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Abstract 

A new family of distributions called the Kumaraswamy type I half logistic is introduced and 

studied. The new family is extending well-known distributions as well as provides great flexibility 

to model specific real data and it is very easy in mathematical properties. Four new special models 

are presented. Some mathematical properties of the Kumaraswamy type I half logistic family are 

studied. Explicit expressions for the moments, probability weighted, quantile function, mean 

deviation and order statistics are investigated. Parameter estimates of the family are obtained 

based on maximum likelihood procedure. Two real data sets are employed to show the usefulness 

of the new family.  
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1. INTRODUCTION 

 
The most popular traditional distributions often do not characterize and do not predict most of interesting 

data sets. Generated family of continuous distributions is a new improvement for creating and extending 

the usual classical distributions. The newly generated families have been broadly studied in several areas 

as well as yield more flexibility in applications. Eugene et al. [1] studied the beta-family of distributions. 

Zografos and Balakrishnan [2] suggested a generated family using gamma distribution which is defined as 

follows 

 

F(x) =
1

Γ(δ)
∫ tδ−1e−t

−log⁡[1−G(x)]

0

⁡dt,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 
Kumaraswamy generalized family provided by Cordeiro and de Castro [3]. Ristic and Balakrishnan, [4] 

proposed an alternative gamma generator for any continuous distribution. Further, some generated families 

were studied by several authors, for example, the kummer beta by Pescim et al. [5], exponentiated 

generalized by Cordeiro et al. [6], Weibull-G by Bourguignon et al. [7], exponentiated half-logistic by 

Cordeiro et al. [8], the type I half-logistic by Cordeiro et al. [9], the new Kumaraswamy Kumaraswamy 

family of generalized distributions with application has been presented by Mahmoud et al. [10], Garhy 

generated family of distributions introduced by Elgarhy et al. [11] and the Kumaraswamy Weibull by 

Hassan and Elgarhy [12], odd Burr generalized by Alizadeh et al. [13], generalized odd log-logistic by 

Cordeiro et al. [14], a new generalized odd log-logistic by Haghbin et al. [15], odd Lindley-G by Gomes-

Silva et al. [16], odd Frechet-G by Haq and Elgarhy [17], among others. 

 

In the current paper, we introduce a recently generated family of distributions using the half logistic 

distribution as a generator.  This paper can be sorted as follows. In the next section, the Kumaraswamy type 

I half logistic- generated (KwTIHL-G) family is defined. Section 3 concerns with some general 

mathematical properties of the family. In Section 4, some new special models of the generated family are 

considered. In Section 5, estimation of the parameters of the family is implemented through maximum 
likelihood method. Simulation study is carried out to estimate the model parameters of distribution in 

http://dergipark.gov.tr/gujs
http://www.tandfonline.com/author/Alizadeh%2C+Morad
https://orcid.org/0000-0002-2635-8081
https://orcid.org/0000-0001-9954-0311
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Section 6. An illustrative purpose on the basis of real data is investigated, in Section 7. Finally, concluding 

remarks are handled in Section 8. 

 

2. KUMARASWAMY TYPE I HALF LOGISTIC FAMILY 

 

The Kumaraswamy half logistic distribution is a member of the family of logistic distributions which has 

the following cumulative distribution function (cdf)  

 

𝐺(𝑥) = 1 − {1 − [
1 −⁡𝑒−𝜆𝑥

1 +⁡𝑒−𝜆𝑥
]

𝑎

}

𝑏

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝜆, 𝑎, 𝑏 > 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

 

The associated probability density function (pdf) is as follows  

 

g(𝑥) = 𝑎𝑏⁡ [
2𝜆𝑒−𝜆𝑥

(1 +⁡𝑒−𝜆𝑥)2
]⁡[
1 −⁡𝑒−𝜆𝑥

1 +⁡𝑒−𝜆𝑥
]

𝑎−1

⁡{1 − [
1 −⁡𝑒−𝜆𝑥

1 +⁡𝑒−𝜆𝑥
]

𝑎

}

𝑏−1

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 

On the basis of cdf (1), we use the half logistic generator instead of gamma generator to obtain the 

Kumaraswamy type I half logistic family which is denoted by KwTIHL-G. Hence the cdf of KwTIHL-G 

family can be expressed as follows 

 

𝐹(𝑥) = ∫ 𝑎𝑏⁡ [
2𝜆𝑒−𝜆𝑡

(1 +⁡𝑒−𝜆𝑡)2
]⁡[
1 −⁡𝑒−𝜆𝑡

1 +⁡𝑒−𝜆𝑡
]

𝑎−1

⁡{1 − [
1 −⁡𝑒−𝜆𝑡

1 +⁡𝑒−𝜆𝑡
]

𝑎

}

𝑏−1
− log[1−𝐺(𝑥)]

0

𝑑𝑡⁡⁡ 

 

𝐹(𝑥) = 1 − {1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆
]

𝑎

}

𝑏

⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝜆, 𝑎, 𝑏 > 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

where, 𝜆 is a scale parameter, 𝑎, 𝑏 are two shape parameters and 𝐺(𝑥) is a baseline cdf. The distribution 

function (4) provides a broadly Kumaraswamy type I half logistic generated distributions. Therefore, the 

pdf of the Kumaraswamy type I half logistic- generated family is as follows 

 

𝑓(𝑥) =
2𝑎𝑏𝜆⁡𝑔(𝑥)(1 − 𝐺(𝑥))

𝜆−1

[1 +⁡(1 − 𝐺(𝑥))
𝜆
]
2 ⁡ ⁡[

1 −⁡(1 − 𝐺(𝑥))
𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆
]

𝑎−1

{1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆
]

𝑎

}

𝑏−1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

 

Hereafter, we denote by X~KwTIHL − G⁡ a random variable X has pdf (5). 

