let 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 be an arbitrary curve in 𝔼3 defined on an open interval 𝐼. If 〈𝛼′(𝑡), 𝛼′(𝑡)〉 = 1 for all 

𝑡 ∈ 𝐼, then 𝛼 is called unit speed curve (or parameterized by the arc-length function 𝑡), where 〈, 〉 denotes 

the standard scalar product on ℝ3.  

 

Let 𝛼 be a unit speed curve, then 𝛼 is called cylindrical helix (or general helix) if its unit tangent vector 

field 𝑻 = 𝛼′ makes a constant angle 𝜃 ∈ ℝ with a fixed direction unit vector �⃗⃗�  along α, i.e., if 〈𝑻, �⃗⃗� 〉 =
𝑐𝑜𝑠𝜃 is constant along 𝛼. Thus, the following theorem can be given. 

 

Theorem 1. A unit speed curve 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 is called cylindrical helix (or general helix) if and only if 

the ratio 𝜏 𝜅⁄  is constant, where 𝜅 = ‖𝛼′′‖ > 0 being the curvature and 𝜏 = 〈𝛼′ × 𝛼′′, 𝛼′′′〉 𝜅2⁄  the torsion 

of 𝛼. By the last equation “×” denotes the standard cross product on ℝ3, see [8].  

 

The unit speed curve α is called slant helix if its unit principal normal vector field 𝑵 = 𝛼′′ ‖𝛼′′‖⁄  makes a 

constant angle 𝜃 ∈ ℝ with a fixed direction unit vector �⃗⃗�  along 𝛼, i.e., if 〈𝑵, �⃗⃗� 〉 = 𝑐𝑜𝑠𝜃 is constant along 

𝛼. Thus, the following theorem can be given. 

 

Theorem 2. A unit speed curve 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 is called slant helix if and only if the value of 

 

𝜎 =
𝜅2

(𝜅2 + 𝜏2)3 2⁄
(
𝜏

𝜅
)
′

 

 

is constant, where 𝜅 > 0 being the curvature and 𝜏 the torsion of 𝛼, see [9]. 

 

The unit speed curve 𝛼 is called C–slant helix if its derivative vector field of the unit principal normal vector 

field 𝑪 = 𝑵′ ‖𝑵′‖⁄  makes a constant angle 𝜃 ∈ ℝ with a fixed direction unit vector �⃗⃗�  along 𝛼, i.e., if 
〈𝑪, �⃗⃗� 〉 = 𝑐𝑜𝑠𝜃 is constant along 𝛼. Thus, the following theorem can be given. 

 

Theorem 3. A unit speed curve 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 is called C–slant helix if and only if the value of 

 

𝑓2

(𝑓2 + 𝘨2)3 2⁄
(
𝘨

𝑓
)
′

 

 

is constant for 

 

𝑓 = √𝜅2 + 𝜏2,   𝘨 =
𝜅2

𝜅2 + 𝜏2
(
𝜏

𝜅
)
′

= 𝜎𝑓, 

 

where 𝜅 > 0 being the curvature and 𝜏 the torsion of 𝛼, see [10]. 

 

From Theorem 2 and Theorem 3 it can be said that a unit speed curve 𝛼 is called slant helix if and only if 

the value of 𝑓 𝘨 = 1 𝜎⁄⁄  is constant. 

 

An integral curve of the principal vector field 𝑵 of a unit speed curve 𝛼 is called the principal-direction 

curve of 𝛼. This curve will be denoted by 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 in this study and has unit speed, see [11]. 
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2.2. Ruled Surfaces in 𝔼𝟑 

 

Given a differentiable one-parameter family of lines {𝜓(𝑡), 𝑤(𝑡)}, which means that to each 𝑡 ∈ 𝐼 

corresponds a point 𝜓(𝑡) ∈ ℝ3 and a vector 0 ≠ 𝑤(𝑡) ∈ ℝ3 so that both 𝜓(𝑡) and 𝑤(𝑡) depend 

differentiably on 𝑡, the parametrized surface 

 

𝒔(𝑡, 𝜇) = 𝜓(𝑡) + 𝜇𝑤(𝑡),   𝑡 ∈ 𝐼,   𝜇 ∈ ℝ, 
 

is called the ruled surface generated by the family {𝜓(𝑡), 𝑤(𝑡)}. The lines 𝐿𝑡, which pass through 𝜓(𝑡) and 

are parallel to 𝑤(𝑡), are called the rulings, and the regular curve 𝜓(𝑡) is called the directrix (or base curve) 

of the surface 𝒔(𝑡, 𝜇), see [12]. 

 

If there exist a common perpendicular to two constructive rulings in the ruled surface, then the foot of the 

common perpendicular on the main rulings is called a central point. The locus of the central points is called 

the striction curve, see [13]. By taking 𝑤(𝑡) as unit and ‖𝑤′(𝑡)‖ ≠ 0, then the parametrization of the 

striction curve on the ruled surface 𝒔(𝑡, 𝜇) can be given by the equation  

 

�̃�(𝑡) = 𝜓(𝑡) −
〈𝜓′(𝑡), 𝑤′(𝑡)〉

‖𝑤′(𝑡)‖2
𝑤(𝑡). 

 

As a result the following theorem can be given. 

 

Theorem 4. Let 𝒔(𝑡, 𝜇) = 𝜓(𝑡) + 𝜇𝑤(𝑡) be a ruled surface for all 𝑡 ∈ 𝐼 and 𝜇 ∈ ℝ. Then the striction curve 

�̃�(𝑡) on the ruled surface 𝒔(𝑡, 𝜇) coincides with the directrix 𝜓(𝑡) of 𝒔(𝑡, 𝜇), i.e., �̃�(𝑡) = 𝜓(𝑡), if and only 

if 〈𝜓′(𝑡), 𝑤′(𝑡)〉 = 0, see [14]. 

