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Abstract
K. Borsuk in 1979, in Topological Conference in Moscow, introduced the concept of the
capacity of a compactum. In this paper, we compute the capacity of the product of
two spheres of the same or different dimensions and the capacity of lense spaces. Also,
we present an upper bound for the capacity of a Zn-complex, i.e., a connected finite
2-dimensional CW-complex with finite cyclic fundamental group Zn.
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1. Introduction and motivation
In this paper, every polyhedron and CW-complex is assumed to be finite and con-

nected. Also, every map between two CW-complexes is assumed to be cellular. Since
every polyhedron is homotopy equivalent to a finite CW-complex of the same dimension,
and conversely, we use the terms “polyhedron” and “finite CW-complex” interchangeably.
We assume that the reader is familiar with the basic notions and facts of homotopy theory.

K. Borsuk in [5], introduced the concept of the capacity of a compactum as follows: the
capacity C(X) of a compactum X is the cardinality of the set of all shapes of compacta
A which are shape dominated by X (for more details, see [15]).

For polyhedra, the notions shape and shape domination in the above definiton can be
replaced by the notions homotopy type and homotopy domination, respectively. Indeed, by
some known results in shape theory one can conclude that for any polyhedron P , there is a
one to one functorial correspondence between the shapes of compacta shape dominated by
P and the homotopy types of CW-complexes (not necessarily finite) homotopy dominated
by P (see [14]).

M. Mather in [16] proved that every polyhedron dominates only countably many differ-
ent homotopy types (hence shapes). Note that the capacity of a polyhedron is a homotopy
invariant, i.e., for polyhedra X and Y with the same homotopy type, C(X) = C(Y ). This
property can be useful for distinguishing two polyhedra up to homotopy equivalence.
Hence it seems interesting to find polyhedra with finite capacity and compute the capac-
ity of some of their well-known spaces. Borsuk in [5] asked a question: “Is it true that
the capacity of every finite polyhedron is finite?”. D. Kolodziejczyk in [12] gave a negative
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answer to this question. Also, she investigated some conditions for polyhedra to have finite
capacity ([13,14]). For instance, a polyhedron Q with finite fundamental group π1(Q) and
a polyhedron P with abelian fundamental group π1(P ) and finitely generated homology
groups Hi(P̃ ), for i ≥ 2 where P̃ is the universal cover of P , have finite capacities.

Borsuk in [5] mentioned that the capacities of
∨

k S1 and Sn are equal to k + 1 and 2,
respectively. The authors in [17] computed the capacities of Moore spaces M(A, n) and
Eilenberg-MacLane spaces K(G, n). In fact, we showed that the capacities of a Moore
space M(A, n) and an Eilenberg-MacLane space K(G, n) are equal to the number of
direct summands of A and semidirect factors of G up to isomorphism, respectively. Also,
we computed the capacity of the wedge of finitely many Moore spaces of different degrees
and the capacity of the product of finitely many Eilenberg-MacLane spaces of different
homotopy types. In [18], we showed that the capacity of

∨
n∈I(∨inSn) is equal to

∏
n∈I(in+

1), where ∨inSn denotes the wedge of in copies of Sn, I is a finite subset of N and in ∈ N. In
fact, we proved that every space homotopy dominated by

∨
n∈I(∨inSn) has the homotopy

type of
∨

n∈I(∨jnSn), where 0 ≤ jn ≤ in.
M. Abbasi et al. in [1] computed the capacity of 2-dimensional manifolds. They showed

that the capacities of a compact orientable surface of genus g ≥ 0 and a compact non-
orientable surface of genus g > 0 are equal to g + 2 and [ g

2 ] + 2, respectively. In [18], we
proved the capacity of a 2-dimensional CW-complex P with free fundamental group π1(P )
is finite and is equal to (rank π1(P ) + 1) × (rank H2(P ) + 1).