 

The survival function, hazard rate function and reserved hazard rate function are, respectively, given by 

 

𝐹̅(𝑥) = 1 − 𝐹(𝑥) = {1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆
]

𝑎

}

𝑏

, 

 

ℎ(𝑥) =
𝑓(𝑥)

𝐹̅(𝑥)
=

2𝑎𝑏𝜆⁡𝑔(𝑥)(1 − 𝐺(𝑥))
𝜆−1

[1 +⁡(1 − 𝐺(𝑥))
𝜆
]
2 ⁡ ⁡[

1 −⁡(1 − 𝐺(𝑥))
𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆]

𝑎−1

1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆]

𝑎 , 
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and 

 

𝜏(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

2𝑎𝑏𝜆⁡𝑔(𝑥)(1 − 𝐺(𝑥))
𝜆−1

[1 +⁡(1 − 𝐺(𝑥))
𝜆
]
2 ⁡ ⁡[

1 −⁡(1 − 𝐺(𝑥))
𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆]

𝑎−1

{1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆]

𝑎

}

𝑏−1

1 − {1 − [
1 −⁡(1 − 𝐺(𝑥))

𝜆

1 +⁡(1 − 𝐺(𝑥))
𝜆]

𝑎

}

𝑏
. 

 

Note that: 

If 𝑎 = 𝑏 = 1 we get the type I half-logistic family of distributions (Cordeiro et al. [9]). 

If 𝑏 = 1 we get the exponentiated half-Logistic family of distributions (Cordeiro et al. [8]). 

 

3. SOME STATISTICAL PROPERTIES  

 

This section provides some statistical properties of KwTIHL-G family of distributions. 

 

3.1. Quantile Function 
 

Let 𝑋 denotes a random variable has the cdf (4), the quantile function; say 𝑄(𝑢)⁡ of 𝑋 is given by 

 

𝑄(𝑢) = 𝐺−1

[
 
 
 
 
 

1 −

[
 
 
 
 

⁡
1 − (1 − (1 − 𝑢)

1
𝑏)

1
𝑎

1 + (1 − (1 − 𝑢)
1
𝑏)

1
𝑎

]
 
 
 
 

1
𝜆

]
 
 
 
 
 

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 

where, 𝑢 is a uniform distribution  on the interval (0,1) and 𝐺−1(. ) is the inverse function of ⁡𝐺(. ). In 

particular, the first quartile, the median, and the third quartile are obtained by putting 𝑢 = 0.25,0.50 and 

0.75 respectively, in (6).  

 

3.2. Important Representation  

 

In this section some representations of the cdf and pdf for the Kumaraswamy type I half logistic family of 

distributions will be presented. The mathematical relation given below will be useful in this section. 

 

It is well-known that, if 𝛽 > 0 and |𝑧| < 1 the generalized binomial theorem is written as follows 

 

(1 − 𝑧)𝛽−1 =∑(−1)𝑖 (
𝛽 − 1

𝑖
)

∞

𝑖=0

⁡𝑧𝑖⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

 

Then, by applying the binomial theorem (7) in (5), the distribution function of KwTIHL-G distribution 

where 𝑏 is real becomes 

 

𝑓(𝑥) = 2𝑎𝑏𝜆⁡𝑔(𝑥)(1 − 𝐺(𝑥))
𝜆−1

⁡∑(−1)𝑖
∞

𝑖=0

(
𝑏 − 1
𝑖
) [1 −⁡(1 − 𝐺(𝑥))

𝜆
]
𝑎(𝑖+1)−1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡× [1 +⁡(1 − 𝐺(𝑥))
𝜆
]
−(𝑎(𝑖+1)+1)

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 
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Using the generalized binomial theorem, we can write 

 

[1 + (1 − 𝐺(𝑥))
𝜆
]
−[𝑎(𝑖+1)+1]

=∑(−1)𝑗 (
𝑎(𝑖 + 1) + 𝑗

𝑗
)

∞

𝑗=0

[1 − 𝐺(𝑥)]𝜆𝑗⁡⁡⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

 

Inserting (9) and (7) in (8), the KwTIHL-G density function can be written as follows 

 

𝑓(𝑥) = 2𝑎𝑏𝜆⁡𝑔(𝑥) ∑ (−1)𝑖+𝑗+𝑘
∞

𝑖,𝑗,𝑘=0

(
𝑏 − 1
𝑖
) (
𝑎(𝑖 + 1) + 𝑗

𝑗
) (
𝑎(𝑖 + 1) − 1

𝑘
) (1 − 𝐺(𝑥))

𝜆(𝑘+𝑗+1)−1
. 

 

Then, using binomial expansion again in the last equation, where 𝜆 is real non integer, leads to: 

 

𝑓(𝑥) = ⁡ ∑ 𝜂∗
∞

𝑖,𝑗,𝑘,𝑙=0

𝑔(𝑥)(𝐺(𝑥))𝑙 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

 

where, 

 

𝜂∗ = 2𝑎𝑏𝜆(−1)𝑖+𝑗+𝑘+𝑙 (
𝑏 − 1
𝑖
) (
𝑎(𝑖 + 1) + 𝑗

𝑗
) (
𝑎(𝑖 + 1) − 1

𝑘
) (
𝜆(𝑘 + 𝑗 + 1) − 1

𝑙
) 

 

Further, an expansion for [𝐹(𝑥)]ℎ is derived, for ℎ is integer, again, the binomial expansion is worked out. 