 

2.3. One-Parameter Motion in 𝔼𝟑 

 

A one-parameter motion of a rigid-body in 𝔼3 can be generated by the transformation 

 

𝐹: 𝔼3 → 𝔼3 

 

defined by 

 

𝑿 ↦ 𝐹(𝑿) = 𝒀 = 𝓐𝑿 + 𝓒 

 

in which 𝑿 and 𝒀 are the position vectors, which correspond to 3 × 1 column matrix, of a moving point 𝑋 

measured in 3-dimensional moving space E3 and reference space (or fixed space) 𝔼3, respectively. 𝓐 is 

the rotation vector, which corresponds to 3 × 3 positive orthogonal matrix (i.e., 𝓐T = 𝓐−1 and 𝑑𝑒𝑡𝓐 =
1) and 𝓒 the displacement vector of the origin in 𝔼3, which corresponds to 3 × 1 column matrix, both 

depend upon the motion parameter 𝑡. Any point 𝑋 of E3 describes a curve in 𝔼3. 𝓐 and 𝓒 are smooth 

functions of the motion parameter 𝑡. It will be assumed that for the initial time 𝑡 = 0 the origins of E3 and 

𝔼3 coincide, see [1, 15]. 

 

The matrix representation corresponding to the one-parameter rigid-body motion 𝒀 = 𝓐𝑿 + 𝓒 can be 

given as 

 

[
𝒀
1
] = [

𝓐 𝓒
0 1

] [
𝑿
1
]. 

 

The angular-velocity tensor 𝛀 of the one-parameter rigid-body motion 𝒀 = 𝓐𝑿 + 𝓒 is defined as  

 

𝛀 ≡ 𝓐′𝓐T, 
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which is anti-symmetric. Hence 𝛀 can be expressed in terms of the components of its axial vector 𝛇, which 

is named angular-velocity vector or Darboux vector, i.e.,  

 

𝛇 = 𝑣𝑒𝑐𝑡(𝛀),   𝛀 =
∂𝛇 × 𝐯

∂𝐯
, 

 

where 𝐯 is any cartesian vector. Due to the anti-simetry of 𝛀, the velocity field in a rigid-body is helicoidal 

that means there exist a line of the body whose points have a velocity parallel to 𝛇. This line is called the 

instant screw axis and is denoted by ISA, see [2]. 

 

Theorem 5. If 𝒜 ∈ 𝑆𝑂(3) and 𝑟𝑎𝑛𝑘𝓐′ = 2, then the following statements can be given for the direction 

of ISA, see [16]: 
 

(1) It is stationary if and only if 𝑟𝑎𝑛𝑘𝓐′′ = 2. 

(2) It is not stationary if and only if 𝑟𝑎𝑛𝑘𝓐′′ = 3. 

 

The angular-acceleration tensor 𝓦 of the one-parameter rigid-body motion 𝒀 = 𝓐𝑿 + 𝓒 is defined as 

 

𝓦 ≡ 𝛀2 + 𝛀′. 
 

Since 𝛀2 is symmetric and 𝛀′ is anti-symmetric, 𝓦 is not anti-symmetric. Therefore, the acceleration field 

in a rigid-body is not helicoidal, see [2].  

 

Determinant of 𝓦 can be calculated directly by using 𝛇, see [2]: 

 

𝑑𝑒𝑡𝓦 = −‖𝛇 × 𝛇′‖2. 
 

The relationship between the determinants of 𝓦 and 𝓐′′ can be given by the following theorem. 

 

Theorem 6. Let 𝒀 = 𝓐𝑿 + 𝓒 be a one-parameter motion of a rigid-body in 𝔼3, 𝓦 the angular-acceleration 

tensor and 𝛇 the angular-velocity vector (or Darboux vector) of this motion. Then, 

 

𝑑𝑒𝑡𝓐′′ = 𝑑𝑒𝑡𝓦 = −‖𝜻 × 𝜻′‖2. 
 

Proof. From the equation 𝛀 = 𝓐′𝓐T it will be obtained 𝓐′ = 𝛀𝓐. Taking the first derivative of the 

equation 𝓐′ = 𝛀𝓐 let to 𝓐′′ = (𝛀2 + 𝛀′)𝓐 that means 𝓐′′ = 𝓦𝓐. Since 𝑑𝑒𝑡𝓐 = 1, it can be written 

𝑑𝑒𝑡𝓐′′ = 𝑑𝑒𝑡𝓦 = −‖𝜻 × 𝜻′‖2. 

 

The representation of the axode in the fixed space 𝔼3 can be given by the equation 

 

𝓨 = (𝓒 +
𝛀 × 𝓒′

〈𝛀,𝛀〉
) + 𝜇 (

𝛀

‖𝛀‖
), 

 

where 𝜇 is an arbitrary scalar, see [8]. It is obvious that 𝓨 represents a ruled surface. By taking  

 

𝜑 = 𝓒 +
𝛀 × 𝓒′

〈𝛀,𝛀〉
,   �̂� =

𝛀

‖𝛀‖
, 

 

the parametrization of the striction curve  

 

�̃�(𝑡) = 𝜑(𝑡) −
〈𝜑′(𝑡), �̂�′(𝑡)〉

‖�̂�′(𝑡)‖
2 �̂�(𝑡) 
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on the ruled surface 𝓨 = 𝓨(𝑡), which is generated by the family {𝜑(𝑡), �̂�(𝑡)}, will be coincide with the 

directrix 𝜑(𝑡) of 𝓨(𝑡) if and only if 〈𝜑′(𝑡), �̂�′(𝑡)〉 = 0. 

