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Abstract  
 

In this paper, an optimization method aiming at minimizing the thermal peaks in district heating networks is proposed. 

The method relies on a thermo-fluid dynamic model of both the supply and return networks and permits to analyze 

the opportunities for thermal peak shaving through “virtual storage”. The latter is obtained through variation of the 

thermal request profiles of the users. The presence of a peak in the morning is due to the shut-down or attenuation of 

the heating systems during the night, which lead to a dramatical increase of the thermal request early in the morning. 

The peak compromises a full exploitation of cogeneration and renewable plants that are able to cover just a portion of 

the maximum load. Consequently, boilers have to be used, leading the system to a performance reduction and to an 

increase of primary energy consumption. Moreover, the peak makes the possibility of network extension quite 

difficult, because of the limitation on mass flow rates in the pipes. For this reason, a model is developed to make the 

thermal profile as flat as possible. The model is applied to a portion of the Turin district heating network, which is the 

largest network in Italy. Results show that reductions between 20% and 42% are possible, depending on the maximum 

changes in the possible schedules.  
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1. Introduction 

District Heating (DH) systems provide a reliable and 

competitive energy service, which is able to satisfy the 

thermal demands of urban areas and to reduce primary 

energy consumptions, responding to the main European 

energy policy objectives. Indeed, the fundamental idea of 

district heating is to collect heat produced in one or more 

thermal plants and convey it to the end users through a 

capillary network of insulated pipes. In particular, DH uses 

excess heat from combined heat and power (CHP) plants, 

waste-to-energy plants (WtE), waste heat from industrial 

processes [1], as well as heat from renewable sources like 

geothermal wells, solar collectors and biomass fuels [2]. 

Thanks to the large number of benefits that district 

heating technology can boast, such as higher security of 

supply, lower costs and lower carbon dioxide and pollutant 

emissions, the future prospects for district heating 

technology are expected to be promising [2]. 

Within this framework, full control of thermodynamic 

parameters assumes a key role. Indeed, the knowledge of 

mass flow rates flowing in the system and of the evolution of 

pressures and temperatures in some crucial points is essential 

to reduce heat losses and minimize the production cost while 

ensuring the comfort of end-users in buildings [3]. 

The evaluation of these quantities could be done by 

equipping the network with proper instrumentation. 

However, this solution is typically too expensive due to the 

large cost of sensors and to the intrinsically intrusive nature 

of this method. Therefore, an appropriate model is needed to 

forecast the thermo-fluid dynamic behavior of the network. 

Moreover, modelling the network leads to the possibility to 

analyze different conditions than the operating ones and 

various layout, and it permits to evaluate the effects of the 

changes without the need to carry out expensive and not 

always replicable experimental tests. 

In such scenario, modelling of district heating systems 

has been widely exploited for both design [4] and 

management [5] purposes. Among the design applications, 

modelling can be used for the network dimensioning, as done 

by Koiv et al. [6] that proposes a method based on the 

probabilistic determination of the flow rate. Also, a multi-

objective optimization model for the best design of a 

network, taking into account both initial investment for pipes 

and pumping costs for water distribution, is performed in the 

work performed by Wang et al. [7]. Modelling is also useful 

to analyze the possibility of connecting additional users to an 

existing district heating network, as examined in [8]. 

Concerning management applications, models are used 

to develop strategies aiming at reducing primary energy 

consumptions in operation. Various papers deal with the 

supply temperature optimization, permitting to reduce 

distribution losses [9,10]. A model for optimizing integration 

of boilers, heat pumps and cogeneration is proposed by 

Lindenberger et al. [11]. 

An important issue in district heating system 

management, especially in Mediterranean regions, is the 

presence of a peak request in the morning. The peak is due 

to the fact that in this area the heating systems are typically 

switched off or attenuated during the night, leading to a 

dramatical increase of the thermal request early in the 

morning. Peaks cannot be completely covered through high 

efficiency plants (e.g. cogeneration plants), since these are 

typically sized to cover just a portion of the maximum load 

(Figure 1). Furthermore the presence of a peak generally 

involves larger water mass flow rates circulating in the 

network. This causes higher pumping costs and 

compromises the possibility of a network extension, since 
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water velocity cannot exceed a limit because of structural 

constraints. The opportunity of installing storage tanks that 

can be charged when the request is low (i.e. during the night) 

and used when the request is high (i.e. during the start-up 

transient) would smooth this effect. This is analyzed by 

Verda and Colella [12]. A different option for thermal peak 

shaving consists in virtual storage [13] that is obtained 

through variation of the thermal request profiles of some 

users with the goal of producing an effect similar to that 

obtained using storage. Once the thermal request forecast is 

done [14], the optimization of the start-up schedule leads to 

a reduction of the morning thermal request peak and limits 

the overuse of peak generators, as examined in [15–17]. 