 

[𝐹(𝑥)]ℎ = ∑ ∑ 𝑊∗(𝐺(𝑥))
𝑤

∞

𝑞,𝑢,𝑣,𝑤=0

ℎ

𝑝=0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

 

where, 

 

𝑊∗ = (−1)𝑝+𝑞+𝑢+𝑣+𝑤 (
ℎ
𝑝
) (
𝑏𝑝
𝑞
) (
𝑎𝑞
𝑢
) (
𝑎𝑞 + 𝑣 − 1

𝑣
) (
𝜆(𝑢 + 𝑣)

𝑤
). 

 

3.3. The Probability Weighted Moments 

 

Class of moments, called the probability-weighted moments (PWMs), has been proposed by Greenwood et 

al. [18]. This class is used to derive estimators of the parameters and quantiles of distributions expressible 

in inverse form. For a random variable 𝑋 the PWMs, denoted by⁡𝜏𝑟,𝑠, can be calculated through the 

following relation 

 

𝜏𝑟,𝑠 = 𝐸(𝑋
𝑟𝐹(𝑥)𝑠) = ∫ 𝑥𝑟𝑓(𝑥)

∞

−∞

𝐹(𝑥)𝑠𝑑𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

 

The PWMs of KwTIHL-G is obtained by substituting (10) and (11) into (12), and replacing h with s, as 

follows 

 

𝜏𝑟,𝑠 = ∑ ∑ ∑ 𝜂∗𝑤∗∫ 𝑥𝑟𝑔(𝑥)𝐺(𝑥)𝑙+𝑤
∞

−∞

𝑑𝑥

∞

𝑞,𝑢,𝛾,𝑤=0

.

∞

𝑖,𝑗,𝑘,𝑙=0

⁡

𝑆

𝑃=0

 

 

Then,  
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τr,s =∑ ∑ ∑ η∗w∗τr,l+w

∞

q,u,γ,w=0

∞

i,j,k,l=0

⁡ ,

S

P=0

 

 

where, 

 

𝜏𝑟,𝑙+𝑤 = ∫ 𝑥𝑟𝑔(𝑥)𝐺(𝑥)𝑙+𝑤
∞

−∞

𝑑𝑥. 

 

3.4.Moments 

 

Since the moments are necessary and important in any statistical analysis, especially in applications. 

Therefore, we derive the 𝑟𝑡ℎ moment for the KwTIHL-G family.  If 𝑋⁡has the pdf (10), then 𝑟𝑡ℎ moment is 

obtained as follows  

 

𝜇̀𝑟 = 𝐸(𝑋
𝑟) = ∫ 𝑥𝑟𝑓(𝑥)

∞

−∞

𝑑𝑥 = ∑ 𝜂∗∫ 𝑥𝑟𝑔(𝑥)𝐺(𝑥)𝑙
∞

−∞

𝑑𝑥

∞

𝑖,𝑗,𝑘,𝑙=0

 

 

Then, 

𝜇̀𝑟 = ∑ 𝜂∗𝜏𝑟,𝑙

∞

𝑖,𝑗,𝑘,𝑙=0

. 

 

3.5. Moment Generating Function 

 

For a random variable 𝑋 it is known that, the moment generating function is defined as 

 

𝑀𝑋(𝑡) =∑ 𝑡𝑟

𝑟!
⁡𝜇̀𝑟

∞

𝑟=0

= ∑ 𝑡𝑟

𝑟!
⁡𝜂∗𝜏𝑟,𝑙

∞

𝑟,𝑖,𝑗,𝑘,𝑙=0

. 

 

3.6. The Mean Deviation 

 

In statistics, mean deviation about the mean and mean deviation about the median measure the amount of 

scattering in a population. For random variable 𝑋 with pdf⁡𝑓(𝑥), cdf⁡𝐹(𝑥), the mean deviation about the 

mean and mean deviation about the median, are defined by  

 

𝛿1(𝑋) = 2𝜇⁡𝐹(𝜇) − 2𝑇(𝜇)  and  𝛿2(𝑋) = 𝜇 − 2𝑇(𝑀), 
 

where, 

 

𝜇 = 𝐸(𝑋),⁡⁡⁡𝑀 = Median(𝑋) 
 

and 

 

𝑇(𝑞) = ∫𝑥⁡𝑓(𝑥)⁡⁡𝑑𝑥

𝑞

−∞

 

 

which is the first incomplete moment. 

 

 

3.7. Order Statistics 



338 El-sayed El-SHERPIENY, Mahmoud ELSEHETRY/ GU J Sci, 32(1): 333-349 (2019) 

 

Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed (i.i.d) random variables with their 

corresponding continuous distribution function⁡𝐹(𝑥). Let 𝑋(1), 𝑋(2), … , 𝑋(𝑛) the corresponding ordered 

random sample from a population of size⁡𝑛. According to David [19], the pdf of the 𝑘𝑡ℎ order statistic, is 

defined as  

 

𝑓𝑥(𝑘)(𝑥(𝑘)) =
𝑓(𝑥(𝑘))

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑(−1)𝑚 (

𝑛 − 𝑘

𝑚
)

𝑛−𝑘

𝑚=0

𝐹(𝑥(𝑘))
𝑚+𝑘−1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

 