 

2.4. Instantaneous Pole Points and Acceleration Pole Points in 𝔼𝟑 

 

Derivative of the one-parameter motion 𝒀 = 𝓐𝑿 + 𝓒  of a rigid-body in 𝔼3 with respect to 𝑡, yields to the 

equation 

 

𝒀′ = 𝓐′𝑿 + 𝓒′ + 𝓐𝑿′, 
 

where 𝒀′ is called the absolute velocity, 𝓐′𝑿 + 𝓒′ is called the sliding velocity and 𝓐𝑿′ is called the 

relative velocity of the point 𝑋. 

 

The sliding velocity of a fixed point 𝑋 can be given by the equation, see [17], 

 

𝒀′ = 𝓐′𝑿 + 𝓒′. 
 

Any solution vector 𝑿 = −(𝓐′)−1𝓒′ at every 𝑡-instant of the equation 

 

𝓐′𝑿 + 𝓒′ = 0 

 

is the position vector of the point 𝑋, which can be considered as a fixed point on fixed space 𝔼3 and moving 

space E3, at the same time 𝑡. These points are called the instantaneous pole points at every 𝑡-instant, see 

[17].  

 

The first-order sliding acceleration (or the second-order velocity) of a fixed point 𝑋 can be given by the 

equation, see [17], 

 

𝒀′′ = 𝓐′′𝑿 + 𝓒′′. 
 

Any solution vector 𝑿 = −(𝓐′′)−1𝓒′′ at every 𝑡-instant of the equation 

 

𝓐′′𝑿 + 𝓒′′ = 0 

 

is the position vector of the point 𝑋 and these points are called the first-order acceleration pole points (or 

the acceleration center of order 1) at every 𝑡-instant, see [17].  

 

The second-order sliding acceleration (or the third-order velocity) of a fixed point 𝑋 can be given by the 

equation, see [11], 

 

𝒀′′′ = 𝓐′′′𝑿 + 𝓒′′′. 
 

Any solution vector 𝑿 = −(𝓐′′′)−1𝓒′′′ of the equation 

 

𝓐′′′𝑿 + 𝓒′′′ = 0 

 

is the position vector of the point 𝑋 and these points are called the second-order acceleration pole points 

(or the acceleration center of order 2) at every 𝑡-instant, see [17].  

 

3. FRENET MOTION OF A BASE CURVE 

 

In this section, definitions of the Frenet motion of a curve in 𝔼3 with its some basic concepts (e.g., constant 

precession slant helices, axode in fixed space, striction curve) will be given.  
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A unit speed curve 𝛼 ∶ 𝐼 → 𝔼3, which is parameterized by arc-length parameter 𝑡 ∈ 𝐼, is called Frenet curve 

if 𝛼′′(𝑡) ≠ 0 that means if it has non-zero curvature. Let 𝛼 be a Frenet curve and {𝑻,𝑵,𝑩} the Frenet frame. 

Then by moving the Frenet frame {𝑻,𝑵,𝑩} along 𝛼, which is fixed in 𝔼3, generates a kind of a one-

parameter motion, which is called Frenet motion, of a rigid-body in 𝔼3. In this motion the moving frame 

𝑂𝑥𝑦𝑧 moves with 𝑂 along α while rotating so that the 𝑥 and 𝑦 axes coincide, respectively, with the tangent 

and principal normal of 𝛼. Hence, the following equations can be given: 

 

𝑻 = 𝛼′,   𝑵 =
𝑻′

‖𝑻′‖
,   𝑩 = 𝑻 × 𝑵, 

 

where 𝑻, 𝑵 and 𝑩 correspond, respectively, to unit tangent vector field, principal normal vector field and 

binormal vector field of 𝛼. Also 𝑻, 𝑵 and 𝑩 are unit vector fields that are mutually orthogonal at each point 

of 𝛼. In Frenet motion 𝓒 corresponds to α and 𝓐 corresponds to the matrix [𝑻 𝑵 𝑩]. Thus, the Frenet 

motion can be given as 

 

𝐹(𝑿) = 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡). 
 

Moreover, the following Frenet formulas can be given by taking the first derivative of the vector fields 𝑻, 

𝑵 and 𝑩: 

 

𝑻′ = 𝜅𝑵,   𝑵′ = −𝜅𝑻 + 𝜏𝑩,   𝑩′ = −𝜏𝑵, 
 

where 𝜅 = ‖𝑻′‖ and 𝜏 = −〈𝑩′, 𝑵〉 are the smooth functions on 𝐼 and are, respectively, called the curvature 

and torsion according to the Frenet frame {𝑻,𝑵,𝑩} of 𝛼, see [8, 18]. These Frenet formulas can be 

expressed in matrix form as 

 

𝓐′ = [
𝑻′

𝑵′

𝑩′
] = [

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

] [
𝑻
𝑵
𝑩

]. 

 

If a rigid-body moves along the unit speed curve 𝛼, then the motion of the body consists of translation along 

𝛼 and rotation about 𝛼. In Frenet motion the rotation is determined by a vector 𝑾 = (𝜏𝑻 + 𝜅𝑩) √𝜅2 + 𝜏2⁄  

which satifies 𝑻′ = 𝑾 × 𝑻, 𝑵′ = 𝑾 × 𝑵 and 𝑩′ = 𝑾 × 𝑩. This vector is called the Darboux vector (or 

angular-velocity vector) of the Frenet frame {𝑻,𝑵,𝑩} of 𝛼.  

 

The unit speed curve 𝛼 is called constant precession slant helix if its Darboux vector 𝑾 revolves about a 

fixed line in space with constant angle and constant speed. Thus, the following theorem can be given.  

