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Abstract
This paper is concerned with the problem of finite-time stability (FTS) of a class of
switched systems with delayed arguments and nonlinear perturbations which are related
not only with the current state and the delayed state but also with time t. Novel Lyapunov–
Krasovskii functions are introduced, and a new finite-time stability criterion is derived by
employing the average dwell time (ADT) approach and linear matrix inequality technique.
An example is given to illustrate the effectiveness of the proposed method.
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1. Introduction
Switched systems which belong to a special class of hybrid systems have received a great

deal of attention, such as stability [5, 8, 9, 14], controllability and observability [6]. This
is due to the fact that switched systems have a number of applications in traffic control,
mechanical control, and so forth. In particular, time-delay systems were investigated in
[12,18,19].

Most of the existing papers related to stability of switched system focus on Lyapunov
asymptotic stability (LAS), which is defined over an infinite time interval. However, in
practice, one is interested in not only system stability (usually in the sense of Lyapunov)
but also a bound of system trajectories over a fixed short time interval, such as networked
control systems [15]. In addition, a system could be Lyapunov stable but still completely
useless because it possesses undesirable transient performances, such as the system with
saturation elements in the control loop. To study the transient performances of a system,
the concept of short time stability, i.e., FTS, was introduced in [1, 4], and the proposed
approach in [1] was very effective. In particular, a system is said to be FTS if, given
a bound on the initial condition, its state remains within a prescribed bound in a fixed
time interval. Note that FTS and LAS are independent concepts: a system could be
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FTS but not LAS, and vice versa [2]. Finite time stability of switched delay systems
were investigated in [10, 11, 13, 16, 21]. To mention a few, Lin et al. [10] considered
the switched linear delay system with norm-bounded disturbance and obtained several
stability criteria by employing multiple Lyapunov functions method. Recently, using the
generalized Grönwall–Bellman inequality, Tian et al. [16] investigated finite-time stability
of impulsive switched delay systems with nonlinear disturbances, where the disturbances
are related not only with current state and the delayed state but also with time t.

Motivated by the works [10, 16], the FTS of switched delay systems with nonlinear
perturbations is considered in this paper. The main contributions of this paper can be
summarized as follows: (i) a time-varying delay and nonlinear perturbations are added
compared to systems studied in [10]; (ii) several more effective stability criteria are ob-
tained in terms of linear matrix inequalities which differ from the method exploited in
[16].

Notation 1.1. Throughout the paper, Rn denotes the n-dimensional Euclidean space
with vector norm ∥ · ∥, Rn×m is the set of all n × m-dimensional real matrices. I denotes
the identity matrix of appropriate dimensions, and the superscript “T ” stands for matrix
transposition. The notation P > 0 (≥ 0) means that P is symmetric and positive (semi-
positive) definite. λmin(A) and λmax(A) denote the minimum and maximum eigenvalues
of A, respectively.

2. Problem description and preliminaries
Consider the following switched delay system with nonlinear perturbations{

ẋ(t) = Aσ(t)x(t) + Bσ(t)x(t − h(t)) + fσ(t)(t, x(t), x(t − h(t))), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h2, 0],
(2.1)

where x(t) ∈ Rn is the state vector, Aσ(t) and Bσ(t) are constant real matrices, ϕ(t) ∈
C1([−h2, 0],Rn) with ∥ϕ∥ = supt∈[−h2,0]{∥ϕ(t)∥, ∥ϕ̇(t)∥}, where C([−h2, 0],Rn) is the Ba-
nach space of continuous functions. σ(t) : [0, +∞) → Λ = {1, 2, . . . , m} is the switching
signal which is a piecewise constant function depending on time t or state x(t), and m is
the number of subsystems. The delay h(t) is time-varying and satisfies

0 ≤ h1 ≤ h(t) ≤ h2, ḣ(t) ≤ µ < 1, (2.2)

where µ is a positive constant, h1 and h2 are constants representing the lower and upper
bounds of the delay, respectively. fi(t, x(t), x(t − h(t))), i ∈ Λ are nonlinear perturbations
satisfying

∥fi(t, x(t), x(t − h(t)))∥ ≤ a∥x(t)∥ + b∥x(t − h(t))∥ + β(t), (2.3)

where β(t) satisfies
∫ T

0 β2(s)e−αsds < ∞, α, T , a, and b are positive constants.

Assumption 2.1. The state of switched delay system does not jump at switching instants,
i.e., the trajectory x(t) is continuous everywhere. Switching signal σ(t) has finite switching
number in any finite interval time.

