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Abstract 
 

This paper is a follow-up of previous work aimed at the identification and quantification of the exergy of macroscopic 

non-equilibrium systems. Assuming that both energy and exergy are a priori concepts, it is possible to show that a 

system in an initial non-equilibrium state relaxes to equilibrium releasing (or absorbing) an additional amount of 

exergy, called non-equilibrium exergy, which is fundamentally different from Gibbs’ Available Energy and depends 

on both the initial state and the imposed boundary conditions. The existence of such a quantity implies that all iso-

energetic non-equilibrium states can be ranked in terms of their non-equilibrium exergy content, any point of the 

Gibbs plane corresponding therefore to a possible initial distribution, each one with its own exergy-decay history. The 

non-equilibrium exergy is always larger than its equilibrium counterpart and constitutes the “real” total exergy content 

of the system, i.e., the real maximum work extractable (or absorbable) from the system. The application of the method 

to heat conduction problems led to the calculation of a “relaxation curve”, i.e., to the determination of the time-history 

of the relaxation towards equilibrium that takes place in finite rather than infinite time interval. In our previous works, 

use was made of the Fourier heat diffusion equation. In this study, the Cattaneo heat transfer equation is used instead, 

in an attempt to extend the validation range of the procedure. Cattaneo introduced in 1948 a second time derivative 

term that renders the diffusion equation hyperbolic and avoids an infinite speed of propagation. A finite propagation 

velocity of thermal disturbances affects the value of the non-equilibrium exergy: this paper presents the new results 

and offers a discussion of the implications. 
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1. Introduction 

In previous works [1-2] we derived the evolution in time 

of the exergy for systems outside of equilibrium. The 

approach posits the local equilibrium hypothesis and makes 

use of standard constitutive evolution equations. These two 

elements are both necessary to derive conclusions but, we 

must stress, they are not dependent on each other. The 

Fourier heat law, assumed to be the constitutive equation in 

[1-2], has been -and rightly so- criticized from a 

phenomenological point of view, because it implies an 

infinite “transport velocity” for small temperature signals 

(see e.g. [3-8]). If the initial thermal inhomogeneities are 

large enough, one expects to observe deviations of the real 

evolution of the temperature with respect to the profile 

provided by the Fourier law. If the Cattaneo equation is taken 

as the constitutive evolution equation for the temperature, it 

is again possible to derive the evolution of the exergy from 

an initial non-equilibrium state to the final equilibrium. The 

Cattaneo equation has been criticized (see e.g. [3,7]) since it 

is commonly believed that it is incompatible with the Second 

Law. The problem is physical rather than mathematical, and 

we will show that, under the hypothesis of a finite velocity 

of the temperature signal, it is possible to obtain a negative 

value of the exergy destroyed in the balance equation (i.e. a 

positive entropy production, see e.g. [2] or [9]).  

By changing the constitutive equations, the evolution of 

the exergy towards the value zero, corresponding to the 

“dead state”, changes as well. The exergetic content of the 

initial non-equilibrium state however does not depend on the 

modes of evolution of the temperature. As we shall see, these 

characteristics are evident in our approach. 

The paper is organized as follows: in Section 2 we 

discuss the correct boundary conditions to be applied in the 

case of Cattaneo’s equation: as usually, we assume that the 

Newton law of cooling holds and then we take into account 

the delay in the heat transfer. This is necessary to obtain a 

well-posed problem. In subsection 2.1 we obtain the solution 

by using the classical Fourier analysis and assuming, for 

simplicity, a “zero velocity” in the initial distribution of the 

temperature. In subsection 2.2 we discuss the solution 

obtained, showing how the Cattaneo solution displays a 

faster approach to equilibrium than its Fourier counterpart. 

Also, to be consistent with the derivation of the model, it is 

shown that the Cattaneo number must be bounded somehow 

by the first Fourier eigenvalue. In Section 3 we introduce the 

exergy of the system, showing how the balance equation 

complies with the Second Law. In Section 4 we present the 
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example of a sphere with radial initial conditions: we obtain 

both analytical and numerical results and we make a 

comparison with the results obtained assuming the classical 

Fourier law as constitutive equation for the evolution of the 

temperature. Finally, in Section 5, we discuss the method and 

the results and try to provide a systematic view of our work.      