 

Theorem 7. A unit speed curve 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 is called constant precession slant helix if the following 

equations hold for the curvature 𝜅 > 0  and the torsion 𝜏 of 𝛼 for all 𝑡 ∈ 𝐼: 

 

𝜅(𝑡) = −𝜆𝑠𝑖𝑛(𝜇𝑡), 

𝜏(𝑡) = 𝜆𝑐𝑜𝑠(𝜇𝑡), 

where 𝜆 > 0 and 𝜇 are constants, see [19]. 

 

The representation of the axode in the fixed space 𝔼3 of the Frenet motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) can be 

given by using the equation 

 

𝓨(𝑡) = (𝛼(𝑡) +
𝑾(𝑡) × 𝛼′(𝑡)

〈𝑾(𝑡),𝑾(𝑡)〉
) + 𝜇 (

𝑾(𝑡)

‖𝑾(𝑡)‖
) 

 

as 
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𝓨(𝑡) = (𝛼(𝑡) +
𝜅(𝑡)

𝜅2(𝑡) + 𝜏2(𝑡)
𝑵(𝑡)) + 𝜇 (

𝜏(𝑡)𝑻(𝑡) + 𝜅(𝑡)𝑩(𝑡)

√𝜅2(𝑡) + 𝜏2(𝑡)
), 

 

where 𝜇 is an arbitrary scalar. By taking  

 

𝛾(𝑡) = 𝛼(𝑡) +
𝜅(𝑡)

𝜅2(𝑡) + 𝜏2(𝑡)
𝑵(𝑡),   �̂�(𝑡) =

𝜏(𝑡)𝑇(𝑡) + 𝜅(𝑡)𝑩(𝑡)

𝜅2(𝑡) + 𝜏2(𝑡)
, 

 

it will be obtained   

 

〈𝛾′(𝑡), �̂�′(𝑡)〉 = 0. 
 

Thus, the following corollary can be given. 

 

Corollary 1. Let  

 

𝓨(𝑡) = (𝛼(𝑡) +
𝑾(𝑡) × 𝛼′(𝑡)

〈𝑾(𝑡),𝑾(𝑡)〉
) + 𝜇 (

𝑾(𝑡)

‖𝑾(𝑡)‖
) 

 

be the axode in the fixed space 𝔼3 of the Frenet motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡). Then the striction curve on 

the ruled surface 𝓨(𝑡) will coincides with the directrix 

 

𝛼(𝑡) +
𝑾(𝑡) × 𝛼′(𝑡)

〈𝑾(𝑡), 𝑾(𝑡)〉
 

 

 of  𝓨(𝑡). 

 

4. FRENET MOTION OF THE PRINCIPAL-DIRECTION CURVE OF A BASE CURVE 

 

In this section, firstly definition of an alternative one-parameter motion of a rigid-body in 𝔼3 will be given 

by moving the coordinate frame {𝑵, 𝑪,𝑾} instead of the Frenet frame {𝑻,𝑵,𝑩} along a unit speed curve 

𝛼(𝑡), see Fig. 1. This alternative motion corresponds to Frenet motion of the principal-direction curve 

𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 of 𝛼(𝑡). Afterwards, some basic concepts (e.g., constant precession C-slant helices, 

instant screw axis (ISA), instantaneous pole points, acceleration pole points, axode in the fixed space, 

striction curve) of this alternative motion will be given. 

 

 
Figure 1. The relationship between the Frenet frame {𝑻,𝑵,𝑩} and the frame {𝑵, 𝑪,𝑾} of the curve 𝛼(𝑡) 

at the point 𝛼(𝑡0) 
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As it can be seen from Figure 1, the frame {𝑵, 𝑪,𝑾} at any point 𝛼(𝑡0) of the curve 𝛼(𝑡) will be obtained 

by rotating 𝑻 and 𝑩 of the Frenet frame {𝑻,𝑵,𝑩} at the point 𝛼(𝑡0) by a constant angle 𝜃 ∈ ℝ on the 

rectifying plane, which is the plane of 𝑻 and 𝑩. 

 

An alternative approach to define a one-parameter motion of a rigid-body in 𝔼3 along the unit speed curve 

𝛼, can be given by taking {𝑵, 𝑪,𝑾} as the coordinate frame and matrix [𝑵 𝑪 𝑾] as corresponding to 

𝓐 in the equation 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡). In this motion the moving frame 𝑂𝑥𝑦𝑧 moves with 𝑂 along 𝛼 

while rotating so that the 𝑥 and 𝑦 axes coincide, respectively, with the principal normal and derivative of 

the principal normal of 𝛼. Hence, the following equations can be given: 

 

𝑵 =
𝑻′

‖𝑻′‖
,   𝑪 =

𝑵′

‖𝑵′‖
=

−𝜅𝑻 + 𝜏𝑩

√𝜅2 + 𝜏2
,   𝑾 = 𝑵 × 𝑪 =

𝜏𝑻 + 𝜅𝑩

√𝜅2 + 𝜏2
, 

 

where 𝑵, 𝑪 and 𝑾 correspond, respectively, to unit principal normal vector field, derivative vector field of 

the unit principal normal vector field and Darboux vector field of 𝛼. Also 𝑵, 𝑪 and 𝑾 are unit vector fields 

that are mutually orthogonal at each point of 𝛼. Moreover, the following alternative frame formulas can be 

given by taken the first derivative of the vector fields 𝑵, 𝑪 and 𝑾, see [10]: 

 

𝑵′ = 𝑓𝑪,   𝑪′ = −𝑓𝑵 + 𝘨𝑾,   𝑾′ = −𝘨𝑪, 
 

These alternative frame formulas can be expressed in matrix form as 

 

𝓐′ = [
𝑵′

𝑪′

𝑾′
] = [

0 𝑓 0
−𝑓 0 𝘨
0 −𝘨 0

] [
𝑵
𝑪
𝑾

]. 

