
http://www.newtheory.org ISSN: 2149-1402

Received : 15.10.2018 Year : 2019, Number : 27, Pages: 33-42
Published : 04.03.2019 Original Article

A New Operation on Soft Sets: Extended Difference of
Soft Sets

Aslıhan Sezgin1,*

Shahzad Ahmad2

Adnan Mehmood2

<aslihan.sezgin@amasya.edu.tr>
<shahzad.ahmed@skt.umt.edu.pk>
<adnanmehmood1111@gmail.com>

1Department of Mathematics, Faculty of Arts and Science, Amasya University, Amasya, Turkey
2Department of Mathematics, Faculty of Arts and Science, (UMT) University, Sialkot, Pakistan

Abstaract − Soft Set Theory, which has been considered as an adequate mathematical device,
was proposed by Molodtsov to deal with ambiguities and uncertainties. Several operations on soft
sets were defined in many soft set papers. This study is based on the paper ”On operations of Soft
Sets” by Sezgin and Atagün [Comput. Math. Appl. 61 (2011) 1457-1467]. In this paper, we define
a new operation on soft sets, called extended difference and investigate its relationship between
extended difference and restricted difference and some other operations of soft sets.
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1 Introduction

In different areas, Mathematicians and Scientists have been facing several ambi-
guities and uncertainties in the problems of computer science, statistics, different
branches of engineering, environmental sciences, economics, medical sciences, soci-
ology and many other different fields of sciences. In the past, many of the theories
were presented to overcome these uncertainties. But Molodtsov [10] has found that
these theories have their own built-in deadlocks. The main problem shared by those
theories is their conflict with the parametrization tools. So, to overcome these dead-
locks properly, in 1999, Molodtsov [10] suggested a fully new approach that is soft
set theory which acts as a breakthrough for those deadlocks. In this theory, a soft set
could be a parameterized group of subsets of the universal set and also the drawback
of setting the membership operation does not appear. It gives us a lot of choices in
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the problem to solve them easily. Now the development in the field of soft set theory
is increasing day by day.

In 2002, Maji et al. [9] applied the soft sets to decision creating problems using
rough mathematics and then in 2003, Maji and Biswas [8] introduced many opera-
tions of soft sets. And then, many authors [1, 2, 4, 5, 6, 7, 11, 13] also studied the
different soft operations.

In 2011, Sezgin and Atagün [12] discussed the fundamental theorems about op-
erations about soft sets i.e; union and intersection of soft sets and other operations.
In that paper, they defined union and intersection operation of soft sets both with
restricted and extended condition but defined the difference operation only with re-
stricted condition. They did not define difference operation with extended condition.
Here in this paper, we have defined a new operation on soft sets called extended
difference and also proved some of its properties. Moreover, we have also proved
the interesting result which shows the relationship between extended difference with
the restricted difference. The main objective of this paper is to make soft set theory
more effective and solid by enhancing the conceptual feature of operations on soft
sets.

2 Preliminary

In view this chapter, we review a few fundamental assumptions in soft set theory.
From now on, U is a basic universe set , E is set of all feasible parameters in the
below discussion with reference to U . We denote the power set on U (i.e; the set of
consisting all the subsets of U) by P (U), A is a subset of E. Generally parameters
are the numeric values, attributes of elements in U . Molodtsov [10], illustrated the
soft set in such a way as following:

Definition 2.1. ([10]) Let U be the fundamental universe, E is a set about para-
meters and D be a subset of E. The pair (L,D) is known to be a soft set over U ,
when L is mapping of D within set of every subsets of set U .
For e ∈ D , L(e) is may be regarded as a set of e-elements of soft set (L,D).

Definition 2.2. ([8]) Let (L, D) and (K, J) be two soft sets over the same universe
U , then (K, J) is soft subset on (L,D) if it satisfies:
(i) J ⊆ D
(ii) K(e) ⊆ L(e), ∀e ∈ J
and it is denoted by (K, J)⊂̃(L,D) and also if (L,D) is soft subset on (K, J) then
(K, J) is said to be a soft superset of (L,D) and it is denoted by (K, J)⊃̃(L,D).