𝐵(. , . ) stands for beta function. The pdf of the 𝑘𝑡ℎ order statistic for KwTIHL-G family is derived by 

substituting (10) and (11) in (13), replacing ℎ with 𝑚 + 𝑘 − 1 

 

𝑓𝑥(𝑘)(𝑥(𝑘)) =
𝑔(𝑥(𝑘))

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ ∑ ∑ ∑ 𝐶∗⁡𝐺(𝑥(𝑘))

𝑙+𝑤

⁡
,

𝑚+𝑘−1

𝑃=0

∞

𝑞,𝑢,𝛾,𝑤=0

∞

𝑖,𝑗,𝑘,𝑙=0

𝑛−𝑘

𝑚=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

 

where,⁡𝐶∗ = (−1)𝑚(𝑛−𝑘
𝑚
)⁡𝜂∗𝑤∗ ,  𝑔(. ) and 𝐺(. ) are the pdf and cdf of the KwTIHL-G family, respectively. 

 

Further, the 𝑟𝑡ℎ moment of 𝑘𝑡ℎ order statistics for KwTIHL-G is defined family by: 

 

𝐸(𝑋𝑟(𝑘)) = ∫ 𝑥𝑟(𝑘)𝑓(𝑥(𝑘))
∞

−∞

𝑑𝑥(𝑘).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

 

By substituting (14) in (15), leads to 

 

𝐸(𝑋𝑟(𝑘)) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ ∑ ∑ ∑ 𝐶∗ ⁡∫ 𝑥𝑟(𝑘)𝑔(𝑥(𝑘))𝐺(𝑥(𝑘))

𝑙+𝑤
∞

−∞

𝑑𝑥(𝑘)
⁡

⁡

𝑚+𝑘−1

𝑃=0

∞

𝑞,𝑢,𝛾,𝑤=0

∞

𝑖,𝑗,𝑘,𝑙=0

𝑛−𝑘

𝑚=0

. 

 

Then, 

 

E(Xr(k)) =
1

B(k, n − k + 1)
∑ ∑ ∑ ∑

C∗⁡τr,l+w
⁡

⁡

m+k−1

P=0

∞

q,u,γ,w=0

∞

i,j,k,l=0

n−k

m=0

. 

 

4. SOME SPECIAL MODELS 

 

In this section, we define and describe four special models of the KwTIHL generated family namely, 

KwTIHL-uniform, KwTIHL -Frechet, KwTIHL -exponential and KwTIHL - Lindley. 

 

 

 

 

 

4.1. KwTIHL-Uniform Distribution 

 

The pdf of type I half logistic-uniform KwTIHLU is derived from (5), by taking  ⁡g(𝑥, 𝜃) =
1

𝜃
⁡ , 0 < 𝑥 < 𝜃  

and  ⁡𝐺(𝑥, 𝜃) =
𝑥

𝜃
   as the following  
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𝑓(𝑥) =
2𝑎𝑏𝜆⁡𝜃𝜆(𝜃 − 𝑥)𝜆−1⁡[𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆]

𝑎−1

[𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆]𝑎+1
⁡{1 − [

𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆

𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆
]

𝑎

}

𝑏−1

.⁡⁡⁡0 < 𝑥 < θ 

 

The corresponding cdf takes the following form 

 

𝐹(𝑥) = 1 − {1 − [
𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆

𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆
]

𝑎

}

𝑏

. 

 

Moreover, the survival and the hazard rate functions are given, respectively, as follows  

 

𝐹̅(𝑥) = ⁡ {1 − [
𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆

𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆
]

𝑎

}

𝑏

, 

 

and 

 

ℎ(𝑥) =
2𝑎𝑏𝜆⁡𝜃𝜆(𝜃 − 𝑥)𝜆−1[𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆]

𝑎−1
⁡

[𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆]𝑎+1 ⁡{1 − [
𝜃𝜆 −⁡(𝜃 − 𝑥)𝜆

𝜃𝜆 +⁡(𝜃 − 𝑥)𝜆
]
𝑎

}

. 

 

(a) 

 

(b) 

 
Figure 1. a) pdf of KwTIHLU distribution b) Hazard rate function of KwTIHLU distribution 

 

4.2. KwTIHL-Frechet Distribution 

 

Let us consider the Frechet distribution with distribution functions given by 𝐺(𝑥) = 𝑒
−(

𝜇

𝑥
)
𝛿

 Then the 

KwTIHLF distribution has the following cdf, pdf, survival, and hazard rate functions 

 

𝐹(𝑥) = 1 −

{
 
 

 
 

1 −

[
 
 
 
 1 − [1 − 𝑒

−(
𝜇
𝑥
)
𝛿

]

𝜆

1 + [1 − 𝑒
−(
𝜇
𝑥
)
𝛿

]

𝜆

]
 
 
 
 
𝑎

}
 
 

 
 
𝑏

,⁡⁡⁡𝑥, 𝑎, 𝑏, 𝜇, 𝜆, 𝛿 > 0 
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𝑓(𝑥) =

2𝑎𝑏𝜆𝛿𝜇𝛿𝑒
−(
𝜇
𝑥
)
𝛿

[1 − 𝑒
−(
𝜇
𝑥
)
𝛿

]

𝜆−1

⁡[1 − [1 − 𝑒
−(
𝜇
𝑥
)
𝛿

]

𝜆

]

𝑎−1

𝑥𝛿+1 [1 + [1 − 𝑒
−(
𝜇
𝑥
)
𝛿

]

𝜆

]

𝑎+1 ⁡

{
 
 

 
 

1 −

[
 
 
 