 

2. Cattaneo’s Equation and the Proper Convective 

Boundary Conditions 

Consider a given distribution of mass at an initial 

temperature distribution 𝑇(�⃗�, 0), and assume that the 

temperature evolves according to Cattaneo’s law. We shall 

refer in general to the mass distribution as “the solid”. The 

physical assumption behind Cattaneo’s equation is the 

introduction of a relaxation time 𝜏, measuring the delay in 

the appearance of a heat flux after a temperature gradient is 

imposed on the solid. The introduction of the relaxation time 

avoids the problem of an infinite speed of heat propagation 

in the Fourier’s law [4-5,8]. Under these assumptions, the 

local energy balance results in a law of heat conduction 

different than Fourier’s: 
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one obtains the so-called Cattaneo equation 
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where 𝑘2 = 𝜆/𝜌𝑐  is the thermal diffusivity. The finite speed 

of propagation of the signal is given by the constant 𝑢 =

𝑘/√𝜏 and diverges if 𝜏 = 0, in which case from equation 3) 

one recovers the usual Fourier equation.  

The mathematical model for the heat conduction with 

convective boundary conditions reads 
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where T0 is the temperature of the environment, �̂� is the 

normal to the boundaries of the solid (going outward) and 𝛼 

is a measure of the heat transfer by convection between the 

boundaries of the solid and the surrounding. The functions 

T1(x) and T2(x) identify the two initial conditions of the 

problem (Tt(x) hereafter denotes the partial derivative with 

respect to t). Equations (4) for 𝜏 = 0 result in the Fourier 

model of heat conduction. In the Fourier’s case the boundary 

condition reduces to �̂�. ∇𝑇 + 𝛼(𝑇 − 𝑇0) = 0. In the 

Cattaneo’s case the boundary condition �̂�. (�⃗� + 𝜏
𝜕�⃗⃗�

𝜕𝑡
) =

𝜆𝛼(𝑇 − 𝑇0) differs from the usual Fourier condition, because 

it must take into account the delay between the heat flux and 

the temperature gradient at the boundary between the solid 

and the environment. Such a formulation is necessary for the 

well-presentation of the problem.  

It is easy to see that the boundary conditions in Eq. (4) 

can be written as �̂�. ∇𝑇 + 𝛼(𝑇 − 𝑇0) = 0, i.e. they have the 

same form as in the Fourier’s case (that is when the evolution 

of temperature is described by 
𝜕𝑇

𝜕𝑡
= 𝑘2∇2𝑇). One must pay 

attention though to the different physical meaning: the 

temperature gradient is proportional to �⃗�(�⃗�, 𝑡 + 𝜏) ≈

�⃗�(�⃗�, 𝑡) + 𝜏
𝜕�⃗⃗�

𝜕𝑡
  and not simply to �⃗�(�⃗�, 𝑡). It is apparent that 

the boundary condition �̂�. (�⃗� + 𝜏
𝜕�⃗⃗�

𝜕𝑡
) = 𝜆𝛼(𝑇 − 𝑇0), which 

in force of Eq. (1) can be written as well as �̂�. ∇𝑇 +
𝛼(𝑇 − 𝑇0) = 0, is Cattaneo’s version of Newton’s law of 

cooling.  

2.1 Time Evolution of the Temperature in the Solid 

In this subsection we consider the general case of heat 

conduction in solids with a convective heat exchange 

between the environment and the boundaries. We make the 

problem dimensionless by introducing a change of 

coordinates: 𝜃 = 𝑡
2𝜏⁄  and 𝜉 = �⃗�

𝐿⁄ , where L is a 

characteristic length of the solid. Also, we define the 

Cattaneo number 𝐶 = 𝑘2𝜏
𝐿2⁄   and the Biot number 𝐵𝑖 = 𝛼𝐿. 

We assume for simplicity that 𝑇𝑡(�⃗�, 0) = 𝑇2(�⃗�) = 0. Then 

the system of Eq. (4) can be rewritten as 
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We look for a solution of equations 5) by the method of 

separation of variables. Due to the term T0, the boundary 

conditions are inhomogeneous. We introduce the 

temperature 𝑇(𝜉, 𝜃) = 𝑇0 + 𝜈(𝜉, 𝜃), where T0 is the 

stationary temperature and the function 𝜈(𝜉, 𝜃) measures the 

deviation from the stationary solution. In this way it is easy 

to see that the function 𝜈(𝜉, 𝜃) solves the same differential 

Eq. (5) but with homogeneous boundary conditions, i.e. 