We outline the main results of the paper. In Section 3, we compute the capacity of the
product of two spheres of the same or different dimensions. Then, in Section 4, we compute
the capacity of lens spaces which are a class of closed orientable 3-manifolds. Also, by a
similar method to computation of capacity of a lens space, we show that the capacity of
a real projective n-space is equal to 2. Note that this result was proved by Y. Kodama
et al. in [11] in a different manner. Finally, in Section 5, we find an upper bound for
the capacity of a Zn-complex, a 2-dimensional CW-complex with finite cyclic fundamental
group Zn. In fact, we show that every space homotopy dominated by a Zn-complex P
where n = pα1

1 pα2
2 · · · pαm

m (for mutually distinct primes pi and positive integers αi) has the
homotopy type of a Zm-complex where m = p

αi1
i1

· · · p
αij

ij
for i1, · · · , ij ∈ {1, · · · , m}.

2. Preliminaries
We recall here some facts that we will use throughout the paper.

Definition 2.1. [21]. Let P be a CW-complex. For each n ≥ 1, the condition Dn on P
is defined as follows:

Dn: Hi(P̃ ) = 0 for i > n, and Hn+1(P ;B) = 0 for all coefficient bundles B (for more
details, see [19]). Note that P̃ denotes the universal covering space of P .
Definition 2.2. [8]. A Moore space of degree n (n ≥ 2) is a simply connected CW -
complex X with a single non-vanishing homology group of degree n, that is H̃i(X,Z) = 0
for i ̸= n. A Moore space of degree n is denoted by M(A, n) where A ∼= H̃n(X,Z).

As an example, the n-sphere Sn for n ≥ 2 is a Moore space of degree n, Sn = M(Z, n).
Theorem 2.3. [8]. The homotopy type of a Moore space M(A, n) is uniquely determined
by A and n for n ≥ 2.
Theorem 2.4. [8, Theorem 4.32]. (Hurewicz theorem) If a topological space X is (n −
1)-connected, n ≥ 2, then H̃i(X) = 0 for i < n, hX

n : πn(X) ∼= Hn(X) and hX
n+1 :

πn+1(X) −→ Hn+1(X) is epimorphism, where hX
i : πi(X) −→ Hi(X) denotes the i-th

Hurewicz map.
Theorem 2.5. [10, page 91]. For all 2 ≤ r ≤ p + q + min{p, q} − 3, we have

πr(Sp ∨ Sq) ∼= πr(Sp) ⊕ πr(Sq) ⊕ πr(Sp+q−1).
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Theorem 2.6. [3, Proposition 2.6.15]. A simply connected space X is homotopy equivalent
to a wedge of Moore spaces if and only if hX

n is split surjective for all n > 1.

Recall that an epimomorphism f : G −→ H is called split surjective if the following
short exact sequence is split

0 → Ker f ↪→ G
f−→ H → 0.

Theorem 2.7. [4]. Let X be a topological space which is homotopy dominated by a
closed (compact without boundary) connected topological n-dimensional manifold M . If
Hn(X;Z2) ̸= 0, then X has the homotopy type of M .

Lemma 2.8. [8, Example 2.43]. Let X be the Eilenberg-MacLane space K(Zm, 1). Then
Hn(X) ∼= Zm for odd n and Hn(X) ∼= 0 for even n > 0.

3. The capacity of product of two spheres
In this section, we compute the capacity of product of two spheres of the same or

different dimensions.

Lemma 3.1. The capacity of S1 × Sn is equal to 4, for n ≥ 2.

Proof. Put P = S1 ×Sn. By the Kunneth formula (see, for example, [8, Theorem 3B.6]),
we know that

Hi(P ) ∼=
{
Z, i = 0, 1, n, n + 1
0, otherwise.

Suppose that X is homotopy dominated by P and X̃ denotes the universal covering space
of X. Then π1(X) and Hi(X) are isomorphic to a direct suumand of π1(P ) ∼= Z and of
Hi(P ), respectively, for all i ≥ 2.