In the papers [12-17], the optimization procedure only 

models the return network, while it relies on experimental 

temperature values for the supply network. This assumption 

was justified by small changes in the schedules which were 

considered. In the present paper, both the supply and return 

networks are modelled in order to obtain more accurate 

results, also when large changes are considered. The effects 

of such modelling strategy are examined in terms of accuracy 

and computational time. 

The optimization tool used is described in section 2, 

while sections 3 and 4 present the application to a 

subnetwork of the Turin district heating network and the 

corresponding results. In particular, the validation by 

comparison of numerical results with the experimental 

temperature values measured by sensors installed in the 

substations are first presented. The maximum peak, achieved 

through application of the optimization when only the return 

network is simulated, is compared with that obtained with 

the optimization including both the supply and return 

networks. Results prove that the proposed tool allows one to 

improve the results in terms of peak reduction. 

 

 

Figure 1 Total thermal load of the coldest winter day in 

2017, Turin district heating network 

2. Methodology  

2.1 Optimal Peak Shaving 

 In this work, an optimization tool aiming at minimizing 

the thermal peak request of district heating networks is 

presented. This purpose is reached by operating a variation 

on the thermal request profiles of the users connected with 

the network. 

The decision variable is a vector xd, whose length is equal 

to the number of buildings, that contains the optimal 

anticipation time for each heating system. These values can 

be only discrete. They can be chosen every 5 min, between 

the lower boundary of 0 min (i.e. no anticipation) and an 

upper boundary (30 min in the base optimization case). The 

anticipations act on the thermal profile and on the mass flow 

rate request of each building, which are actually the free 

variables of the optimization problem. 

The objective function is represented by the maximum of 

the heat flux request of the distribution network: 

 

O.F. = max(Φth,tot)         (1) 

where 

Φth,tot(t) = Gtot,BCT (t)cp (Tsupply − Treturn,BCT (t))       (2) 

 

Gtot,BCT is the total mass flow rate circulating in the 

network, Tsupply is the supply temperature (equal to 120 °C in 

the presented application), and Treturn,BCT is the temperature of 

water exiting the distribution network and it is given by the 

solution of the thermal fluid-dynamic model of the return 

network. 

A genetic algorithm, set for integer values, is used to 

perform the optimization. It is a stochastic, population-based 

algorithm, that mimics the selection mechanisms of natural 

genetic to search for the minimum. The selected population 

number and the number of generations are set to 100 in this 

work, and a preliminary analysis has been performed to 

prove the suitability of these criteria. In particular, the 

convergence of the algorithm with these parameters has been 

verified for a simple optimization problem including only the 

return network simulation on a rough non-refined grid 

(Figure 2). 

 

Figure 2 Convergence analysis: objective function value at 

different generations. 

The optimization procedure proposed in this work 

presents a crucial difference with respect to the one used in 

previous works on virtual storage. In these works only the 

return network is simulated, while the temperature values 

reaching the users are taken by experimental measures and 

imposed as inputs, by simply operating a translation in case 

of schedule variation.  

Here an innovative approach to solve the optimization 

problem is proposed: differently from [13], also the supply 

network is inserted inside the optimization procedure. The 

rationale behind this choice is to accurately model the 

dynamics of the network, even when large schedule 

modifications are applied. 

Indeed, when the building demand is varied, the simple 

translation of the standard-case temperatures introduces an 

approximation for two main interconnected reasons:
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• a generic building would encounter a different network 

condition while anticipating its start-up transient. Before 

hot water reaches the building location, the heat 

exchanger can be exposed to a “train” of cold water 

which is different than that in the base case. As an 

example, Figure 3 shows the supply temperature in a 

portion of distribution network at three different time 

instants: t=0, when the heating system of a building is 

switched on (user 1); t=25 min; t=50 min. During the 

entire period the heating systems of the other buildings 

are not activated. At t=0, the left end, where the 

distribution network is connected with the transport 

network, the temperature is at 120 °C (which is the 

temperature in the transport network). The remaining 

part of the network is at a temperature between 95 °C 

and 90 °C, because of the effects of thermal losses 

during the night. After 25 minutes, about 100 m of 

network have reached about 118 °C, which means that 

if users 2 and 3 switch on the heating system at this time, 

they will experience the nominal temperature with a 

short delay. If no other building switches the heating 

system on, user 1 needs about 50 minutes before the 

thermal substation is able to operate in nominal 

conditions and, thus, exchange the nominal heat flux. 