�̂�. ∇𝜈 + 𝐵𝑖𝜈 = 0. Now it is possible to apply the separation 

of variables to the function 𝜈(𝜉, 𝜃), so we set 𝜈(𝜉, 𝜃) =

𝑤(𝜉)𝑊(𝜃). The differential equation gives 
𝑊𝜃+1/2𝑊𝜃𝜃

𝑊
=

2𝐶
𝛻2𝑤

𝑤
, implying that 

2w  must be proportional to w . So, 

we derive the Helmholtz equation for the function 𝑤(𝜉)  
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Under the stipulated boundary conditions, the Helmholtz 

operator is self-adjoint: it possesses real eigenvalues and the 

corresponding eigenvectors are orthogonal (see e.g. [10]). If 

𝑤𝑛(�⃗�) is the eigenfunction corresponding to the eigenvalue 

𝜇𝑛, we have 
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We assume also that the set of eigenvectors is complete. 

Corresponding to each wn there is a function Wn satisfying  
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2𝐶 − 1. If the initial condition 𝑇𝑡(𝜉, 𝜃) = 0 

is taken into account, then 𝑏𝑛 = ∆𝑛𝑎𝑛 and the solution of the 

problem (5) is given by the infinite sum 
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and, thanks to the orthogonality Eq. (7), the coefficients cn 

are given by 
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2.2 Discussion of the Solution 

Let us discuss the solution 9). The dependence of the 

values ∆𝑛 on the eigenvalues 𝜇𝑛 is given by ∆𝑛
2= 4𝜇𝑛

2𝐶 −
1. Also, the eigenvalues 𝜇𝑛 depend on the value of the Biot 

number Bi . Since the Cattaneo number and the Biot number 

are two independent quantities, it is possible that some of the 

values of ∆𝑛 are purely imaginary. In the Fourier’s case in 

fact C=0, and all of them are imaginary. On the contrary, now 

we may only have a finite number of such values. The 

remaining values (infinitely many) are real and account for 

the oscillatory behavior of a Cattaneo typical heat diffusion 

process. This oscillatory behavior is modulated by the 

smoothing exponential 𝑒−𝜃. 

A comparison between the time evolution of the 

temperature according to Cattaneo’s equation and the 

evolution of the temperature according to Fourier’s equation 

near the parabolic limit (i.e., for very small values of 

Cattaneo number C) has been given in [11]: in particular 

these authors have shown that if the same initial condition 

T(r,0) is assigned, the solutions of the Fourier and Cattaneo 

equations remain rather close at all times.  

However, which one of the two solutions approaches 

faster the equilibrium value has not been discussed. If we 

focus on the time evolution of the solution of Eq. (9), we can 

identify two different cases according to the value of the first 

eigenvalue  
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Comparing these time behaviors with those of the parabolic 

heat equation, we notice that in the Fourier’s case the 

solution approaches T0 as 𝑒
−
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. In order to use the 

same dimensionless time scale, for any fixed C of the 

Cattaneo solution, we can write the Fourier exponential as 

2
12C
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So, in the case i. above, if 𝐶 <
1

2𝜇1
2, Cattaneo’s solution 

pproaches T0 faster than the Fourier solution. In the second 

case Cattaneo’s solution approaches T0 faster than the 

Fourier solution whatever the values of C and 𝜇1. At first 

sight these observations seem to be in contrast with the 

perception that the “Fourier temperature” spreads out faster 

than the “Cattaneo temperature”, due to the fact that the 

solutions of Cattaneo equation are solutions of a damped-

wave equation and have a finite speed of propagation. 

Actually, although the effect of the heat flux is 

instantaneously felt in the Fourier’s model, a finite effective 

heat propagation speed, based on the penetration depth, can 

be defined also in this case [12]. The penetration depth is the 

depth to which significant temperature effects propagate 

within the solid [13]. From this point of view the effective 

speed of propagation for the Fourier’s model may be, under 

certain conditions, smaller than the effective speed of 

propagation of the Cattaneo model (which is different from 

the group velocity of the temperature waves). 

The above considerations suggest to provide a practical 

estimate of the range of variation of the Cattaneo number 

𝐶 = 𝑘2𝑟/𝑅2. Equation 3) is derived under the physical 

assumption ),(),( txTtxq


   in the limit of a small 

 . This means that the Cattaneo number must be small in 

Eq. (14) or (15). The adoption of Cattaneo equation with 

arbitrary values of C may lead to unphysical solutions. It is 

indeed possible to show that for sufficiently large values of 

C , local negative temperatures are obtained from Eq. (15) at 

some time t*, even in the case of very reasonable initial 

conditions. In this work we shall therefore limit the range of 

C from 0 to 𝐶 ≈
1

4𝜇1
2 (so that ∆1

2 is small, positive or 

negative and ∆𝑛 is positive for 1n ).  