First, let Hn+1(X) ∼= Z. By the universal coefficient theorem for cohomology (see, for
example, [8, Theorem 3.2]), we have

Hn+1(X;Z2) ∼= Hom(Hn+1(X),Z2) ∼= Z2 ̸= 0.

Then, since P is a closed compact connected n + 1-dimensional topological manifold, X
and P have the same homotopy type by Theorem 2.7.

Second, let Hn+1(X) = 0. Then we just have the following cases:
Case One. π1(X) = 1 and Hi(X) = 0 for all i ≥ 2. Then by the Whitehead Theorem

(see [8, Corollary 4.33]), X and {∗} have the same homotopy type.
Case Two. π1(X) = 1, Hn(X) ∼= Z and Hi(X) = 0 for all i ̸= n. Then X is the Moore

space M(Z, n) and so, X has the homotopy type of Sn.
Case Three. π1(X) ∼= Z. We know that P̃ = R × Sn is the universal covering space of

P = S1 × Sn and X̃ is homotopy dominated by P̃ . Since the capacity of a compactum is
a homotopy invariant, so C(P̃ ) = C(Sn) = 2 and so X̃ has the homotopy type of {∗} or
P̃ . If X̃ and P̃ have the same homotopy type, then the domination map dX : P −→ X
induces isomorphims

dX∗ : π1(P ) −→ π1(X), d̃X∗ : Hi(P̃ ) −→ Hi(X̃)

for all i ≥ 2 (note that an epimorphism between isomorphic Hopfian groups is an isomor-
phism). Then by the Whitehead Theorem (see, for example, [10, Theorem 3.7, p. 113]),
dX is a homotopy equivalence. Thus X and P have the same homotopy type which is a
contradiction because Hn+1(X) = 0. Hence X̃ has the homotopy type of {∗} and so, X
is the Eilenberg-MacLane space K(Z, 1). This shows that X has the homotopy type of
S1. �
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Lemma 3.2. The capacity of Sn × Sn is equal to 3, for all n ≥ 1.

Proof. For the case n = 1, S1 × S1 is a product of Eilenberg-MacLane spaces and by
[17, Proposition 4.6], C(S1 × S1) = 3.

Let n ≥ 2 and P = Sn × Sn. By the Kunneth formula, we know that

Hi(P ) ∼=


Z, i = 0, 2n

Z × Z, i = n

0 otherwise.

Suppose X is homotopy dominated by P . Then Hi(X) is isomorphic to a direct suumand
of Hi(P ) for all i ≥ 2.

First, let H2n(X) ∼= Z. By the universal coefficient theorem for cohomology, we have
H2n(X;Z2) ̸= 0. Then, since P is a closed compact connected 2n-dimensional topological
manifold, X and P have the same homotopy type by Theorem 2.7.

Second, let H2n(X) = 0. Then we just have the following cases:
Case One. Hi(X) = 0 for all i ≥ 1. Then by the Whitehead Theorem, X and {∗} have

the same homotopy type.
Case Two. Hn(X) ∼= Z and Hi(X) = 0 for all i ̸= n. Then X is the Moore space

M(Z, n) and so, X and Sn have the same homotopy type.
Case Three. Hn(X) ∼= Z × Z and Hi(X) = 0 for all i ̸= n. Then X has the homotopy

type of Sn ∨ Sn. But Sn ∨ Sn is not homotopy dominated by P = Sn × Sn because
π2n−1(Sn ∨ Sn) ∼= π2n−1(Sn) × π2n−1(Sn) × Z (by Theorem 2.5) is not isomorphic to a
direct summand of π2n−1(Sn × Sn) ∼= π2n−1(Sn) × π2n−1(Sn). Thus this case does not
occur. �
Lemma 3.3. Let X be a simply connected CW-complex with Hn(X) ∼= Hn+1(X) ∼= Z and
Hi(X) = 0 for all i ̸= n, n + 1. Then X has the homotopy type of Sn ∨ Sn+1.