Before that time, the heat exchanger operates at partial 

load.  

• the distribution losses are no more the same of the base 

case, since they depend on the mass flow rate circulating 

in the system. 

 

These effects are particularly relevant when anticipations 

are large. Thus, there is a need to simulate also the supply 

network, in order to have a correct evaluation of the 

temperatures reaching the buildings, the temperatures in the 

return network and, consequently, of the total heat fluxes 

exchanged at the producer and consumers sides. 

To appreciate the improvement guaranteed by the 

procedure here illustrated, a comparison of the peak 

reductions that can be obtained with the two methods is 

performed. The two procedures are summarized in Figure 4. 

In the first approach, the schedules are modified within an 

optimization framework; the supply network is not simulated 

and the temperature of water entering the buildings is 

evaluated using experimental values. These are not modified 

even if schedules are changed. The return network is 

calculated in order to obtain the temperature of water leaving 

the distribution network and, thus, the total heat load 

supplied to the network. In the second approach, also the 

supply network is simulated, which permits to improve the 

accuracy of numerical results, but it doubles the 

computational time requested for optimization. 

 

 

2.2 Thermal Fluid-dynamic Model 

The supply and return network simulations relies on a 

thermo-fluid dynamic model, which is based on the 

conservation equations. The model is pseudo-dynamic [18]: 

the unsteady term is neglected in continuity and momentum 

equations, since the fluid-dynamic perturbations linked to 

velocity and pressure are transferred to the whole network in 

a period of time of few seconds, which is much smaller than 

the time step adopted for calculations. Oppositely, energy 

conservation equation is solved dynamically, since 

temperature perturbations travel at the fluid velocity, which 

is typically of the order of few meters per second, and their 

effect are slowly transferred to the network. 

The model is one-dimensional and the complex structure 

of the network, constituted by pipes, which are connected 

each other through junctions, is described by means of the 

graph theory [19]. Each pipe is treated as a branch that starts 

from a node, representing the inlet section, and ends in 

another node, the outlet section. The network topology is 

described by means of the incidence matrix A, which has as 

Figure 3. Temperature distribution along the supply network at different time shots. 
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Figure 4 Schematic comparison of the optimization 

procedures. (a): Previous works; (b): New optimization 

procedure 
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many rows as the number of nodes and as many columns as 

the number of branches. A general element Aij is equal to 1 if 

the i-th node is the inlet node of the j-th branch, or it is equal 

to −1 if the i-th node is the outlet node of the j-th branch. 

Otherwise, the i-th node and the j-th branch are not related 

and the element is equal to 0. 

The fluid-dynamic model is constituted by the integration 

of continuity and momentum equations, described by Eq. (3) 

and Eq. (4): 

 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑣)

𝜕𝑥
= 0  (3) 

 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑣

𝜕𝑣

𝜕𝑥
=

𝜕𝑝

𝜕𝑥
− 𝐹𝐹𝑅𝐼𝐶𝑇 + 𝐹1  (4) 

 

where FFRICT takes into account the viscous forces, and F1, 

representing a source term, accounts for the effect of local 

fluid dynamic resistance due to valves or junctions and the 

effects of pressure rise due to pumps. 

 The continuity equation is applied to all the nodes of the 

network and integrated over control volumes including each 

junction node and half of the branch entering or exiting it. 

Instead, integration of momentum equation is performed 

over control volumes including a branch and the two 

delimiting nodes. These equations are respectively expressed 

by Eq. (5) and Eq. (6). 

  

A · G + Gext = 0 (5) 

 

G = Y · AT · P + Y · τ  (6) 

 

The vector Gext contains the mass flow rates which are 

injected and extracted in the nodes. When the supply network 

is modelled, this term includes the flow rates injected at the 

plants and extracted in the substations of the various 

buildings, and the opposite in the case of the return network. 

When the heating systems in the buildings do not operate the 

corresponding term in Gext is zero and it is different than zero 

(positive on the supply network and negative on the return 

network) when the system operates. The free variables in the 

optimization process, i.e. the anticipations, act on the time 

this term is turned from zero to a non-zero value. 