 

This alternative one-parameter rigid-body motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) can be handled as Frenet motion 

by taking the principal-direction curve 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 instead of 𝛼(𝑡). In this case, the coordinate frame 

{𝑵, 𝑪,𝑾} corresponds to Frenet frame of 𝛽(𝑡). Thus, the following corollary can be given. 

 

Corollary 2. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡) and 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 be the principal-direction 

curve of 𝛼(𝑡). Then the following results hold: 

 

(1) 𝑵, 𝑪 and 𝑾 correspond, respectively, to unit tangent vector field, principal normal vector field and 

binormal vector field of 𝛽. 

(2) 𝑓 = √𝜅2 + 𝜏2 and 𝘨 = 𝑓𝜎 = (𝜅2 (𝜅2 + 𝜏2)⁄ )(𝜏 𝜅⁄ )′ correspond, respectively, to the curvature 

and torsion according to the Frenet frame {𝑵, 𝑪,𝑾} of 𝛽. 

(3) 𝑫 = 𝘨𝑵 + 𝑓𝑾 corresponds to the Darboux vector (or angular-velocity vector) of the Frenet frame 
{𝑵, 𝑪,𝑾} of 𝛽, satisfying 𝑵′ = 𝑫 × 𝑵, 𝑪′ = 𝑫 × 𝑪 and 𝑾′ = 𝑫 × 𝑾. 

(4) 𝛼 is slant helix if and only if 𝛽 is cylindrical helix (or general helix).  

 

The unit speed curve 𝛼 is called constant precession 𝐶–slant helix if its Darboux vector 𝑫 revolves about 

a fixed line in space with constant angle and constant speed. Thus, the following theorem can be given.  

 

Theorem 8. A unit speed curve 𝛼 ∶ 𝐼 ⊂ ℝ → 𝔼3 is called constant precession 𝐶–slant helix if the following 

equations hold for the curvature 𝑓 > 0  and the torsion 𝘨 according to the Frenet frame {𝑵, 𝑪,𝑾} of the 

principal-direction curve 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 of 𝛼 for all 𝑡 ∈ 𝐼: 

 

𝑓(𝑡) = −𝜆𝑠𝑖𝑛(𝜇𝑡), 

𝘨(𝑡) = 𝜆𝑐𝑜𝑠(𝜇𝑡), 
where 𝜆 > 0  and 𝜇 are constants, see [10].  
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The representation of the axode in the fixed space 𝔼3 of the alternative one-parameter rigid-body motion 

can be given by using the equation 

 

𝓨(𝑡) = (𝛼(𝑡) +
𝑫(𝑡) × 𝛼′(𝑡)

〈𝑫(𝑡), 𝑫(𝑡)〉
) + 𝜇 (

𝑫(𝑡)

‖𝑫(𝑡)‖
) 

 

as 

 

𝓨(𝑡) = (𝛼(𝑡) +
𝜅(𝑡)𝑵(𝑡) − 𝘨(𝑡)𝑩(𝑡)

𝑓2(𝑡) + 𝘨2(𝑡)
𝑵(𝑡)) + 𝜇 (

𝘨(𝑡)𝑵(𝑡) + 𝑓(𝑡)𝑾(𝑡)

√𝑓2(𝑡) + 𝘨2(𝑡)
), 

 

where 𝜇 is an arbitrary scalar. By taking 

 

𝛿(𝑡) = 𝛼(𝑡) +
𝜅(𝑡)𝑵(𝑡) − 𝘨(𝑡)𝑩(𝑡)

𝑓2(𝑡) + 𝘨2(𝑡)
𝑵(𝑡),   �̂�(𝑡) =

𝘨(𝑡)𝑵(𝑡) + 𝑓(𝑡)𝑾(𝑡)

√𝑓2(𝑡) + 𝘨2(𝑡)
, 

 

the solution conditions of the equation     

 

〈𝛿′(𝑡), �̂�′(𝑡)〉 =
𝘨2(𝑡)𝑓′(𝑡) − 𝘨(𝑡)𝘨′(𝑡)𝑓(𝑡)

(𝑓2(𝑡) + 𝘨2(𝑡))
2 (𝜏(𝑡) −

𝜅(𝑡)𝘨′(𝑡)

𝑓2(𝑡) + 𝘨2(𝑡)

+
2(𝘨(𝑡)𝘨′(𝑡) + 𝑓(𝑡)𝑓′(𝑡))𝘨(𝑡)𝜅(𝑡)

(𝑓2(𝑡) + 𝘨2(𝑡))
2 )

+
𝘨′(𝑡)𝑓2(𝑡) − 𝑓(𝑡)𝑓′(𝑡)𝘨(𝑡)

(𝑓2(𝑡) + 𝘨2(𝑡))
2 (

𝜏(𝑡)𝘨(𝑡) + 𝜅′(𝑡)

𝑓2(𝑡) + 𝘨2(𝑡)
+

2(𝘨(𝑡)𝘨′(𝑡) + 𝑓(𝑡)𝑓′(𝑡))𝜅(𝑡)

(𝑓2(𝑡) + 𝘨2(𝑡))
2 )

= 0 

 

is not obvious and can be studied in a further work. But a special solution condition, which is associated 

with this work, can be given by the following corollary. 

 

Corollary 3. Let  

 

𝓨(𝑡) = (𝛼(𝑡) +
𝑫(𝑡) × 𝛼′(𝑡)

〈𝑫(𝑡), 𝑫(𝑡)〉
) + 𝜇 (

𝑫(𝑡)

‖𝑫(𝑡)‖
) 

 

be the axode in the fixed space 𝔼3 of the one-parameter rigid-body motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) obtained 

by moving the coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡). Then by taking 𝛼(𝑡) as slant 

helix the striction curve on the ruled surface 𝓨(𝑡) coincides with the directrix 

 

𝛼(𝑡) +
𝑫(𝑡) × 𝛼′(𝑡)

〈𝑫(𝑡), 𝑫(𝑡)〉
 

 

 of  𝓨(𝑡). 