Proof. First, we show that X is (n − 1)-connected. This is obvious for n = 2 by the
hypothesis. So let n ≥ 3. Since X is simply connected, π2(X) ∼= H2(X) by Theorem 2.4.
But H2(X) = 0 by the hypothesis. Hence π2(X) = 0 and so, X is a 2-connected space.
If n = 3, we are done. Otherwise, by a similar argument, one can easily see that X is
(n − 1)-connected.

Now, by Theorem 2.4, hX
n : πn(X) ∼= Hn(X) and hX

n+1 : πn+1(X) −→ Hn+1(X) is an
epimorphism. Clearly, hX

n is a split surjective homomorphism. Also, since

0 → ker hn+1 ↪→ πn+1(X)
hX

n+1−−−→ Hn+1(X) → 0
is a short exact sequence and Hn+1(X) ∼= Z is a projective Z-module, hX

n+1 is also split
surjective. On the other hand, since Hi(X) = 0 for all i ̸= n, n + 1, hX

i is also split
surjective. Thus by Theorem 2.6, the space X is homotopy equivalent to a wedge of
Moore spaces. By the hypothesis Hn(X) ∼= Hn+1(X) ∼= Z, so X has the homotopy type
of Sn ∨ Sn+1. �
Lemma 3.4. The capacity of Sn × Sn+1 is equal to 4, for all n ≥ 2.

Proof. Put P = Sn × Sn+1. By the Kunneth formula, we have

Hi(P ) ∼=
{
Z, i = 0, n, n + 1, 2n + 1,

0, otherwise.

Suppose that X is homotopy dominated by P . Then Hi(X) is isomorphic to a direct
summand of Hi(P ) for all i ≥ 2.

First, let H2n+1(X) ∼= Z. By the universal coefficient theorem for cohomology, we have
H2n+1(X;Z2) ̸= 0. Then, since P is a closed compact connected (2n + 1)-dimensional
topological manifold, X and P have the same homotopy type by Theorem 2.7.
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Second, let H2n+1(X) = 0. We just have the following cases:
Case One. Hi(X) = 0 for all i. Then by the Whitehead Theorem, X and {∗} have the

same homotopy type.
Case Two. Hn(X) ∼= Z and Hi(X) = 0 for all i ̸= n. Then X is the Moore space

M(Z, n) and so, X and Sn have the same homotopy type.
Case Three. Hn+1(X) ∼= Z and Hi(X) = 0 for all i ̸= 3. Then X is the Moore space

M(Z, n + 1) and so, X and Sn+1 have the same homotopy type.
Case Four. Hn(X) ∼= Hn+1(X) ∼= Z and Hi(X) = 0 for all i ̸= 2, 3. Then by Lemma

3.3, X and Sn ∨ Sn+1 have the same homotopy type. But Sn ∨ Sn+1 is not homotopy
dominated by Sn × Sn+1 because π2n(Sn ∨ Sn+1) is not isomorphic to a subgroup of
π2n(Sn × Sn+1). Thus this case does not happen. �

Lemma 3.5. The capacity of Sn × Sm is equal to 4, where 2 < n + 1 < m.

Proof. Put P = Sn × Sm. By the Kunneth formula, we know that

Hi(P ) ∼=
{
Z, i = n, m, n + m,

0, otherwise.

Then Hi(X) is isomorphic to a direct summand of Hi(P ) for all i ≥ 2.
First, let Hn+m(X) ∼= Z. By the universal coefficient theorem for cohomology, Hn+m(X;Z2) ̸=

0. Then, since P is a closed compact connected (n+m)-dimensional topological manifold,
X and P have the same homotopy type by Theorem 2.7.