Definition 2.3. ([8]) Let (L,D) and (K, J) be two soft sets over the identical uni-
verse U . (L,D) and (K, J) are called soft equal sets if (L,D) is soft subset of (K, J)
and (K, J) is soft subset of (L,D).

Definition 2.4. ([3]) The relative complement of a soft set (K,B) is shown by
(K,B)r and is illustrated as (K, B)r = (Kr, B), where Kr : B → P (U) is a mapping
assigned as Kr(e) = U \K(e) , ∀e ∈ B.

Definition 2.5. ([8]) A soft set (K, B) over U is known as a null soft set shown as
ΦB if for all e ∈ B, K(e) = ∅.
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Definition 2.6. ([8]) Let (L,D) be a soft set over a universe U . Then, (L,D) is
known as an absolute soft set if for all e ∈ D, L(e) = U and it is denoted by UD.

Definition 2.7. ([8]) Let (L,D) and (K,Z) be soft sets over an identical universe U ,
then “(L,D)AND(K, Z)′′ denoted by (L,D) ∧ (K, Z) and is expressed as (L,D) ∧
(K,Z) = (H, D × Z), where H(α, β) = Lα) ∩K(β), ∀(α, β) ∈ D × Z.

Definition 2.8. ([8]) Let (L,D) and (K, Z) be two soft sets over a common universe
U , then “(L,D)OR(K, Z)′′ shown as (L,D) ∨ (K,Z) and is expressed as (L,D) ∨
(K,Z) = (H, D × Z), where H(α, β) = L(α) ∪K(β), ∀(α, β) ∈ D × Z.

Definition 2.9. ([3]) Let (L,D) and (K,Z) be two soft sets over an identical universe
U , where D ∩ Z 6= φ. The restricted union of (L,D) and (K, Z) is shown by
(L,D)∪R (K, Z) and expressed as (L,D)∪R (K,Z) = (H, C), when C = D ∩Z and
for all e ∈ C, H(e) = L(e) ∪K(e).

Definition 2.10. ([8]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U . The extended union of (L, D) and (K,Z) is expressed as the soft set
(I, O) fulfilling the situations: (i)O = D ∪ Z; (ii)for all e ∈ O,

I(e) =





L(e) if e ∈ D \ Z,
K(e) if e ∈ Z \D,
L(e) ∪K(e) if e ∈ D ∩ Z.

This relation is shown by (L,D)∪̃(K, Z) = (I, O).

Definition 2.11. ([3]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted intersection of (L,D) and (K,Z)
shown by (L, D) ∩R (K, Z) and is expressed as (L,D) ∩R (K, Z) = (H,C), where
C = D ∩ Z and for all e ∈ C, H(e) = L(e) ∩K(e).

Definition 2.12. ([3]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U . The extended intersection of (L,D) and (K, Z) is expressed as the soft
set (I, O) fulfilling situations: (i)C = D ∪ Z; (ii)for all e ∈ O,

I(e) =





L(e) if e ∈ D \ Z,
K(e) if e ∈ Z \D,
L(e) ∩K(e) if e ∈ D ∩ Z.

This relation is shown by (L,D)∩̃(K, Z) = (I, O).

Definition 2.13. ([12]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted difference of (L,D) and (K, Z) is
shown by (L,D) ∼R (K,Z), and expressed as (L,D) ∼R (K, Z) = (H,C), where
C = D ∩ Z and for all e ∈ C, H(e) = L(e) \K(e).

Definition 2.14. ([12]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted symmetric difference of (L,D) and

(K,Z) is shown by (L,D)4̃(K, Z), and expressed as (L,D)4̃(K, Z) = ((L,D) ∪R

(K,Z)) ∼R ((L,D) ∩R (K,Z)) = (T, C), where C = D ∩ Z.
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3 Properties of operations of soft sets and their

correlations with one another

As the fundamental properties and theorems related to operations of soft sets such
as restricted union, extended union, restricted intersection, extended intersection,
restricted difference we refer to the paper Sezgin and Atagün [12], Maji et al. [8], Ali
et al. [3] and Pei and Miao [11]. Now we are ready to give the definition of extended
difference of soft sets and its basic properties.