 1 − [1 − 𝑒

−(
𝜇
𝑥
)
𝛿

]

𝜆

1 + [1 − 𝑒
−(
𝜇
𝑥
)
𝛿

]

𝜆

]
 
 
 
 
𝑎

}
 
 

 
 
𝑏−1

, 

 

𝐹̅(𝑥) =

{
 
 

 
 

1 −

[
 
 
 
 1 − [1 − 𝑒−(

𝜇
𝑥
)
𝛿

]

𝜆

1 + [1 − 𝑒−(
𝜇
𝑥
)
𝛿

]

𝜆

]
 
 
 
 
𝑎

}
 
 

 
 
𝑏

, 

 
and 

ℎ(𝑥) =

2𝑎𝑏⁡𝜆𝛿𝜇𝛿⁡𝑒
−(
𝜇
𝑥
)
𝛿

⁡⁡[1 − 𝑒−(
𝜇
𝑥
)
𝛿

]

𝜆−1

[[1 − 𝑒−(
𝜇
𝑥
)
𝛿

]

𝜆

]

𝑎−1

⁡

𝑥𝛿+1 [1 + [1 − 𝑒−(
𝜇
𝑥
)
𝛿

]

𝜆

]

𝑎+1

{
 
 

 
 

1 −

[
 
 
 
 1 − [1 − 𝑒−(

𝜇
𝑥
)
𝛿

]

𝜆

1 + [1 − 𝑒−(
𝜇
𝑥
)
𝛿

]

𝜆

]
 
 
 
 
𝑎

}
 
 

 
 

. 

 
(a) 

 

(b) 

 
Figure 2. a) pdf of KwTIHLF distribution b) Hazard rate function of KwTIHLF distribution 

 

4.3. KwTIHL-Exponential Distribution 

 

The cdf and pdf of KwTIIHL-Exponential (KwTIHLE) distribution are derived from (5) and (6) taking 

𝐺(𝑥, 𝛼) = 1 − 𝑒−𝛼𝑥 as the following 

 

𝐹(𝑥) = 1 − {1 − [
1 − 𝑒−𝛼𝜆𝑥

1 + 𝑒−𝛼𝜆𝑥
]

𝑎

}

𝑏

,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝑎, 𝑏, 𝛼, 𝜆 > 0, 

 

and, 

 

𝑓(𝑥) =
2𝑎𝑏⁡𝜆𝛼⁡𝑒−𝛼𝜆𝑥⁡⁡[1 − 𝑒−𝛼𝜆𝑥]

𝑎−1
⁡

[1 + 𝑒−𝛼𝜆𝑥]𝑎+1
⁡{1 − [

1 − e−αλx

1 + e−αλx
]

a

}

b−1
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Further, the survival and hazard rate functions are as follows  

 

𝐹̅(𝑥) = {1 − [
1 − 𝑒−𝛼𝜆𝑥

1 + 𝑒−𝛼𝜆𝑥
]

𝑎

}

𝑏

, 

 

and 

 

ℎ(𝑥) =
2𝑎𝑏⁡𝜆𝛼⁡𝑒−𝛼𝜆𝑥⁡⁡[1 − 𝑒−𝛼𝜆𝑥]

𝑎−1
⁡

[1 + 𝑒−𝛼𝜆𝑥]𝑎+1 {1 − [
1 − 𝑒−𝛼𝜆𝑥

1 + 𝑒−𝛼𝜆𝑥
]
𝑎

}

. 

 

(a) 

 

(b) 

 
Figure 3. a) pdf of KwTIHLE distribution b) Hazard rate function of KwTIHLE distribution 

 

The quantile function of the KwTIHLE distribution is given by 

 

𝑄(𝑢) = −
1

𝛼𝜆
𝑙𝑛

[
 
 
 
 
1 − [1 − [1 − 𝑢]

1
𝑏]

1
𝑎

1 + [1 − [1 − 𝑢]
1
𝑏]

1
𝑎

]
 
 
 
 

⁡. 

 

Specifically, the first quartile, the median, and the third quartile are obtained by setting u=0.25, 0.5 and 

0.75, respectively, in the previous equation. Also, the random variable X has KwTIHLE distribution can be 

generated from (7), where Q has the uniform distribution over the interval(0,1). Furthermore, the analysis 

of the variability of the skewness and kurtosis on the shape parameters a and b can be investigated based 

on quantile measures. The Bowley skewness [20], denoted by B, is defined by 

 

𝐵 =
𝑄0.75 − 2𝑄0.50 + 𝑄0.25

𝑄0.75 − 𝑄0.25
 

 

The Moors kurtosis [21], denoted by M, can be defined as follows 

 

𝑀 =
Q0.875 − Q0.625 + Q0.375 − Q0.125

Q0.75 − Q0.25
 

 

The Bowley skewness and Moors kurtosis measures do not depend on the moments of the distribution and 
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are almost insensitive to outliers. Plots of the skewness and kurtosis for some choices of the parameter a as 

function of b and for some choices of the parameter b as function of a are shown in Figures 4 and 5.  

 

(a) 

 

(b) 

 

Figure 4.  Bowley skewness of the KTIHLE distribution. a) As function of a for some values of b b) As 

function of b for some values of a. 