Second, let Hn+m(X) = 0. We have the following cases:
Case One. Hi(X) = 0 for all i; Then by the Whitehead Theorem, X and {∗} have the

same homotopy type.
Case Two. Hn(X) ∼= Z and Hi(X) = 0 for all i ̸= n; Then X is the Moore space

M(Z, n), and so X and Sn have the same homotopy type.
Case Three. Hm(X) ∼= Z and Hi(X) = 0 for all i ̸= m; Then X is the Moore space

M(Z, m), and so X and Sm have the same homotopy type.
Case Four. Hn(X) ∼= Hm(X) ∼= Z and Hi(X) = 0 for all i ̸= n, m. We know that

Sn and Sm have CW decompositions {a, en} and {b, em} respectively, where a and b are
0-cells. Hence P = Sn × Sm has a CW decomposition {a × b, a × em, en × b, en × em}.
One can consider Sn ∨ Sm as the subspace Sn × {b} ∪ {a} × Sm of P = Sn × Sm. Then
Sn ∨ Sm has a CW decomposition {a × b, a × em, en × b}. Since 2 < n + 1 < m, then
Hn(P ) = Hn(X) = Cn(X) and Hm(P ) = Hm(X) = Cm(X). Hence the homomorphism
i∗ : Hi(Sn ∨Sm) −→ Hi(P ) is identity for i = n, m, where i : Sn ∨Sm ↪→ P is the inclusion
map. Now, consider the map

h = i ◦ dX : Sn ∨ Sm −→ X,

where dX : P −→ X is the domination map. It is easy to see that (dX)∗ : Hi(P ) −→
Hn(X) is an isomorphism for i = n, m (epimorphism between two isomorphic Hopfian
groups). Hence, the map h∗ : Hi(Sn ∨ Sm) −→ Hi(X) is an isomorphism for all i ≥ 2 and
so by the Whitehead Theorem, h : Sn ∨ Sm −→ X is a homotopy equivalence. This shows
that Sn ∨ Sm is homotopy dominated by P which is a contradiction because by Theorem
2.5, πn+m−1(Sn ∨ Sm) is not isomorphic to a subgroup of πn+m−1(Sn × Sm). Thus this
case does not happen. �

Finally by Lemmas 3.1, 3.2, 3.4 and 3.5, we can conclude the following theorem which
is the main result of this section.

Theorem 3.6. For n, m ≥ 1, the capacity of Sn × Sm is equal to 4 if n ̸= m and it is
equal to 3 if n = m.
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4. The capacity of lens spaces
In this section, we use reference [9] for expressing the classification of closed (compact

and without bounday) orientable 3-manifolds.
By Kneser’s Theorem, every compact orientable 3-manifold M factors as a connected

sum of primes, M = P1# · · · #Pn, and this decomposition is unique up to insertion or
deletion of S3 summands. On the other hand, primes 3-manifold that are closed and
orientable can be grouped broadly into three classes:

(1) Infinite cyclic fundamental group. Only one such manifold (which is closed
and orientable) is S1 × S2. The capacity of such manifold is 4 by Theorem 3.6.

(2) Infinite noncyclic fundamental group. Such a manifold M is an Eilenberg-
MacLane space K(π, 1). It has been shown that π is a finitely generated torsion-free
group. Recall that a group homomorphism f : G −→ H is an r-homomorphism if
there exists a homomorphism g : H −→ G such that f ◦g = idH . Then H is called
an r-image of G. By [17, Proposition 4.4], the capacity of an Eilenberg-MacLane
space K(π, 1) is equal to the number of r-images of π up to isomorphism. In
particular, if π is a nilpotent group, then π has only finitely many r-images up to
isomorphism by [14, Corollary 1].