A more serious objection to the Cattaneo equation has 

been given in [14]: in that work, the authors showed that, if 

a suitable external source of heat is taken into consideration, 

then for any choice of the value of the Cattaneo number C, 

there are points of the solid where negative temperature 

arises. Indeed, this happens for every equation of hyperbolic 

type if the external source has a resonant frequency with 

those of the material. In Eq. (3) there is no external source 

term, but in future works we plan to investigate also this case 

in more detail.   

 

3. Cattaneo’s Exergy 

 

In this section we calculate the maximum work that can 

be extracted from a solid in the process of exclusive 

interaction with the environment, i.e. the exergy content of 

the solid (see e,g [1-2]). To calculate this quantity, we notice 

that Cattaneo equation is based on the physical assumption 

that a gradient of temperature at time t  produces a heat flux 

at a later time t . This means that a gradient of 

temperature at time t  will produce an entropy flux at time 

t , and that obviously there will be an exergy flux with 

the same delay. Under the local equilibrium, the analytic 

expression for this flux at time t  and for a portion of solid 

x  is given by (see e.g. [1,2])
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The contribution from the entire solid is found by integrating 

over the domain of interest: 
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The total non-equilibrium exergy of the system at time t  can 

be calculated as the difference between the exergy at time 0 

and the exergy at time t: 
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and the total non-equilibrium exergy is found by taking the 

limit as t : 

   







 xd

T

xT
cTxdTxTcE






0

00

)0,(
ln)0,(   (14) 

 

The exergy current associated with the temperature flow 

inside the solid is described by the balance equation 
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is the exergy flux, i.e. the exergy crossing the boundary 

surface of the solid. The exergy destruction per unit volume 

e is given by 
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and is definite negative, as it must be, because the time 

change in E is always larger than the exergy flux. Equation 

(16) is the same as in the Fourier’s case (see [1-2]) but again 

the physical meaning is different. In fact, the gradient of 

temperature in Cattaneo’s equation is proportional to the heat 

flux at time t , i.e. to ),( txq
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. So, we expect that the 

exergy flux should be defined by 
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Indeed, if we assume that   is small and expand around 

0 , we obtain from (18) 
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and from Eq.  (1) we recover Eq. (16). It is rather clear that 

Eq. (14) for the total non-equilibrium exergy of the solid is 

the same for the Cattaneo and for the Fourier cases, as it 

should be: the difference is in the evolution path of the 

exergy, i.e. Eqs. (13) or (11), not in the total value, provided 

in both cases by the integration in time from 0 to ∞.    

 

 

 

4. The Case of a Sphere with Radial Initial Conditions 

In the case of a sphere the set of Eqs. (4) becomes (in 

dimensionless spherical coordinates, with 𝜉 = 𝑟𝑅 and 𝑡 =
2𝜏𝜃) 
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We are assuming that the initial distribution is 

spherically symmetric. At the surface of the sphere there is a 

heat exchange with the surroundings at temperature 
0T . The 

Biot number is defined as 𝐵𝑖 = 𝛼𝑅, where R is the radius of 

the sphere.   

Setting 𝑇 = 𝑇0 +
𝑢(𝜉,𝜃)
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This is a one-dimensional problem. Notice that in 𝜉 = 0 we 

must have 𝑢(0, 𝑡) = 0, since 𝑇(𝜉, 𝜃) =
𝑢(𝜉,𝜃)

𝜉
+ 𝑇0 must be 

bounded. Then, by separation of variables, we have that 

𝑢(𝑟, 𝜃) = 𝑊(𝜃)𝜒(𝑟).. The function 𝜒(𝑟) is given by 𝜒(𝑟) =

𝑐 𝑠𝑖𝑛 (𝜇
𝑟

𝑅
) where 𝜇, due to the boundary conditions, is any 

solution of the transcendental equation (𝐵𝑖 − 1) sin(𝜇) +
𝜇 cos(𝜇) = 0. It is possible to show that this equation has an 

infinite number of real roots 𝜇𝑛. The function 𝑊(𝜃) is given 

by 𝑊(𝜃) = 𝑏𝑛𝑒−𝜃(sin(Δ𝑛𝜃) + Δ𝑛 cos(Δ𝑛𝜃))   

where  

∆𝑛
2= 4𝜇𝑛

2𝐶 − 1.  

We then have that 
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The orthogonality relations 
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result in 
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and the temperature of the sphere is explicitly described by 
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We take as an example the following initial condition 
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The evolution of temperature is described by the series 
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(27) 

 

 

where 

 

𝐹𝑛(θ) = sin(Δ𝑛𝜃) + Δ𝑛 cos(Δ𝑛𝜃)). 