Definition 3.1. Let (X,D) and (P, E) be the two soft sets over an identical universe
U . The extended difference of (X, D) and (P, E) can be expressed as the soft set
(L,C) fulfilling the situations as under: (i)C = D ∪ E; (ii)for all e ∈ C,

L(e) =





X(e) if e ∈ D \ E,
P (e) if e ∈ E \D,
X(e) \ P (e) if e ∈ D ∩ E.

Thus, the relation is shown by (X,D) ∼E (P, E) = (L,C).

Example 3.2. Let E be the universe set of parameters, D, B be the subsets of E such
that E = {e1, e2, e3, e4, e5, e6}, D = {e1, e2, e3, e4} and B = {e3, e4, e5}. Assume that
(X, D) and (K, B) are two soft sets over common universe U = {h1, h2, h3, h4, h5, h6}
as following: (X, D) = {(e1, {h2, h4}), (e2, {h1, h3}), (e3, {h3, h5}), (e4, {h1, h6})}, (P,B) =
{(e3, {h4, h5}), (e4, {h1, h2}), (e5, {h2, h5})}, where C = D ∪B = {e1, e2, e3, e4, e5}.

Now let (X, D) ∼E (P,B) = (L,D ∪B), where

L(e) =





X(e) if e ∈ D \B,
P (e) if e ∈ B \D,
X(e) \ P (e) if e ∈ D ∩B.

and for all e ∈ D ∪ B = {e1, e2, e3, e4, e5}. Since D \ B = {e1, e2}, L(e1) = X(e1) =
{h2, h4}, L(e2) = X(e2) = {h1, h3}. Since B \ D = {e5}, L(e5) = P (e5) = {h2, h5}
and since D ∩ B = {e3, e4}, L(e3) = X(e3) \ P (e3) = {h3, h5} \ {h4, h5} = {h3},
L(e4) = X(e4) \ P (e4) = {h1, h6} \ {h1, h2} = {h6}. Hence, (X, D) ∼E (P,B) =
(L,D ∪B) = {(e1, {h2, h4}), (e2, {h1, h3}), (e3, {h3}), (e4, {h6}), (e5, {h2, h5}).
Theorem 3.3. Let (P, D), (P, V ), (R, J), (S, I), (X,Z) be two soft sets over a com-
mon universe U . Then, we have the following:

a) (P, D) ∼E ΦD = (P, D).

b) (P, D) ∼E (P, D) = ΦD.

c) UD ∼E (P, D) = (P, D)r.

d) Left distribution of restricted intersection over extended difference:
(P, V ) ∩R ((R, J)) ∼E (S, I)) = ((P, V ) ∩R (R, J)) ∼E ((P, V ) ∩R (S, I)).

e) Right distribution of restricted intersection over extended difference:
((X, Z) ∼E (R, J)) ∩R (S, I) = ((X, Z) ∩R (S, I)) ∼E ((R, J) ∩R (S, I)).
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f) Right distribution of restricted difference over extended difference:
((P, Z) ∼E (R, J)) ∼R (W, I) = ((P,Z) ∼R (W, I)) ∼E ((R, J) ∼R (W, I)).