(3) Finite fundamental group. For such a manifold M , the universal covering space
M̃ is simply connected and closed, hence a homotopy sphere. All these manifolds
(which are spherical 3-manifolds) have the form M = S3/Γ for Γ a finite subgroup
of SO(4) acting freely on S3 by rotations. Thus S3 is the universal covering space
of M and Γ = π1(M). The spherical manifolds with cyclic fundamental group
π1(M) = Γ are the lens spaces which are defined as follows:

Let p and q be relatively prime integers. Regard S3 as all (z0, z1) ∈ C2 with
|z0|2+|z1|2 = 1. Let ζ = e2πi/p be a primitive pth root of unity; define h : S3 −→ S3

by h(z0, z1) = (ζz0, ζqz1), and define an equivalence relation on S3 by (z0, z1) ∼
(z′

0, z′
1) if there exists an integer m with hm(z0, z1) = (z′

0, z′
1). The quotient space

S3/ ∼ is called a lens space and is denoted by L(p, q). Note that π1(L(p, q)) ∼= Zp.
In the next theorem, we compute the capacity of lens spaces.

Theorem 4.1. The capacity of the lens space L(p, q) is equal to 2, where p and q are
relatively prime integers.

Proof. Suppose X is homotopy dominated by P = L(p, q) with domination map dX :
P −→ X and X̃ denotes the universal covering space of X. Then π1(X) and Hi(X) are
isomorphic to a direct suumand of π1(P ) ∼= Z and of Hi(P ), respectively, for all i ≥ 2. We
know that

Hi(P ) ∼=


Z, i = 0, 3
π1(P ) ∼= Zp, i = 1
0, otherwise.

We have the following cases:
Case One. π1(X) = 1 and Hi(X) = 0 for all i ≥ 2. Then by the Whitehead Theorem

X and {∗} have the same homotopy type.
Case Two. π1(X) = 1 and H3(X) ∼= Z and Hi(X) = 0 for all i ̸= 3. Then H3(X;Z2) ̸=

0 and so, X and L(p, q) have the same homotopy type (by Theorem 2.7) which is a
contradiction because π1(X) = 1. Thus this case does not occur.

Case Three. π1(X) ∼= Zp. Then (dX)∗ : π1(P ) −→ π1(X) is an isomorphism. Since
X̃ is homotopy dominated by P̃ = Sn and C(S3) = 2, then X̃ has the homotopy type of
{∗} or S3. If X̃ has the homotopy type of {∗}, then X is the Eilenberg-MacLane space
K(Zp, 1). By Lemma 2.8, Hi(K(Zp, 1)) is nonzero for infinitely many values of i which is
a contradiction with the fact that Hi(X) is a summand of Hi(P ), for all i ≥ 0. So, X̃ has
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the homotopy type of S3. Also, the homomorphism (dX)∗ : Hi(P ) −→ Hi(X) which is
induced by the domination map dX is an epimorphism between two isomorphic Hopfian
groups and so, is an isomorphism for all i ≥ 2. Now by the Whitehead Theorem, we obtain
that dX : P −→ X is a homotopy equivalence. Hence X has the homotopy type of P . �

By a similar argument to the previous theorem, we can compute the capacity of a real
projective n-space. Note that this result was proved by Y. Kodama et al. in [11] in a
different manner.

Theorem 4.2. The capacity of RPn is equal to 2, for all n ≥ 2

Proof. Suppose that X is homotopy dominated by P = RPn with the domination map
dX : P −→ X and X̃ denotes the universal covering space of X. Then π1(X) and Hi(X)
are isomorphic to a direct suumand of π1(P ) ∼= Z2 and of Hi(P ), respectively, for all i ≥ 2.
We have the following cases:

Case One. π1(X) ∼= Z2. Since X̃ is homotopy dominated by P̃ = Sn and C(Sn) = 2,
X̃ has the homotopy type of {∗} or Sn. If X̃ has the homotopy type of {∗}, then X is the
Eilenberg-MacLane space K(Z2, 1). By Lemma 2.8, Hi(K(Z2, 1)) is nonzero for infinitely
many values of i. But this is a contradiction with the fact that Hi(X) is a summand of
Hi(P ), for all i ≥ 0. Hence X̃ has the homotopy type of Sn and so, Hi(X̃) ∼= Hi(Sn)
for i ≥ 0. Also, the homomorphism (d̃X)∗ : Hi(Sn) −→ Hi(X̃) which is induced by the
domination map d̃X is an epimorphism between two isomorphic Hopfian groups and so,
it is an isomorphism for all i ≥ 2. Thus by the Whitehead Theorem, dX : P −→ X is a
homotopy equivalence and so, X and P have the same homotopy type.