 

4.1. Instantaneous Pole Points and Acceleration Pole Points 

 

By taking 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) as the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼, 𝓐′ was obtained as 
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𝓐′ = [
𝑵′

𝑪′

𝑾′
] = [

0 𝑓 0
−𝑓 0 𝘨
0 −𝘨 0

] [
𝑵
𝑪
𝑾

]. 

 

Hence 𝑑𝑒𝑡𝓐′ = 0 that means the solution of the equation 𝓐′(𝑡)𝑿 + 𝛼′(𝑡) = 0 is not unique, so this motion 

has not any instantaneous pole points at every 𝑡-instant.  

 

The first derivative of 𝓐′ leads to 

 

𝓐′′ = [
𝑵′′

𝑪′′

𝑾′′
] = [

−𝑓2 𝑓′ 𝑓𝘨

−𝑓′ −(𝑓2 + 𝘨2) 𝘨′

𝑓𝘨 −𝘨′ −𝘨2

] [
𝑵
𝑪
𝑾

]. 

 

Hence  

 

𝑑𝑒𝑡𝓐′′ = −(𝘨2 (
𝑓

𝘨
)
′

)

2

= −(𝘨2 (
1

𝜎
)
′

)

2

 

 

where 𝘨 ≠ 0 which means 𝜎 ≠ 0 (or 𝛼 is not a cylindrical helix). Consequently, the following theorems 

can be given. 

 

Theorem 9. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡). Then 𝛼 = 𝛼(𝑡) is called slant helix (i.e., 𝜎 is 

constant) if and only if 𝑑𝑒𝑡𝓐′′ = 0. 

 

Theorem 10. The one-parameter rigid-body motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼 = 𝛼(𝑡), has only one first-order acceleration pole 

point, which corresponds to the position vector 𝑿 = −(𝓐′′)−1𝛼′′ at every 𝑡-instant, if and only if the curve 

𝛼 is not a slant helix (i.e., 𝜎 is not constant). 

 

Theorem 11. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡). Then it will be obtained 𝑟𝑎𝑛𝑘𝓐′ = 2 and 

𝑑𝑒𝑡𝓐′′ = −(𝘨2(1 𝜎⁄ )′)2. Thus, the following two statements can be given for the direction of the ISA. 

 

(1) By taking 𝜎 as constant, it will be obtained 𝑑𝑒𝑡𝓐′′ = 0 and 𝑟𝑎𝑛𝑘𝓐′′ = 2. In this case, the 

direction of the ISA will be stationary. 

(2) By taking 𝜎 as not constant, it will be obtained 𝑑𝑒𝑡𝓐′′ ≠ 0 and 𝑟𝑎𝑛𝑘𝓐′′ = 3. In this case, the 

direction of the ISA will not be stationary. 

 

An alternative way to calculate the value of 𝑑𝑒𝑡𝓐′′ can be given by the following theorem. 

 

Theorem 12. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡) and 𝑫 the Darboux vector (or angular-velocity 

vector) of the Frenet frame {𝑵, 𝑪,𝑾} of 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡. Then 𝑑𝑒𝑡𝓐′′ = −‖𝑫 × 𝑫′‖2. 

 

The first derivative of 𝓐′′ leads to 

 

𝓐′′′ = [
𝑵′′′

𝑪′′′

𝑾′′′
] = [

−3𝑓𝑓′ (−𝑓3 + 𝑓′′ − 𝑓𝘨2) (2𝑓′𝘨 + 𝑓𝘨′)

(−𝑓′′ + 𝑓3 + 𝑓𝘨2) (−3𝑓𝑓′ − 3𝘨𝘨′) (−𝑓2𝘨 − 𝘨3 + 𝘨′′)

(2𝑓𝘨′ + 𝑓′𝘨) (𝑓2𝘨 − 𝘨′′ + 𝘨3) −3𝘨𝘨′

] [
𝑵
𝑪
𝑾

]. 

 

Hence  
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𝑑𝑒𝑡𝓐′′′ = 3𝘨2 (
𝑓

𝘨
)
′

(2(𝑓𝑓′ + 𝘨𝘨′)(𝑓𝘨′ − 𝑓′𝘨) − (𝑓2 + 𝘨2)(𝑓𝘨′′ − 𝑓′′𝘨))                            

+ 3(𝘨2 (
𝑓

𝘨
)
′

)

′

(𝑓′𝘨′′ − 𝑓′′𝘨′), 

 

where 𝘨 ≠ 0 which means 𝜎 ≠ 0. The solution conditions of the equation 𝑑𝑒𝑡𝓐′′′ = 0 is not obvious and 

can be studied in a further work. But the special solutions associated with this work can be given by the 

following theorems. 

 

Theorem 13. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡). If the value of 𝑓 𝘨 = 1 𝜎⁄⁄  is not constant (i.e., 

if  𝛼 = 𝛼(𝑡) is not a slant helix), then 𝛼 = 𝛼(𝑡) is called constant precession 𝐶–slant helix if 𝑑𝑒𝑡𝓐′′′ = 0.  

 

Theorem 14. Let 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) be the one-parameter rigid-body motion obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡). If 𝛼 = 𝛼(𝑡) is not a constant precession 𝐶–slant 

helix, then 𝛼 is called slant helix if 𝑑𝑒𝑡𝓐′′′ = 0. 

 

Theorem 15. The one-parameter rigid-body motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) obtained by moving the 

coordinate frame {𝑵, 𝑪,𝑾} along the unit speed curve 𝛼(𝑡), has only one second-order acceleration pole 

point, which corresponds to the position vector 𝑿 = −(𝓐′′′)−1𝛼′′′ at every 𝑡-instant, if and only if 

𝑑𝑒𝑡𝓐′′′ ≠ 0. 