 

 A plot of the temperature described by Eq. (27) and of 

the corresponding Fourier temperature (with the proper 

rescaling of time, as explained in subsection 2.2 above) is 

given in Figure 1. Readers will notice that there is a “bump” 

appearing in the temperature profile in the Cattaneo’s case 

for   between 2 and 4: this is due to the hyperbolic nature 

of the equation: it oscillates for small values of the 

dimensionless time and then approaches equilibrium like the 

Fourier solution on the left. The bump corresponds to the 

first (i.e. the larger) oscillation. For comparison, we write 

also the Fourier series: 
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Figure 1: Time evolution of the temperature in the Fourier 

and in the Cattaneo case. The first 50 terms of the sum (27) 

have been used. The parameters are: 5B  05.0C , 

1 kR , 3w . 

  

The total exergy, from formula 14), is given by 
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(29

) 

 

 

whereas the time evolution of the exergy is given by Eq. (12). 

A plot of the total exergy, Eq. (29), as a function of the 

parameter w  is reported in Fig. 2: notice that the initial 

temperature profile, given by Eq. (26), increases towards the 

center of the sphere for 𝑤 > 0 and decreases for −1 < 𝑤 <
0, whereas for w=0 the temperature is stationary. As 

expected, the total exergy has a global minimum for w=0, 

when the initial profile corresponds to the equilibrium 

temperature.   

 

 
 

Figure 2: Plot of the total exergy, Eq. (29), as a function of 

the parameter w  (left) and of the corresponding initial 

profile of temperature, equation 26), as a function of  w and 

r/R. The total exergy has a minimum for w=0, corresponding 

to the initial profile equal to the equilibrium profile. 

 

A plot of the time evolutions of the exergy is given in Figure 

3. For comparison, the exergy of the Fourier case is reported 

as well (again, we rescaled the time for the Fourier case as 

explained in section 3). 

 
 

 
Figure 3: Time evolution of the exergy as given by equation 

12).  The first 50 terms of the sum in Eq. (27) have been 

used. The parameters are:Bi=5, 05.0C , R=k=1, 

w=3. 
 
 

 
Figure 4: Time evolution of the exergy for different values of 

C . The first 50 terms of the sum in equation 27) have been 

used. The other parameters are: 5Bi  , 1 kR , 

3w .
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In figure 4 we report a plot of the evolution of the exergy 

corresponding to three different values of the Cattaneo 

number C. The exergy destruction is faster for higher values 

of C. As can be noticed, the exergy decrease may be not 

monotonic in time (there is a small “bump” for C=0.1 around 

𝜃 = 2): according to us, this effect is again due to the 

hyperbolic nature of the equation: for small values of 𝜃, 

when the solution is not yet suppressed by the exponential 

decay, the oscillations (visible in Figure 1) may provide a 

temperature gradient sufficient to produce a small and brief 

increase in the exergy content. The effect is more 

pronounced for higher values of C, since the oscillations are 

larger.  

 

5. Conclusions 

The time variation of the exergy of a solid body was 

computed by means of Cattaneo heat diffusion equation. The 

results show two important points: first, that the evolution in 

time of the intrinsic energy content (i.e., the exergy) of a 

system depends not only on the imposed boundary 

conditions but also on its internal dynamics; second, that 

though the values of the non-equilibrium exergy derived in 

this paper are different from those calculated in a previous 

paper where the classical Fourier equation was used instead, 

at long times the two curves overlap, and their integrals (i.e., 

the initial non-equilibrium exergy content of the system) do 

not differ. This paper provides another contribution: often, 

Cattaneo equation has been criticized as being 

“incompatible” with the Second Law. In our derivation 

above, we demonstrate that if the ratio of the Cattaneo 

number to the value of the first (larger and thus energy-

carrying) eigenvalue of the Cattaneo diffusion equation 

exceeds a well-defined limit, the temperature in the solid 

may locally assume negative values, which of course is 

unphysical: but as long as the limit 2

14C   is abided by, all 

thermodynamic quantities behave correctly and smoothly 

and satisfy Second Law. Further, the exergy destroyed (17) 

is always negative definite: physically, this corresponds to 

the fact that the gradient of temperature in Cattaneo’s model 

is proportional to the heat flux at time t  , as shown by 

equations 18) and 19). If this constraint is not taken into 

account, an exergy destruction not complying with the 

Second Law would have been obtained. 

 

Nomenclature 

Entity and units Symbol 

Biot number Bi  
Cattaneo number C 

Specific heat, J/(kgK) c 

Exergy, J E 

Heat flux, W/(m2) q
 

Temperature, K T 

Time, s t 

Volume, m3 V 

Density, kg/m3 
 

Dimensionless length 
 

Relaxation time, s   
Dimensionless time   
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