In a complex network including loops, an algorithm is 

needed to solve the problem. A complete description of the 

method used to solve the fluid-dynamic problem can be 

found in Sciacovelli et al. [20]. In case of three-shaped 

networks or subnetworks, mass flow rates can be simply 

obtained by the resolution of Eq. (5), since mass flow rates 

distribution is independent of pressure distribution in this 

case. When loop networks are considered, as iterative 

algorithm must be considered, as shown in the reference 

paper. 

The thermal problem is expressed by the energy 

conservation equation. Neglecting the contribution of the 

conduction along the network, it reads: 

 
∂(ρcpT)

∂t
+
∂(ρcpvT)

∂x
=-φ

l
  (7) 

 

The energy equation is applied in integral form to all the 

control volumes of the domain. Each control volume 

includes the junction node and half of each duct entering or 

exiting the junction, as depicted in Figure 5. Adiabatic and 

perfect mixing is assumed when different streams converge 

in a junction: the temperature of all the flows exiting from 

the junction are at the same temperature. 

 

Integrating Eq. (7) over a control volume i brings to: 

 
𝜕(𝜌𝑐𝑝𝑇𝑖)

𝜕𝑡
𝑉𝑖 + ∑ ±𝑐𝑝𝐺𝑗𝑇𝑗 = Φ𝑙,𝑖

𝑁𝐵
𝑗=1   (8) 

 

The heat losses Φl are ascribed to each branch and they 

can be calculated considering for the whole control volume 

the temperature of the node: 

 

Φ𝑙,𝑖 =  ∑
𝐿𝑗

2
Ω𝑗𝑈𝑗(𝑇𝑖 − 𝑇∞)𝑁𝐵

𝑗=1  (9) 

 

One can observe from Eq. (8) that there is a need to define 

the temperature Tj associated with each boundary of the 

control volume considered, i.e. the temperature of the middle 

point of each branch. In particular, it must be expressed as a 

function of the nodal values of temperature Ti, which are the 

unknowns of the problem. Then, the problem can be written 

for all nodes in matrix form as follows: 

 

M · Ṫ + K · T = g (10) 

 

After having applied proper boundary conditions, the 

problem can be solved. 

In Guelpa et al. [21,22], an upwind scheme, that assigns 

to the cell face the temperature of the upstream node, has 

been used. This scheme is the simplest scheme that 

guarantees a stability of the solution, thanks to the fact that it 

takes into account the direction of the fluid flow. However, 

it is a scheme of first order accuracy. This means that the 

truncation error scales with the second derivative of the 

solution, in a similar manner to the diffusion term, 

introducing in the problem an artificial-numerical diffusivity 

which is physically not present and affecting the reliability 

of the model. 

It is possible to prove that the form of this numerical 

diffusivity is [23]: 

 

Γ𝑛𝑢𝑚 =
𝑣Δ𝑥

2
  (11) 

 

Then, one way to minimize its contribution is to increase the 

degree of geometrical discretization. For this reason, it has 

been chosen to use in the model an advanced upwind 

scheme: to have a better approximation of the solution, 

additional nodes, which have a numerical role only, are 

introduced. In the simulations presented hereafter, nodes are 

placed with a granularity of 1 node per meter.

Figure 5. Schematic of the control volume of a 

junction node [20]. 
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3. Application 

In this section, a simulation of the thermo-fluid dynamic 

behaviour of a distribution network of the Turin district 

heating network, which is the largest DHN in Italy and one 

of the largest in Europe, is carried out. This system satisfies 

the energy request of more than 5000 buildings, which have 

a total volume of about 56 million m3. 

The network can be represented as made of two 

interconnected parts: the transport network and the 

distribution networks. The former is the backbone of the 

network composed by the pipes with larger diameters, and 

connects six thermal plants to the various areas of the town. 

In the north and south plants, three cogeneration units are 

installed; these are able to produce up to 760 MW of heat, as 

shown in Figure 1. In the transport network, water on the 

supply pipeline is always kept to a temperature close to the 

nominal temperature, i.e. about 120 °C in winter and over 90 

°C in summer. The temperature on the return pipeline 

depends on the thermal load, being about 65°C-70°C when 

the load is high and significantly reduces at night and in 

middle seasons or summer. As concerns pressure, values are 

kept above the saturation pressure values, so that there is no 

phase change in the network. The production capacity is 

completed by various heat only boilers and thermal storage 

units. Each distribution network links the transport network 

to the various buildings located in an area. Connection points 

between the distribution networks and the transport network 

are called the thermal barycenters.  