Definition 2.2 (see [1]). Given three positive constants c1, c2, T with c1 < c2, a positive
definite matrix R, and a switching signal σ(t). If

sup
θ∈[−h2,0]

φT (θ)Rφ(θ) ≤ c1 ⇒ xT (t)Rx(t) ≤ c2, t ∈ [0, T ], (2.4)

then switched system (2.1) is said to be FTS with respect to (c1, c2, T, σ(t), R). If (2.4)
holds under an arbitrary switching signal σ(t), then switched system (2.1) is said to be
uniformly FTS with respect to (c1, c2, T, R).



164 Y. Fu et al.

Definition 2.3 (see [10]). For a switching signal σ(t) and any t2 > t1 ≥ 0, let Nσ(t1, t2)
denote the number of discontinuities of σ(t) in the open interval (t1, t2). We say that σ(t)
has an average dwell time (ADT) τa > 0 if τa satisfies

N(t1, t2) ≤ N0 + t2 − t1
τa

. (2.5)

Without loss of generality, we choose N0 = 0 in this paper.

3. Main results
In this section, we focus on FTS of switched system (2.1). First, consider system (2.1)

without switching{
ẋ(t) = Ax(t) + Bx(t − h(t)) + f(t, x(t), x(t − h(t))), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h2, 0].
(3.1)

Choose a Lyapunov–Krasovskii function as follows:

V (t) = V1(t) + V2(t),

where
V1(t) = xT (t)P̃1x(t), V2(t) =

∫ t

t−h(t)
xT (s)eα(t−s)Q̃1x(s)ds,

α is a nonnegative constant, P̃1 and Q̃1 are positive definite matrices to be determined.

Lemma 3.1 (see [20]). For any x, y ∈ Rn and any positive definite matrix P ∈ Rn×n,

2yT x ≤ xT P −1x + yT Py.

Lemma 3.2. Suppose that there exist matrices P̃1 > 0, Q̃1 > 0, and a constant α ≥ 0
such that

Σ1 =

 Σ11 Σ12 Σ13
∗ Σ22 0
∗ ∗ −I

 < 0, (3.2)

where
Σ11 = AT P̃1 + P̃1A + Q̃1 + 3a2I − αP̃1,

Σ12 = P̃1B, Σ13 = P̃1,

Σ22 = −(1 − µ)eαh1Q̃1 + 3b2I.

Then, along the trajectory of system (3.1),

V (t) ≤ eαtV (0) + 3eαt
∫ t

0
β2(s)e−αsds. (3.3)

Proof. Taking the derivative of V (t) along the trajectory of system (3.1), it follows from
(2.2), (2.3), and Lemma 3.1 that

V̇1(t) = 2xT (t)P̃1ẋ(t)

= 2xT (t)P̃1[Ax(t) + Bx(t − h(t)) + f(t, x(t), x(t − h(t)))]

= 2xT (t)P̃1Ax(t) + 2xT (t)P̃1Bx(t − h(t)) + 2xT (t)P̃1f(t, x(t), x(t − h(t)))

≤ xT (t)(AT P̃1 + P̃1A)x(t) + 2xT (t)P̃1Bx(t − h(t))

+ fT (t, x(t), x(t − h(t)))f(t, x(t), x(t − h(t))) + xT (t)P̃ 2
1 x(t)

≤ xT (t)(AT P̃1 + P̃1A + P̃ 2
1 + 3a2I)x(t) + 2xT (t − h(t))BT P̃1x(t)

+ 3b2xT (t − h(t))x(t − h(t)) + 3β2(t)

(3.4)
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and
V̇2(t) = αV2(t) + eαt[xT (t)e−αtQ̃1x(t)

− xT (t − h(t))e−α(t−h(t))Q̃1x(t − h(t))(1 − ḣ(t))]

≤ αV2(t) + xT (t)Q̃1x(t) − (1 − µ)xT (t − h(t))eαh1Q̃1x(t − h(t)).

(3.5)

Combining (3.4) and (3.5), we conclude that

V̇ (t) − αV (t) ≤
[

x(t)
x(t − h(t))

]T
[

Σ11 + P̃ 2
1 Σ12

∗ Σ22

] [
x(t)

x(t − h(t))

]
+ 3β2(t)

≤ 3β2(t)

(3.6)

when using (3.2) and the Schur complement formula. Therefore, we arrive at (3.3). This
completes the proof. �

The following theorem presents FTS conditions for switched delay system (2.1).