Case Two. π1(X) = 1. First, let n be even. We know that

Hi(P ) =


Z, i = 0
Z2, i is odd and 0 < i < n

0, otherwise.

Since X is 1-connected, by Theorem 2.4 π2(X) ∼= H2(X). But H2(X) = 0 and so,
X is 2-connected. Now again by Theorem 2.4, π3(X) ∼= H3(X). If H3(X) ̸= 0, then
H3(X) ∼= Z2. Hence π3(X) ∼= Z2. But this is a contradiction since π3(X) is a summand
of π3(P ) ∼= π3(Sn) = 0. Therefore, H3(X) = 0 and so, π3(X) = 0. Then X is 3-connected
and by Theorem 2.4, π4(X) ∼= H4(X). Therefore, X is 4-connected because H4(X) is a
summand of H4(P ) = 0. Again, by Theorem 2.4 π5(X) ∼= H5(X). By continuing this
process, we have Hi(X) = 0 for all 1 ≤ i ≤ n − 1. On the other hand, since Hi(X) is
a summand of Hi(P ), we have Hi(X) = 0 for all i ≥ n. Thus X is a simply connected
CW-complex with trivial homology groups and hence by the Whitehead Theorem, X has
the homotopy type of {∗}.

Second, let n be odd. We know that

Hi(P ) =


Z, i = 0, n

Z2, i is odd and 0 < i < n

0, otherwise.

Similar to the previous argument, we obtain Hi(X) = 0 for all i ̸= n. If Hn(X) ̸= 0,
then Hn(X) ∼= Z and so X has the homotopy type of Sn. But Sn can not be homotopy
dominated by P . Because if Sn is homotopy dominated by P , since Hn(Sn;Z2) ̸= 0,
then by Theorem 2.7, Sn has the homotopy type of P which is a contradiction. Therefore
Hn(X) = 0 and so by the Whitehead Theorem, X has the homotopy type of {∗}. �
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5. An upper bound for the capacity of a Zn-complex
In this section, we present an upper bound for the capacity of a Zn-complex, i.e., a

2-dimensional CW-complex with finite cyclic fundamental group Zn.

Definition 5.1. [7]. A π-complex is a 2-dimensional CW-complex with the fundamental
group π. The set HT (π) denotes the set of all π-complexes.

One can consider HT (π) as a graph whose edges connect the type of each π-complex X
to the type of its sum X ∨ S2 with the 2-sphere S2. These graphs are actually trees; they
clearly contain no circuits, and they are connected because any two π-complexes have the
same type once each is summed with an appropriate number of copies of the 2-sphere S2

(see [7]).

Definition 5.2. [7]. A root is the homotopy type of a 2-dimensional CW-complex that
does not admit a factorization involving an S2 summand.

Definition 5.3. [7]. A junction is the homotopy type of a 2-dimensional CW-complex
that admits two or more inequivalent factorizations involving an S2 summand

Indeed, the roots generate the rest of the types in the tree HT (π) under the operation
of forming sum with S2 and the junctions determine the shape of the tree (see [7]).

Lemma 5.4. [2, p. 78]. The tree HT (Zn) has exactly one root given by the pseudo
projective plane Pn = S1 ∪f e2 which is obtained by attaching a 2-cell e2 to S1 via the map
f : S1 −→ S1 of degree n.

Lemma 5.5. [21, Complement, p. 64]. If X satisfies D2, it is equivalent to a 3-
dimensional CW-complex.

Lemma 5.6. [6, Corollary 2, p. 412]. If X is an (n + 1)-complex dominated by an n-
complex, then there exists a wedge of k copies of n-spheres W , where k is equal to the
number of (n + 1)-cells in X, such that X ∨ W ≃ X(n), the n-skeleton of X.