 

Example. Consider the curve 

 

𝛼(𝑡) =
1

5
(
4𝑠𝑖𝑛(3𝑡)

3
, 2𝑠𝑖𝑛(2𝑡) −

𝑠𝑖𝑛(8𝑡)

8
, −2𝑐𝑜𝑠(2𝑡) +

𝑐𝑜𝑠(8𝑡)

8
) 

 

where 𝑡 ∈ (𝜋 3⁄ , 2𝜋 3⁄ ). The derivative of 𝛼 = 𝛼(𝑡), i.e., the unit tangent vector field of 𝛼, is 

 

𝑻 = 𝛼′(𝑡) =
1

5
(4𝑐𝑜𝑠(3𝑡), 4𝑐𝑜𝑠(2𝑡) − 𝑐𝑜𝑠(8𝑡), 4𝑠𝑖𝑛(2𝑡) − 𝑠𝑖𝑛(8𝑡)) 

 

with ‖𝛼′(𝑡)‖ = 1, so 𝛼 has unit speed. The unit principal normal vector field 𝑵, derivative vector field of 

the unit principal normal vector field 𝑪 and Darboux vector field 𝑾 of 𝛼 can be calculated, respectively, as 

 

𝑵 =
𝑻′

‖𝑻′‖
=

1

5
(3,−4𝑐𝑜𝑠(5𝑡), −4𝑠𝑖𝑛(5𝑡)), 

𝑪 =
𝑵′

‖𝑵′‖
= (0, 𝑠𝑖𝑛(5𝑡), −𝑐𝑜𝑠(5𝑡)),            

𝑾 = 𝑵 × 𝑪 =
1

5
(4, 3𝑐𝑜𝑠(5𝑡), 3𝑠𝑖𝑛(5𝑡)).       

 

Thus the matrix [𝑵 𝑪 𝑾] corresponding to 𝓐 of the one-parameter motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡) of a 

rigid-body in 𝔼3, obtained by moving the coordinate frame {𝑵, 𝑪,𝑾} along 𝛼, can be given by the following 

relation: 

𝑨 = [𝑵 𝑪 𝑾] =

[
 
 
 
 
 

3

5
0

4

5

−
4𝑐𝑜𝑠(5𝑡)

5
𝑠𝑖𝑛(5𝑡)

3𝑐𝑜𝑠(5𝑡)

5

−
4𝑠𝑖𝑛(5𝑡)

5
−𝑐𝑜𝑠(5𝑡)

3𝑠𝑖𝑛(5𝑡)

5 ]
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with 𝑑𝑒𝑡𝑨 = 1.  

 

The curvature and torsion of 𝛼 can be calculated, respectively, as 

 

𝜅 = ‖𝑻′‖ = −4𝑠𝑖𝑛(3𝑡),   𝜏 =
〈𝛼′ × 𝛼′′, 𝛼′′′〉

𝜅2
= 4𝑐𝑜𝑠(3𝑡), 

 

that means 𝛼 is constant precession slant helix. Hence it will be obtained 

 

σ =
κ2

(κ2 + τ2)3 2⁄
(
τ

κ
)
′

=
3

4
 , 

 

which means 𝛼 is slant helix.  

 

The curvature and torsion of the principal-direction curve 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 of α can be calculated, 

respectively, as 

 

𝑓 = √𝜅2 + 𝜏2 = 4,   𝘨 = 𝑓𝜎 = 3, 
 

so the matrix corresponding to 𝑨′ can be given as 

 

𝓐′ = [
𝑵′

𝑪′

𝑾′
] = [

0 𝑓 0
−𝑓 0 𝘨
0 −𝘨 0

] [
𝑁
𝐶
𝑊

] = [
0 4 0

−4 0 3
0 −3 0

] [
𝑵
𝑪
𝑾

] 

 

with 𝑑𝑒𝑡𝓐′ = 0, which means the solution of the equation 𝓐′(𝑡)𝑿 + 𝛼′(𝑡) = 0 is not unique. So the one-

parameter rigid-body motion obtained by moving the coordinate frame {𝑵, 𝑪,𝑾} along 𝛼(𝑡) has not any 

instantaneous pole points at every 𝑡-instant.  

 

The matrix corresponding to 𝐀′′ can be given as 

 

𝓐′′ = [
𝑵′′

𝑪′′

𝑾′′
] = [

−𝑓2 𝑓′ 𝑓𝘨

−𝑓′ −(𝑓2 + 𝘨2) 𝘨′

𝑓𝘨 −𝘨′ −𝘨2

] [
𝑵
𝑪
𝑾

] = [
−16 0 12
0 −25 0
12 0 −9

] [
𝑵
𝑪
𝑾

] 

 

with 𝑑𝑒𝑡𝓐′′ = 0, which means the solution of the equation 𝓐′′(𝑡)𝑿 + 𝛼′′(𝑡) = 0 is not unique. So the 

one-parameter rigid-body motion obtained by moving the coordinate frame {𝑵, 𝑪,𝑾} along 𝛼(𝑡) has not 

any first-order acceleration pole point at every 𝑡-instant.  

 

The Darboux vector of the Frenet frame {𝑵, 𝑪,𝑾} of 𝛽(𝑡) = ∫𝑵(𝑡)𝑑𝑡 can be calculated with respect to 

the moving space E3 as 

 

𝑫 = 𝘨𝑵 + 𝑓𝑾 = (5, 0, 0) = 5𝑵 

 

and since 𝑟𝑎𝑛𝑘𝓐′ = 𝑟𝑎𝑛𝑘𝓐′′ = 2, the direction of the ISA will be stationary, see Fig. 2:  
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Figure 2. Direction of the ISA 

 

In Figure 2, the moving frame 𝑂𝑥𝑦𝑧 moves with 𝑂 along α while rotating so that 𝑥, 𝑦 and 𝑧 axes coincide, 

respectively, with the principal normal 𝑵, derivative of the principal normal 𝑪 and Darboux vector 𝑾 of 

𝛼. 