 

(a) 

 

(b) 

 
Figure 5.  Moors kurtosis of the KTIHLE distribution. a) As function of a for some values of b b) As function 

of b for some values of a 

 

4.4. KwTIHL-Lindley Distribution 

 

The Lindley distribution has been suggested by Lindley. The probability density and distribution functions 

of quasi Lindley distribution are given by 

 

𝐺(𝑥, 𝛽) = 1 − [1 +
𝛽𝑥

𝛽 + 1
] 𝑒−𝛽𝑥⁡⁡,⁡⁡⁡𝑔(𝑥, 𝛽) =

𝛽2

𝛽 + 1
(1 + 𝑥)⁡𝑒−𝛽𝑥 

 

The cdf, pdf, survival and the hazard rate functions for KwTIHL- Lindley distribution (KwTIHLL) are 

obtained from (4) and (5), respectively as  

 

𝐹(𝑥) = 1 − {1 − [
1 − (𝑤)𝜆𝑒−𝛽𝜆𝑥

1 + (𝑤)𝜆𝑒−𝛽𝜆𝑥
]

𝑎

}

𝑏

,⁡⁡⁡⁡𝑥, 𝑎, 𝑏, 𝜆 > 0,⁡⁡⁡𝛽 > −1, 

 

where,  𝑤 = 1 +
𝛽𝑥

𝛽+1
 

 

𝑓(𝑥) =
2𝑎𝑏⁡𝜆𝛽2(1 + 𝑥)𝑒−𝛽𝜆𝑥⁡(𝑤)𝜆−1⁡[1 − (𝑤)𝜆𝑒−𝛽𝜆𝑥]

𝑎−1
⁡

(𝛽 + 1)[1 + (𝑤)𝜆𝑒−𝛽𝜆𝑥]𝑎+1
⁡{1 − [

1 − (𝑤)𝜆⁡𝑒−𝛽𝜆𝑥

1 + (𝑤)𝜆⁡𝑒−𝛽𝜆𝑥
]

𝑎

}

𝑏−1

, 
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𝐹̅(𝑥) = {1 − [
1 − (𝑤)𝜆𝑒−𝛽𝜆𝑥

1 + (𝑤)𝜆𝑒−𝛽𝜆𝑥
]

𝑎

}

𝑏

, 

 

 

and, 

 

ℎ(𝑥) =
2𝑎𝑏⁡𝜆𝛽2(1 + 𝑥)⁡(𝑤)𝜆−1⁡𝑒−𝛽𝜆𝑥⁡[1 − 𝑒−𝛽𝜆𝑥(𝑤)𝜆]

𝑎−1
⁡

(𝛽 + 1)[1 + (𝑤)𝜆⁡𝑒−𝛽𝜆𝑥]𝑎+1 {1 − [
1 − (𝑤)𝜆𝑒−𝛽𝜆𝑥

1 + (𝑤)𝜆𝑒−𝛽𝜆𝑥
]
𝑎

}

. 

 

(a) 

 

(b) 

 
Figure 6. a) pdf of KwTIHLL distribution b) Hazard rate function of KwTIHLL distribution 

 

5. MAXIMUM LIKELIHOOD METHOD 

 

This section deals with the maximum likelihood estimators of the unknown parameters for the KwTIHL-G 

family of distributions on the basis of complete samples. Let  𝑋1, 𝑋2, … , 𝑋𝑛 be the observed values from the 

KwTIHL-G family with set of parameter= (𝑎, 𝑏, 𝜆, 𝜉)𝑇. The log-likelihood function for parameter vector 

𝛷 = (𝑎, 𝑏, 𝜆, 𝜉)𝑇 is obtained as follows 

 

𝑙𝑛(𝐿, 𝜙) = 𝑛 𝑙𝑛(2) + 𝑛 𝑙𝑛(𝑎) + 𝑛 𝑙𝑛(𝑏) + 𝑛 𝑙𝑛(𝜆) +∑𝑙𝑛[𝑔(𝑥𝑖, 𝜉)]

𝑛

𝑖=1

+ (𝜆 − 1)∑𝑙𝑛[1 − 𝐺(𝑥𝑖 , 𝜉)]

𝑛

𝑖=1

⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+(𝑎 − 1)∑𝑙𝑛 [1 −⁡(1 − 𝐺(𝑥𝑖 , 𝜉))
𝜆
]

𝑛

𝑖=1

− (𝑎 + 1)∑𝑙𝑛 [1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]

𝑛

𝑖=1

⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+(𝑏 − 1)∑𝑙𝑛 [1 − [
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]

𝑎

]

𝑛

𝑖=1

,⁡ 

 

𝑈𝑎 =
𝑛

𝑎
+∑𝑙𝑛 [1 −⁡(1 − 𝐺(𝑥𝑖 , 𝜉))

𝜆
]

𝑛

𝑖=1

−∑𝑙𝑛 [1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]

𝑛

𝑖=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+⁡(𝑏 − 1)∑

[
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆]

𝑎

𝑙𝑛 [
1 −⁡(1 − 𝐺(𝑥𝑖 , 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖 , 𝜉))
𝜆]

1 − [
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆]

𝑎 ,

𝑛

𝑖=1
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𝑈𝑏 =
𝑛

𝑏
+∑𝑙𝑛 [1 − [

1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]

𝑎

]

𝑛

𝑖=1

, 

 

𝑈𝜆 =
𝑛

𝜆
+∑𝑙𝑛[1 − 𝐺(𝑥𝑖, 𝜉)]

𝑛

𝑖=1

+ (𝑎 − 1)∑
(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆
𝑙𝑛[1 − 𝐺(𝑥𝑖 , 𝜉)]

1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆

𝑛

𝑖=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝑎 + 1)∑
(1 − 𝐺(𝑥𝑖 , 𝜉))

𝜆
𝑙𝑛[1 − 𝐺(𝑥𝑖 , 𝜉)]