Proof. a) Let ΦD = (M,D) and (P, D) ∼E ΦD = (P, D) ∼E (M, D) = (H, D),
where

H(e) =





P (e) if e ∈ D \D,
M(e) if e ∈ D \D,
P (e) \M(e) if e ∈ D ∩D = D.

and for all e ∈ D ∪ D. Since M(e) = φ for all e ∈ D ∪ D, it follows that H(e) =
P (e) \ φ = P (e). This means that P and H are the same mappings. This completes
the proof.

b) Let (P, D) ∼E (P, D) = (H, D), where

H(e) =





P (e) if e ∈ D \D,
P (e) if e ∈ D \D,
P (e) \ P (e) if e ∈ D ∩D = D.

and for all e ∈ D ∪D. Hence, H(e) = P (e) \ P (e) = ∅. This completes the proof.
c) Let UD = (G,D) and UD ∼E (P,D) = (G,D) ∼E (P,D) = (W,D), where

W (e) =





G(e) if e ∈ D \D,
P (e) if e ∈ D \D,
G(e) \ P (e) if e ∈ D ∩D = D.

for all e ∈ D ∪ D. Since G(e) = U for all e ∈ D ∪ D, it follows that W (e) =
U \ P (e) = P r(e), which completes the proof.

d) For the left hand side of the property, let (R, J) ∼E (S, I) = (T, J ∪ I), where

T (e) =





R(e) if e ∈ J \ I,
S(e) if e ∈ I \ J,
R(e) \ S(e) if e ∈ J ∩ I.

for all e ∈ J ∪ I.
First let (P, V ) ∩R (T, J ∪ I) = (X, V ∩ (J ∪ I)), where X(e) = P (e) ∩ T (e) for

all e ∈ V ∩ (J ∪ I).
Due the main features of set theory and according to the expressions of X also

with T and suppose T is a piecewise function, we write the following equalities for
the mapping X:

X(e) =





P (e) ∩R(e) if e ∈ V ∩ (J \ I) = (V ∩ J) \ (V ∩ I),
P (e) ∩ S(e) if e ∈ V ∩ (I \ J) = (V ∩ I) \ (V ∩ J),
P (e) ∩ (R(e) \ S(e)) if e ∈ V ∩ (J ∩ I)

for all e ∈ V ∩ (J ∪ I).
For the right hand side of the property, let (P, V )∩R (R, J) = (D, V ∩ J), where

D(e) = P (e)∩R(e) for all e ∈ V ∩J 6= φ. Suppose that (P, V )∩R (S, I) = (O, V ∩I),
where O(e) = P (e) ∩ S(e) for all e ∈ V ∩ I 6= φ. Assume that (D,V ∩ J) ∼E

(O, V ∩ I) = (Z, (V ∩ J) ∪ (V ∩ I)), where
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Z(e) =





D(e) if e ∈ (V ∩ J) \ (V ∩ I),
O(e) if e ∈ (V ∩ I) \ (V ∩ J),
D(e) \O(e) if e ∈ (V ∩ J) ∩ (V ∩ I) = V ∩ (J ∩ I)

for all e ∈ (V ∩ J) ∪ (V ∩ I). Due to considering the expressions of D and O, we
write the mapping Z as below:

Z(e) =





P (e) ∩R(e) if e ∈ (V ∩ J) \ (V ∩ I),
P (e) ∩ S(e) if e ∈ (V ∩ I) \ (V ∩ J),
(P (e) ∩R(e)) \ (P (e) ∩ S(e)) if e ∈ V ∩ (J ∩ I).

It shows that X and Z are the identical mapping when we are assuming the attributes
of operations about set theory. Hence the proof is completed.

e) For the left hand side of the property, let (X, Z) ∼E (R, J) = (T, Z∪J), where

T (e) =





X(e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
X(e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J .
First let (T, Z ∪ J) ∩R (S, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) ∩ S(e)

for all e ∈ (Z ∪ J) ∩ I. Due the main features of set theory and according to the
expressions of Q also with T and suppose that T is a piecewise function, also we
write the following equalities for the mapping Q:

Q(e) =





X(e) ∩ S(e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) ∩ S(e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(X(e) \R(e)) ∩ S(e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I.
For the right hand side of the property, let (X,Z) ∩R (S, I) = (M, Z ∩ I), where

M(e) = X(e) ∩ S(e) for all e ∈ Z ∩ I. Assume (R, J) ∩R (S, I) = (O, J ∩ I),
where O(e) = R(e) ∩ S(e) for all e ∈ J ∩ I. Let (M, Z ∩ I) ∼E (O, J ∪ I) =
(W, (Z ∩ I) ∪ (J ∩ I)), where