Lemma 5.7. [7]. Let X be a Zn-complex. Then X has the homotopy type of the wedge
Pn ∨ S2 ∨ · · · ∨ S2 of the pseudo projective plane Pq and rank H2(X) copies of 2-sphere S2.

Lemma 5.8. [7]. The following are equivalent statements for a finitely presented group
π.

(1) The tree HT (π) of homotopy types of π-complexes has a single root.
(2) For π-complexes, there is a cancellation law for S2-summands, i.e.,

X ∨ S2 ≃ Y ∨ S2 implies X ≃ Y.

We recall the following old problem concerning CW complexes.
If X is a CW-complex homotopy dominated by an n-dimensional CW-complex, then is X

homotopy equivalent to an n-dimensional CW-complex?
C.T.C. Wall in [21] showed that the answer is yes if n > 2. The Stallings-Swan Theorem
[20] answers the problem affirmatively for n = 1. But the answer for the case n = 2 is still
unknown. J.M. Cohen in [6] showd that if X is dominated by a 2-dimensional complex,
then there is a wedge of 2-spheres W such that X ∨ W is of the homotopy type of a
2-dimensional complex (for more detalis, see [6]). In the next theorem, we give a positive
answer to the above question for Zn-complexes. In addition, we determine a space which
is homotopy dominated by a Zn-complex up to homotopy equivalent and using this result,
we present an upper bound for the capacity of a Zn-complex.

Theorem 5.9. Let n = pα1
1 pα2

2 · · · pαm
m where pi’s are mutually distinct primes and αi’s

are positive integers. Then every space homotopy dominated by a Zn-complex has the
homotopy type of a Zm-complex where m = p

αi1
i1

· · · p
αij

ij
for i1, · · · , ij ∈ {1, · · · , m}.
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Proof. Suppose P is a Zn-complex and X is homotopy dominated by P . By Lemma
5.5, we can suppose that X is a 3-dimensional complex. It is easy to see that π1(X) is
isomorphic to a direct summand of π1(P ). So we can suppose that π1(X) = Zm where
m = p

αi1
i1

· · · p
αij

ij
for i1, · · · , ij ∈ {1, · · · , m}. By Lemma 5.6, there exists a wedge of k

copies of 2-spheres W such that X ∨ W ≃ X(2). Since π1(X(2)) = π1(X) = Zm, so by
Lemma 5.7 we have

X ∨ W ≃ X(2) ≃ Pm ∨ S2 ∨ · · · ∨ S2

of rank H2(X(2)) copies of the 2-sphere S2.
By the hypothesis, X is homotopy dominated by P which is a finite 2-dimensional

polyhedron. Therefore, H2(X) is isomorphic to a subgroup of the free abelian group
H2(P ). Then H2(X) is also a free abelian group of finite rank. On the other hand, since
X ∨ W ≃ X(2), H2(X) ⊕ H2(W ) ∼= H2(X(2)). Hence, we obtain

rank H2(X) = rank H2(X(2)) − k.

Now by Lemmas 5.4 and 5.8, X ≃ Pm ∨ S2 ∨ · · · ∨ S2 with k copies of S2, where k is the
rank of H2(X). �
Corollary 5.10. Let P be a Zn-complex where n = pα1

1 pα2
2 · · · pαm

m for mutually distinct
primes pi and positive integers αi. Then C(P ) ≤ 2m × (rank H2(P ) + 1).

Proof. By Therem 5.9, every space homotopy dominated by P has the homotopy type
of Pm ∨ S2 ∨ · · · ∨ S2, where m = p

αi1
i1

· · · p
αij

ij
for i1, · · · , ij ∈ {1, · · · , m}, with k copies of

the 2-sphere S2 for every 0 ≤ k ≤ rank H2(P ). Thus the proof is complete. �
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