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝑎(𝑏 − 1)∑

[
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆]

𝑎−1

2(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
𝑙𝑛[1 − 𝐺(𝑥𝑖, 𝜉)]

[1 +⁡(1 − 𝐺(𝑥𝑖 , 𝜉))
𝜆
]
2

1 − [
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆]

𝑎

𝑛

𝑖=1

, 

 

and, 

 

𝑈𝜉𝑘 =∑
𝑔𝑘
′ (𝑥𝑖, 𝜉)

𝑔(𝑥𝑖, 𝜉)

𝑛

𝑖=1

− (𝜆 − 1)∑
𝐺𝑘
′ (𝑥𝑖, 𝜉)

1 − 𝐺(𝑥𝑖, 𝜉)

𝑛

𝑖=1

+ 𝜆(𝛼 − 1)∑
𝐺𝑘
′ (𝑥𝑖, 𝜉)⁡[1 − 𝐺(𝑥𝑖 , 𝜉)]

𝜆−1

1 − [1 − 𝐺(𝑥𝑖, 𝜉)]
𝜆

𝑛

𝑖=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝜆(𝛼 + 1)∑
𝐺𝑘
′ (𝑥𝑖, 𝜉)⁡[𝐺(𝑥𝑖, 𝜉)]

𝜆−1

1 + [1 − 𝐺(𝑥𝑖, 𝜉)]
𝜆

𝑛

𝑖=1

⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝑎(𝑏 − 1)∑

[
1 −⁡(1 − 𝐺(𝑥𝑖, 𝜉))

𝜆

1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆]

𝑎−1

2𝜆(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆−1

𝐺𝑘
′ (𝑥𝑖, 𝜉)

[1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]
2

[1 +⁡(1 − 𝐺(𝑥𝑖, 𝜉))
𝜆
]
2

𝑛

𝑖=1

, 

 

where,  𝑔𝑘
′ (𝑥𝑖, 𝜉) =

𝜕𝑔(𝑥𝑖, 𝜉)
𝜕𝜉𝑘
⁄ and 𝐺𝑘

′ (𝑥𝑖, 𝜉) =
𝜕𝐺(𝑥𝑖, 𝜉)

𝜕𝜉𝑘
⁄ . 

 

Setting 𝑈𝑎 , 𝑈𝑏 , 𝑈𝜆 , 𝑎𝑛𝑑⁡𝑈𝜉𝑘  equal to zero and solving these equations simultaneously yield the maximum 

likelihood estimate (MLE) 𝛷̂ = (𝑎̂, 𝑏̂, 𝜆̂, 𝜉) of 𝛷 = (𝑎, 𝑏, 𝜆, 𝜉)𝑇 these equations cannot be solved 

analytically and statistical software can be used to solve them numerically using iterative methods. 

 

6. SIMULATION STUDY 

 

It is very difficult to compare the theoretical performances of the different estimators (MLE) for the 

KwTIHLE distribution. Therefore, simulation is needed to compare the performances of the estimation 

mainly with respect to their biases and mean square errors for different sample sizes. A numerical study is 

performed using Mathematica 9 software. Different sample sizes are considered through the experiments 

at size n = 20, 30, 50 and 100. In addition, the different values of the parameters a, b and α. 

 

The experiment will be repeated 1000 times. In each experiment, the estimates of the parameters will be 

obtained by maximum likelihood method. The means, MSEs and biases for the different estimators will be 

reported from these experiments. 

 

Table 1. MLEs, biases and MSEs for some parameter values 

n Par Init MLE Bais MSE Init MLE Bais MSE 

20 a 1.5 1.5259 0.0259 0.1588 2.0 1.9029 0.0970 0.3054 
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b 0.7 1.7847 1.0847 1.5737 0.5 1.3298 0.8298 1.0279 

λ 1.5 1.0021 0.4978 0.2481 1.5 0.9927 0.5072 0.2587 

α 1.2 1.0020 0.1980 0.0395 1.2 0.9922 0.2077 0.0446 

30 

a 1.5 1.4836 0.0163 0.1140 2.0 1.8177 0.1822 0.2143 

b 0.7 1.6631 0.9631 1.1884 0.5 1.2336 0.7336 0.6683 

λ 1.5 0.9965 0.5034 0.2537 1.5 0.9891 0.5108 0.2617 

α 1.2 0.9964 0.2035 0.0417 1.2 0.9887 0.2112 0.0454 

50 

a 1.5 1.4208 0.0791 0.0723 2.0 1.7518 0.2481 0.1530 

b 0.7 1.6375 0.9375 1.0190 0.5 1.1869 0.6869 0.5413 

λ 1.5 0.9970 0.5029 0.2530 1.5 0.9878 0.5122 0.2627 

α 1.2 0.9970 0.2029 0.0413 1.2 0.9875 0.2124 0.0455 

100 

a 1.5 1.4285 0.0714 0.0309 2.0 1.7124 0.2875 0.1210 

b 0.7 1.6099 0.9099 0.9019 0.5 1.1543 0.6543 0.4618 

λ 1.5 0.9952 0.5047 0.2549 1.5 0.9868 0.5131 0.2635 

α 1.2 0.9951 0.2048 0.0420 1.2 0.9866 0.2133 0.0457 

 

7. APPLICATION  

 

In this section, two real data sets are used to illustrate the potentiality of the KwTIHL family. Application 

of the KwTIHL distributions based on four distributions; namely, Kumaraswamy type I half logistic 

exponential (KwTIHLE), type I half logistic Weibull (TIHLW), Exponentiated Weibull Weibull (EWW) 

[22]. And Weibull Weibull (WW) [23].  