The distribution network analysed here connects 11 

buildings to the main pipeline. The network topology is 

shown in Figure 6. To solve the thermo-fluid dynamic 

problem in the distribution network, the knowledge of the 

expected thermal profile and of the mass flow rate request of 

each building is necessary. These pieces of information are 

obtained from the monitoring systems installed in the various 

thermal substations, roughly one in each building. Data are 

available for the past 4 years. Moreover, the initial conditions 

of the supply and return networks are computed by 

simulating the system shutdown of the day before the one 

considered, that is a typical day of January. 

 

 

Figure 6. Schematic of the selected distribution network. 

 

An optimization aiming at the reduction of the thermal 

power peak of the selected distribution network is 

performed. The optimization is firstly executed including in 

the algorithm only the return network simulation, and then 

both the supply and return networks simulation.  

 

4. Results 

By simulating the supply network it is possible to obtain 

the temperature values at the inlet of each user heat 

exchanger (T1). Since the thermal heat flux profile required 

by each building is known, it is also possible to evaluate 

water temperature at the outlet of each heat exchanger (T2). 

For validation purposes, these temperatures are compared 

with the experimental values in Figure 7 that also reports the 

mass flow rate required by each building. 

It is possible to notice that the model is able to represent 

with good accuracy the temperature evolution of the 

network. Indeed, the only significant deviation between 

computational results and experimental data arises when no 

mass flow rate circulates in the heat exchanger. This 

mismatch is due to the fact that the heat losses of the heat 

exchanger, which are negligible when it operates, affect the 

temperatures registered by the sensors when it does not. 

When water is normally flowing, computational results are 

close to experimental data, proving the reliability of the 

model. 

Figure 8 illustrates the temperature values of the water 

flow entering the return transport pipeline. These are 

obtained by applying the network model to the return 

distribution network. The values of the total mass flow rate 

are also shown in the figure. In this case, there are no 

experimental values available. In Figure 9, the total heat flux, 

computed according to Eq. (2), is reported. One can easily 

find the morning peak, that is about 2.7 MW. This value is 

about 2.5 times larger than the average thermal request 

during the day, which highlights the fact that there is large 

room for improvements. In fact, any reductions of this peak 

allow a better use of the network and a more efficient 

production of heat. 

 

 

 
 

 

Figure 9. Heat flux required by the distribution network. 
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pipeline and total mass flow rate. 
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The results of the optimization carried out both with the 

method including only the return network simulation (Figure 

4(a)) and both the supply and return network simulations 

(Figure 4(b)) are reported in Figures 10, 11 and 12. In this 

case, the maximum anticipation is set to 30 min. Method (a) 

gives a set of anticipations that leads to a peak reduction of 

30.1% with respect to the current strategy adopted: the 

thermal peak is reduced to about 1.9 MW. Instead, the set of 

anticipations obtained with method (b) brings to a more 

significant reduction of the maximum thermal power, that 

becomes only around 1.8 MW, with a percentage reduction 

of 33.6% with respect to the current strategy adopted. Thus, 

method (b) introduces an advantage with respect to method 

(a): the maximum thermal power is reduced of 5.1% with 

respect to the previous case. Indeed, by simulating the supply 

network, the approximations introduced by the anticipation 

of the temperature of water leaving the users are no more 

necessary. Therefore, the model is more accurate and the 

optimization brings to more precise results. Moreover, the 

advantage obtained with the new procedure can be further 

improved by combining the virtual storage with other 

management strategies, e.g. the supply temperature control 

that can be only reproduced with a supply+return network 

simulation. 

This deviation reduces when smaller anticipations are 

considered, which justify the use of a simpler model (i.e. 

return network modelling only) when small deviations are 

considered. 

It is also important to notice that the optimal sets of 

independent variables using the two approaches are 

different. In particular, the fact that the full network is 

simulated involves a larger number of buildings which are 

anticipated of 30 minutes. This is related to the effects 

discussed in section 2.1 and pictorially shown in Figure 3. 

Finally, the effect of the maximum allowed anticipation 

is analysed. The optimization is repeated considering a 

maximum anticipation of 15 min and 60 min, respectively. 