Theorem 3.3. For any i ∈ Λ, let P̃1,i = R1/2P1,iR
1/2, Q̃1,i = R1/2Q1,iR

1/2. Suppose that
there exist matrices P1,i > 0, Q1,i > 0, and α > 0 such that

Φ =

 ϕ11 ϕ12 ϕ13
∗ ϕ22 0
∗ ∗ −I

 < 0, (3.7)

where
ϕ11 = AT

i P̃1,i + P̃1,iAi + Q̃1,i + 3a2I − αP̃1,i,

ϕ12 = P̃1,iBi, ϕ13 = P̃1,i,

ϕ22 = −(1 − µ)eαh1Q̃1,i + 3b2I,

and
(λ2 + h2eαh2λ3)c1 + 3

∫ T

0
β2(s)e−αsds < c2e−αT λ1. (3.8)

If the ADT of the switching signal σ(t) satisfies

τa > τ∗
a = T ln ρ

ln(λ1c2) − ln[(λ2 + h2eαh2λ3)c1] − αT
, (3.9)

then system (2.1) is FTS with respect to (c1, c2, T, σ(t), R), where ρ ≥ 1, P1,i ≤ ρP1,j,
Q1,i ≤ ρQ1,j, ∀i, j ∈ Λ, λ1 = mini∈Λ{λmin(P1,i)}, λ2 = maxi∈Λ{λmax(P1,i)}, and λ3 =
maxi∈Λ{λmax(Q1,i)}.

Proof. Define a Lyapunov–Krasovskii function by
V (t) = Vσ(t)(t) = V1,σ(t)(t) + V2,σ(t)(t),

where

V1,σ(t)(t) = xT (t)P̃1,σ(t)x(t), V2,σ(t)(t) =
∫ t

t−h(t)
xT (s)eα(t−s)Q̃1,σ(s)x(s)ds,

and P̃1,i and Q̃1,i are positive definite matrices to be determined.
Step 1. Let t ∈ [tk, tk+1). By virtue of (3.7) and Lemma 3.2, we have

V (t) = Vσ(t)(t) < eα(t−tk)Vσ(tk)(tk) + 3
∫ t

tk

β2(s)eα(t−s)ds. (3.10)

Since ρ ≥ 1, P1,i ≤ ρP1,j , Q1,i ≤ ρQ1,j , ∀i, j ∈ Λ, and P̃1,i = R1/2P1,iR
1/2, Q̃1,i =

R1/2Q1,iR
1/2, we obtain

P̃1,i ≤ ρP̃1,j , Q̃1,i ≤ ρQ̃1,j .
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Without loss of generality, assume that σ(tk) = i, σ(t−
k ) = j at switching instant tk, where

σ(t−
k ) = lim∆t→0− σ(tk + ∆t). Noticing that x(tk) = x(t−

k ), we get
Vσ(tk)(tk) ≤ ρVσ(t−

k
)(t

−
k ), (3.11)

where x(t−
k ) = lim∆t→0− x(tk + ∆t). It follows from (3.10) and (3.11) that

V (t) < eα(t−tk)ρVσ(t−
k

)(t
−
k ).

Step 2. For any t ∈ (0, T ), letting N be the switching number of σ(t) over (0, T ), then
Nσ(0, t) ≤ N . Using the iterative method in Step 1, we conclude that

V (t) ≤ eα(t−tk)ρVσ(t−
k

)(t
−
k ) + 3eαt

∫ t

tk

β2(s)e−αsds

≤ · · · ≤ eαtρkVσ(0)(0) + 3eαtρk
∫ t1

0
β2(s)e−αsds

+ · · · + 3eαt
∫ t

tk

β2(s)e−αsds

= eαtρkVσ(0)(0) + 3eαtρk
∫ t

0
β2(s)e−αsds

≤ eαtρk

(
Vσ(0)(0) + 3

∫ T

0
β2(s)e−αsds

)
.