 

Data set 1: is obtained from Hinkley [24]. It consists of thirty successive values of March precipitation (in 

inches) in Minneapolis/St Paul.  

Data set 2: The data are obtained from Bjerkedal [25] and  represent the survival times (in  days) of 72 

guinea pigs infected with virulent tubercle bacilli. The data sets are as follows:  

 

The estimate of the unknown parameters of each distribution is obtained by the maximum-likelihood 

method. In order to compare the four distribution models, various criteria were used. Criteria like; −2 ln L, 

Akaike information criterion (AIC), Bayesian information criterion (BIC), the correct Akaike information 

criterion (CAIC), Hannan information criterion(HQIC), the Kolmogorov-Smirnov (K − S), Anderson 

Darling (A*) and  Cramer-von Mises (W*) statistics are considered for the data set.  

The "best" distribution corresponds to the smallest values of⁡−2 ln L, AIC, BIC, CAIC, HQIC, K − S, A* and 

W* criteria. 

 

Table 2. Shows the MLEs of the model parameters and its standard error (in parentheses) for data set 1 

Model MLEs and S. E 

KwTIHLE(𝑎, 𝑏, 𝛼, 𝜆) 
1.82 

( 1.198 ) 

25.172 

( 0.322 ) 

0.31 

( 0.247 ) 

0.579 

( 0.55607 ) 
- 

TIHLW(𝛼, 𝛽, 𝜆) 
0.626 

(0.124) 

1.532 

(0.293) 

0.889 

(0.1791) 
- - 

EWW(𝑎, 𝛼, 𝛽, 𝜆, 𝛾) 
78.61 

(0.14836) 

79.35 

(0.561) 

20.486 

(0.131) 

0.624 

(0.024) 

0.014 

(0.148) 

WW(𝛼, 𝛽, 𝜆, 𝛾) 
39.853 

(0.414) 

3.154 

(0.518) 

0.196 

(0.102) 

0.5 

(0.072) 
 

where, SE(α̂) = √
1

N
∑ (α̂ − α)2N
i=1 . 

 

Table 3. Measurements for all models based on the data set 1 
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Distribution −2 ln 𝐿 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐾 − 𝑆 A* W* 

KwTIHLE 77.244 85.244 83.153 86.844 87.037 0.06879 0.17008 0.02196 

TIHLW 106.639 112.639 112.211 113.562 115.358 0.069 0.22044 0.02953 

EWW 129.022 139.022 141.522 136.407 141.263 0.113 0.34353 0.05525 

WW 138.194 146.194 145.623 147.794 149.819 0.07549 0.20247 0.02622 

 

(a) 

 

(b) 

 
Figure 7. a) Estimated densities for the data set 1 b) Estimated cumulative densities for the data set 1 

 

Table 4. Shows the MLEs of the model parameters and its standard error (in parentheses) for data set 2 

Model MLEs and S. E 

KwTIHLE(𝑎, 𝑏, 𝛼, 𝜆) 
1.841  

(0.635) 

32.646  

(0.233) 

0.283  

(0.203) 

0.531  

(0.45607) 
- 

TIHLW(𝛼, 𝛽, 𝜆) 
0.952 

(0.23859) 

1.535  

(0.035) 

0.544 

 (0.136) 
- - 

EWW(𝑎, 𝛼, 𝛽, 𝜆, 𝛾) 
115.001 

(0.0787) 

125.918 

(0.361) 

19.125 

(0.085) 

0.61 

(0.015) 

0.013 

(0.093) 

WW(𝛼, 𝛽, 𝜆, 𝛾) 
48.725 

 (0.27) 

2.947 

 (0.324) 

0.162  

(0.063) 

0.546  

(0.047) 

 

- 

 

Table 5. Measurements for all models based on for the data set 2 

Distribution −2 ln 𝐿 𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐾 − 𝑆 A* W* 

KwTIHLE 187.794 195.794 195.223 196.391 199.419 0.10197 0.94021 0.15696 

TIHLW 354.017 360.017 359.589 360.37 362.736 0.113 1.10046 0.18381 

EWW 302.076 312.076 311.363 312.972 316.608 0.134 1.39873 0.20049 

WW 337.304 345.304 344.734 345.901 348.93 0.10975 1.04681 0.17318 

 

(a) (b) 
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Figure 8. a) Estimated densities for second data set 2 b) Estimated cumulative densities for second data set 2 

 

The values in Tables 3 and 5, indicate that the Kumaraswamy type I half logistic exponential distribution 

is a strong competitor to other distributions used here for fitting data set. A density and cdf plots compares 

the fitted densities of the models with the empirical histogram of the observed data Figure 7 and Figure 8. 

The fitted density for the Kumaraswamy type I half logistic exponential model is the closest to the empirical 

histogram of the other fitted models. 

 

8. CONCLUSION  

 

In this article, we introduced the new Kumaraswamy type I half logistic generated family of distributions. 

More specifically, Kumaraswamy type I half logistic generated family covers several new distributions. We 

wish a broadly statistical application in some area for this new generalization. Properties of the KwTIHLF 

were discussed, such as, expressions for the density function, moments, mean deviation, quantile function 

and order statistics. The maximum likelihood method is employed for estimating the model parameters. 

Four special models are provided. Further, the derived properties of the generated family are valid to these 

selected models. We fit some KwTIHL-G distributions to one real data set to demonstrate the potentiality 

of this family. 
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