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Abstract – In this paper, avian influenza epidemic model with drug resistance effect is investigated. The basic 

reproduction number 0R  find out using next generation method. The local and global stability of a disease free and 

endemic equilibrium of the system is studied and discussed. Numerical simulations are carried out to investigate the 

influence of the key parameters on the spread of the disease, to support the analytical conclusion and illustrate 

possible behavioral scenarios of the model.  
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1. Introduction 

The year ended cost of affliction illness and the developing threat of evolution of a 

comprehensive strain make it all important to revisit of present accessible treatment options. 

Adamantane and neuraminidase inhibitors (NAIS), two divisions of drugs, are at present 

accessible treatment of influenza, although to treat influenza adequately combat to both divisions 

at drugs intimidate our ability. Underlying the appearance of day combat helps in letter consider 

at the mechanism. It will approve health authorization to make more adequate else of antiviral, 

over the cause of an influenza infection on a periodic basis, or in the content of a pandemic, 

preceding production on the appearance at drug combat in afflictions. A has been centralize 

largely an epidemiological model which represent the spreading of drug combat infection across 

a population. For developing approach to interrupt the diffusion of drug combat once it emerges, 
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such studies are important, they do not provide insight into how the drug combat break affair 

during the continuity at a single infection, and on what timescale the appearance of drug combat 

to NAIS has been examined by an early modeling study, during a single infection. In which, it is 

found that NAI combat could arrive in the absence at drug treatment, admitting at low level, even 

if the break is slightly less fit than the wild-type virus. To appraise the fitness difference which is 

caused by drug combat mutation has been studies and used several models. Alternative studies 

have used models to optimize treatment regimens to reduce the emergence of drug resistant 

mutants. However, some of the biological processes that might self or hinder the appearance of 

drug combat are yet not tried to examined by any study [2]. 

 

2. Mathematical Model 

Basic Model. Shuqinche [1] has proposed the model for the avian influenza 
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Modified Model. 
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Parameter description. The human is divided into three compartments RIS ,, the number of 

susceptible, infected and recovered respectively, the birds are divided into susceptible poultry

( )X  and infected poultry ( )Y . 

Parameter  description  

C    natural birth rate of avian 

b    natural birth rate of human 

d    the natural mortality of poultry 

    the natural mortality of human 

m    due to the mortality illness of poultry 

    due to the mortality illness of human 

w    stands for infectious rate of susceptible poultry to infected poultry 

    stands for infected poultry of the infection    

rate of susceptible human individuals 

    the recovery rate that infects individuals through treatment 

    resistance rate to treatment 

    recovery rate after second line of resistance treatment 

 

3. Equilibria of the System 
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disease free equilibrium point 
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The largest Eigen value of 
1−FV , the basic reproduction number is expressed as 
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Endemic equilibrium point
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Theorem 3.1. if ,10 R the system (3.1) only exists the disease-free equilibrium 
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4. Local Stability of the Disease Free Equilibrium 

In this section we find the local stability of the disease free and endemic equilibrium. 

Theorem 4.1. The disease free equilibrium 0E  is locally asymptotically stable, if .10 R  

Proof. The Jacobian matrix of system (3.1) is
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 for ,10 R it is clear the matrix 
0EJ has negative real parts. So, 0E  is locally asymptotically 

stable. 

Theorem 4.2. The endemic equilibrium *E is locally asymptotically stable if .10 R  

Proof. The Jacobean matrix of system (3.1) is 
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The characteristic equation of jacobian matrix (4.2) at the endemic equilibrium point, 
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* , , , , ESE X Y S I R= , is a fifth-degree polynomial given by
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Where , 1, 2, 3, 4, 5ia i = are the coefficients. It can be shown that all the coefficients ia are 

positive. The necessary and sufficient conditions for the local asymptotic stability of endemic 

equilibrium point 1E are that the Hurwitz determinants ,iH are all positive for the Routh-Hurwitz 

criteria. For a fifth degree polynomial [3] these criteria are given by 
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From which we can conclude whether the endemic equilibrium point is locally asymptotically 

stable or unstable.  

 

5. Global stability of the disease free and endemic equilibrium. 

Theorem 5.1. if ,10 R the disease free equilibrium 0E  is globally asymptotically stable, if 

,10 R the disease free equilibrium 0E  is unstable. 

Proof. Consider the lyapunov function 
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When ,10 R  we can get 0
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1 =K  has no other closed trajectory in addition to 0E  is 

globally asymptotically stable iff .10 R  

Theorem 5.2. The endemic equilibrium *E is globally asymptotically stable if .10 R  

Proof. Consider the Lyapunov function 
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By the relationship of arithmetic mean and geometric mean. 
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6.  Numerical Simulation 

   

Figure 1. 

 

Suppose the parameters are 3, 0.02, 0.04, 0.012,C d w= = = = 0.96, 1, 0.068,m b = = =  

0.62, 0.39, 0.05, 0.15, 0.0411,    = = = = = Let the initial value of the system as

, , , , ESX Y S I R are 30,20,15,10,5 respectively. Then we obtain 0 0.9 1,R = 

( )0 0 0 0 0

0 , , , ESE X Y S I R ( )75,0,29.41,0,0= Therefore by theorem 5.1, 0E
 

is globally 

asymptotically stable (see in figure 1) 
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Figure 2. 

Again we take the parameter 2, 0.01, 0.03, 0.02,C d w= = = = 0.97, 1,m b= = 0.069, =

0.63, 0.301, 0.05, 0.15, 0.0411    = = = = =
 

and , , , , ESX Y S I R  are 30,20,15,10,5 

respectively. Then we obtain 0 1.33 1R =  , ( ) ( )31.0,23.0,72.10,8.2,86.41,,, *****

* =ESRISYXE  

Therefore, by theorem 5.2, *E
 
is globally asymptotically stable (see in figure 2) 

 

Figure 3. When  resistance rates to treatment increases then the steady state value I of the infective are decrease 
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If we change the value of  and keeping another parameter are fixed we can see that *I decreases 

as   increases. Choose the value of 0.01, 2, 7  = = =  we get 0.26, 0.13, 0.03I I I= = =  

respectively. 

 

7. Conclusion 

In this study, we formulate avian influenza epidemic model with saturated contact rate 

introduced by Shuqinche et al [1]. We have shown that if the basic reproduction number 10 R

then 0E globally asymptotically stable is disease out see Figure 2. If 10 R then +E exist i.e. 

disease persist. Numerical simulation indicates that when the disease is endemic, the steady state 

value I decrease as resistance rate to treatment increases See Figure 3. 
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