Results are summarized in Figure 13. Considering a 

maximum anticipation of 15 min, the peak becomes 

approximately 2.1 MW. The percentage reduction is thus 

diminished from 33.6% to 19.7%. Oppositely, if the 

maximum anticipation is increased to 60 min, the peak is 

reduced to about 1.5 MW, with a percentage reduction of 

42.1%. Figure 14 shows the optimal set of anticipations for 

each test case (in detail, it shows the number of buildings that 

Figure 7. Temperature evolution of the water entering (T1) and exiting (T2) each user substation, both computed by the model 

and experimental, and mass flow rate required by each user. 
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are subjected to the different thermal load variations) and the 

modified profile of thermal request. Obviously, when the 

maximum allowed anticipation is increased, the potential for 

thermal power peak reduction increases. However, the 

advantage gained tends to reduce. Also, there is a need to 

define a trade-off between the maximum anticipation and the 

variations in the indoor conditions, that should be properly 

limited. For this purpose, the use of a building model to 

check the acceptability of internal temperatures may be 

useful, as discussed in [15]. Nevertheless, it is worth 

considering that anticipations make the indoor temperatures 

reaching the set point faster, therefore the impact on comfort 

conditions does not represent a real issue. Another aspect to 

be considered is represented by a potential increase in the 

total heat consumption of the buildings. This does not 

involve additional primary energy consumption, thanks to 

the larger use of cogeneration and the smaller use of boilers. 

In contrast, the economic impact to the end users should be 

carefully considered, for instance through proper incentives, 

in order to make such management approach a win-win 

strategy.  

 

 
Figure 10. Optimization results: optimal set of anticipations. 

 

 
Figure 11. Optimization results: thermal power evolution. 

5. Conclusions 

In this paper, a tool for optimization of the thermal load 

profiles of district heating networks is presented, with the 

purpose of minimizing the thermal peak and improving the 

system efficiency. The optimization is carried out with a 

genetic algorithm which selects the optimal set of 

anticipations that the users should apply in their start-up 

phase. Differently from previous works, both the supply and 

the return networks are included in the simulations. This 

makes the optimization process slower but more accurate, 

even in the case of large anticipations. Moreover, the tool 

relies on a numerical method based on a more refined grid, 

in order to reduce the effects of artificial diffusion and to 

obtain a more accurate solution. 

The method proposed is validated through comparison 

with the experimental data available for a distribution 

network located in Turin. With the current strategy used in 

this network, a thermal request peak of 2.7 MW occurs in the 

morning. 

For only a short time interval, the thermal power required 

by the distribution network is far larger than the one required 

most of the day. Such behaviour limits the opportunities for 

a full cogeneration exploitation (the use of boilers is 

required) and the possibility of network expansions to 

building or areas currently not connected. 

The proposed optimization tool allows one obtaining a 

set of anticipations that brings to a reduction of the thermal 

power peak of 33.6%, against the 30.1 % obtained when only 

the return network is simulated. Different scenarios, obtained 

by varying the maximum anticipations are examined. In all 

cases, large peak reductions are achieved, between 20% and 

over 40%. These results appear promising and suggest the 

application of virtual storage to the entire network. 
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Nomenclature 

A Incidence matrix 

cp Specific heat (J/kg/K) 

G Mass flow rate vector (kg/s) 

g Known term accounting for losses (W) 

Gext Vector of extracted/injected mass flow rates 
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Figure 13. Percentage peak reduction for different 

maximum allowed anticipations. 

 

Figure 12. Optimization results: peak reduction percentage. 
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Gtot,BCT Total mass flow rate in the network (kg/s) 

K Stiffness matrix (W/K) 

L Pipe length (m) 

M Mass matrix (J/K) 

N Number of nodes 

NB Number of branches 

O.F. Objective function (W) 

P Pressure matrix (Pa) 

T Temperature (K) 

Tsupply Supply temperature (K) 

Treturn,BCT Temperature of water exiting the distribution 

network (K) 

t Time (s) 

𝑇∞ External temperature (K) 

U Pipe transmittance (W/m2/K) 

V Volume (m3) 

v Velocity (m/s) 

x Position (m) 

xd Anticipations vector (min) 

Y Fluid dynamic conductance matrix (m s) 

Greek symbols 

Γ𝑛𝑢𝑚 Numerical diffusivity (m2/s) 

Δ𝑥 Grid size (m) 

𝜌 Density (kg/m3) 

τ Pressure rise due to pumps vector (Pa) 

Φ𝑙 Heat losses (W) 

𝜑𝑙  Volumetric heat losses (W/m3) 

Φ𝑡ℎ,𝑡𝑜𝑡 Total thermal request (W) 

Ω Pipe perimeter (m) 
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