Note that k ≤ N ≤ T/τa. Then

V (t) ≤ eαtρT/τa

(
Vσ(0)(0) + 3

∫ T

0
β2(s)e−αsds

)
. (3.12)

On the other hand,
V (t) ≥ xT (t)P̃1,σ(t)x(t) ≥ λmin(P1,σ(t))xT (t)Rx(t) ≥ λ1xT (t)Rx(t), (3.13)

Vσ(0)(0) = xT (0)P̃1,σ(0)x(0) +
∫ 0

−h(0)
xT (s)e−αsQ̃1,σ(0)x(s)ds

≤ λmax(P1,σ(0))xT (0)Rx(0)

+ h2eαh2λmax(Q1,σ(0)) sup
−h(0)≤s≤0

{
xT (s)Rx(s)

}
≤
(
λmax(P1,σ(0)) + h2eαh2λmax(Q1,σ(0))

)
sup

−h2≤s≤0

{
xT (s)Rx(s)

}
≤ (λ2 + h2eαh2λ3)c1.

(3.14)

Combining (3.12), (3.13), and (3.14), we arrive at

xT (t)Rx(t) ≤ V (t)
λ1

≤
eαT ρ

T
τa

(
Vσ(0)(0) + 3

∫ T
0 β2(s)e−αsds

)
λ1

≤
eαT ρ

T
τa

[
(λ2 + h2eαh2λ3)c1 + 3

∫ T
0 β2(s)e−αsds

]
λ1

.

(3.15)

The following proof can be divided into two cases.
Case 1. Assume that ρ = 1. It follows from (3.8) and (3.15) that

xT (t)Rx(t) < c2e−αT eαT = c2. (3.16)
Case 2. Suppose that ρ > 1. Using (3.8), we obtain

ln(λ1c2) − ln
[
(λ2 + h2eαh2λ3)c1 + 3

∫ T

0
β2(s)e−αsds

]
− αT > 0.
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By virtue of (3.9), we get

T

τa
<

ln(λ1c2) − ln
[
(λ2 + h2eαh2λ3)c1 + 3

∫ T
0 β2(s)e−αsds

]
− αT

ln ρ

=
ln c2λ1e−αT

(λ2+h2eαh2 λ3)c1+3
∫ T

0 β2(s)e−αsds

ln ρ
.

(3.17)

Substituting (3.17) into (3.15), we deduce that

xT (t)Rx(t) <
(λ2 + h2eαh2λ3)c1 + 3

∫ T
0 β2(s)e−αsds

λ1
eαT

× c2λ1e−αT

(λ2 + h2eαh2λ3)c1 + 3
∫ T

0 β2(s)e−αsds

= c2.

(3.18)

Taking into account that the trajectory of system (2.1) remains continuous at instant T ,
we conclude that (3.16) and (3.18) hold for all t ∈ [0, T ]. The proof is complete. �

4. Numerical example
The following example illustrates applications of theoretical results presented in this

paper.

Example 4.1. Consider a switched system
ẋ(t) = Aσ(t)x(t) + Bσ(t)x(t − h(t)) + fσ(t)(t, x(t), x(t − h(t))) (4.1)

with

h(t) = 0.9 sin t + 0.1, x(t) =

 2
−1
−2

 , t ∈ [−0.1, 0],

A1 =

 −2.7 1.7 0
1.3 −1 0.7
0.7 1 −0.6

 , A2 =

 1 −1 0
0.7 0 −0.6
1.7 0 −1.7

 ,

B1 =

 1.5 −1.7 0.1
−1.3 1 −0.3
−0.7 1 0.6

 , B2 =

 −0.5 0 0.1
1.3 −1 −0.6
1.5 0.1 1.8

 ,

and

f1 =

 e−t

4
−3

 , f2 =

 −(x2(t))
2
3 (x1(t − h(t)))

1
3

e−t

x1(t)+x3(t−h(t))
1+(x1(t))2

 .

The values of c1, c2, T , and matrix R are given as follows:
c1 = 9, c2 = 49, T = 13, R = I.

By virtue of Theorem 3.3, system (4.1) is FTS for any switched signal which satisfies
τa > τ∗

a , with respect to (9, 49, 13, σ(t), I).

Remark 4.2. It follows from Figure 1 that system (4.1) is FTS, and it is more effective
than that of [10].

Remark 4.3. In this paper, using the ADT approach and constructing Lyapunov–Krasovskii
functions, we have established new FTS criteria for a class of switched delay systems with
nonlinear perturbations (2.1). The conditions obtained are easy to verify, and the tech-
nique proposed essentially simplify the process of investigation of switched delay systems.
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Figure 1. The state trajectory of system (4.1) under switching signals.

It would be of interest to study uniformly FTS of (2.1). Similarly to [3,7,17], it would also
be interesting to investigate convergence and oscillatory properties of switched systems.
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