 

The following remarks can be given for this example: 

 

Remark 1. The Darboux vector of the Frenet motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡), obtained by moving the 

Frenet frame {𝑻,𝑵,𝑩} along 𝛼(𝑡), is 𝑾 = (1 5⁄ )(4, 3𝑐𝑜𝑠(5𝑡), 3𝑠𝑖𝑛(5𝑡)); where the Darboux vector of 

the Frenet motion 𝒀(𝑡) = 𝓐(𝑡)𝑿 + 𝛼(𝑡), obtained by moving the Frenet frame {𝑵, 𝑪,𝑾} along 𝛽(𝑡) =
∫𝑵(𝑡)𝑑𝑡, is 𝑫 = (5, 0, 0) = 5𝑵. 

 

Remark 2. From Theorem 5 the ISA is not stationary since 𝑟𝑎𝑛𝑘𝓐′ = 2 and 𝑟𝑎𝑛𝑘𝓐′′ = 3, where 𝓐 

corresponds to the matrix [𝑻 𝑵 𝑩]; from Theorem 11 the ISA is stationary since 𝑟𝑎𝑛𝑘𝓐′ = 𝑟𝑎𝑛𝑘𝓐′′ =
2, where 𝓐 corresponds to the matrix [𝑵 𝑪 𝑾]. 
 

Finally, the matrix corresponding to 𝑨′′′ may be given as 

 

𝓐′′′ = [
𝑵′′′

𝑪′′′

𝑾′′′
] = [

−3𝑓𝑓′ (−𝑓3 + 𝑓′′ − 𝑓𝘨2) (2𝑓′𝘨 + 𝑓𝘨′)

(−𝑓′′ + 𝑓3 + 𝑓𝘨2) (−3𝑓𝑓′ − 3𝘨𝘨′) (−𝑓𝘨2 − 𝘨3 + 𝘨′′)

(2𝑓𝘨′ + 𝑓′𝘨) (𝑓2𝘨 − 𝘨′′ + 𝘨3) −3𝘨𝘨′

] [
𝑵
𝑪
𝑾

] 

 

                                      = [
0 −100 0

100 0 −63
0 73 0

] [
𝑵
𝑪
𝑾

] 

 

with 𝑑𝑒𝑡𝓐′′′ = 0 which means the solution of the equation 𝓐′′′(𝑡)𝑿 + 𝛼′′′(𝑡) = 0 is not unique. So the 

one-parameter rigid-body motion obtained by moving the coordinate frame {𝑵, 𝑪,𝑾} along 𝛼(𝑡) has not 

any second-order acceleration pole point at every 𝑡-instant. 

 

The equation of the fixed axoid 

 



269 Murat BEKAR, Yusuf YAYLI / GU J Sci, 32(1): 256-271 (2019) 

𝓨(𝑡) = (𝛼(𝑡) +
𝑫(𝑡) × 𝛼′(𝑡)

〈𝑫(𝑡), 𝑫(𝑡)〉
) + 𝜇 (

𝑫(𝑡)

‖𝑫(𝑡)‖
) 

 

will be obtained as 

 

𝓨(𝑡) = (
16𝑠𝑖𝑛(3𝑡)

15
+

3𝜇

5
,−

2𝑠𝑖𝑛(2𝑡)

5
−

9𝑠𝑖𝑛(8𝑡)

40
−

4𝜇𝑐𝑜𝑠(5𝑡)

5
,
2𝑐𝑜𝑠(2𝑡)

5
+

9𝑐𝑜𝑠(8𝑡)

40
−

4𝜇𝑠𝑖𝑛(5𝑡)

5
), 

 

where 𝜇 is an arbitrary scalar, see Fig. 3. 

 

 
Figure 3. Images of the fixed axoid 𝓨 from two different perspectives 

 

Since 𝛼 is slant helix the striction curve, see Figure 4, will be obtained as 

 

𝛿(𝑡) = 𝛼(𝑡) +
𝑫(𝑡) × 𝛼′(𝑡)

〈𝑫(𝑡), 𝑫(𝑡)〉
= (

16𝑠𝑖𝑛(3𝑡)

15
,−

2𝑠𝑖𝑛(2𝑡)

5
−

9𝑠𝑖𝑛(8𝑡)

40
,
2𝑐𝑜𝑠(2𝑡)

5
+

9𝑐𝑜𝑠(8𝑡)

40
) 

 

 

Figure 4. Images of the striction curve 𝛿(𝑡) from two different perspectives 
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5. CONCLUSION  

 

In this study, the instantaneous pole points and the acceleration pole points up to second order are examined 

of a one-parameter motion of a rigid-body in 𝔼3 obtained by moving the coordinate frame {𝑵, 𝑪,𝑾} instead 

of the Frenet frame {𝑻,𝑵,𝑩} along a unit speed curve 𝛼(𝑡). These concepts are investigated by using the 

determinants of the derivative matrices 𝓐′, 𝓐′′ and 𝓐′′′ since the acceleration pole points exist only if the 

determinants of these matrices are not equal to zero. The conditions that ensure 𝑑𝑒𝑡𝓐′ ≠ 0, 𝑑𝑒𝑡𝓐′′ ≠ 0 

and 𝑑𝑒𝑡𝓐′′′ ≠ 0 is not obvious and need a further work, but the conditions associated with this work are 

given. 
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