W (e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I)∪ (J ∩ I). By assuming the main expressions of M and O, we can
rewrite the mapping W as below:

W (e) =





X(e) ∩ S(e) if e ∈ (Z ∩ I) \ (J ∩ I),
R(e) ∩ S(e) if e ∈ (J ∩ I) \ (Z ∩ I),
(X(e) ∩ S(e)) \ (R(e) ∩ S(e)) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ J) ∪ (Z ∩ I). This leads that Q and W are the identical mapping.
Hence this completes the proof.
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f) For the left hand side of the property, let (P,Z) ∼E (R, J) = (T, Z∪J), where

T (e) =





P (e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
P (e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J .

First let (T, Z ∪ J) ∼R (W, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) \ W (e)
for all e ∈ (Z ∪ J) ∩ I. Due the main features of set theory and according to the
expressions of Q also with T and suppose that T is a piecewise function, we can
write the following equalities for the mapping Q:

Q(e) =





P (e) \W (e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(P (e) \R(e)) \W (e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I.

For the right hand side of the property, let (P,Z) ∼R (W, I) = (M,Z ∩ I), where
M(e) = P (e) \ W (e) for all e ∈ Z ∩ I. Assume (R, J) ∼R (W, I) = (O, J ∩ I),
where O(e) = R(e) \ W (e) for all e ∈ J ∩ I. Let (M,Z ∩ I) ∼E (O, J ∪ I) =
(X, (Z ∩ I) ∪ (J ∩ I)), where

X(e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I)∪ (J ∩ I). By assuming the main expressions of M and O, we can
rewrite the mapping X as below:

X(e) =





P (e) \W (e) if e ∈ (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J ∩ I) \ (Z ∩ I),
(P (e) \W (e)) \ (R(e) \W (e)) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ J) ∪ (Z ∩ I). This leads that Q and X are the identical mapping.
Hence this completes the proof.

Now, we give a corresponding example of part (g) of above Theorem.

Example 3.4. Suppose that E is the universe set of parameters and Z,J and I
are the subsets of E such that E = {e1, e2, e3, e4, e5, e6, e7}, Z = {e1, e2, e3, e5},
J = {e4, e5, e6} and I = {e2, e5, e6, e7}.

Suppose that (P, Z), (R, J) and (W, I) be three soft sets over a common universe
U = {h1, h2, h3, h4, h5, h6, h7, h8, h9} such that

(P,Z) = {(e1, {h1, h2, h9}), (e2, {h4, h5, h6}), (e3, φ), (e5, {h7, h8, h9})},
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(R, J) = {(e4, {h3, h4, h7}), (e5, {h7, h8, h9}), (e6, {h7, h8})},
(W, I) = {(e2, {h4, h5}), (e5, {h3, h8}), (e6, {h1, h3, h5, h6}), (e7, {h4, h6, h8})}.
For the left hand side of the equality, let (P, Z) ∼E (R, J) = (T, Z ∪ J), where

T (e) =





P (e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
P (e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J = {e1, e2, e3, e4, e5, e6}.

Since Z \ J = {e1, e2, e3}, T (e1) = P (e1) = {h1, h2, h9}, T (e2) = P (e2) =
{h4, h5, h6}, T (e3) = P (e3) = φ, since J \Z = {e4, e6}, T (e4) = R(e4) = {h3, h4, h7},
T (e6) = R(e6) = {h7, h8} and since Z ∩ J = {e5}, T (e5) = P (e5) \ R(e5) =
{h7, h8, h9} \ {h7, h8, h9} = φ. So,

(T, Z ∪ J) = {(e1, {h1, h2, h9}), (e2, {h4, h5, h6}), (e3, φ), (e4, {h3, h4, h7})(e5, φ),
(e6, {h7, h8})}.

Now let (T, Z ∪ J) ∼R (W, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) \ W (e)
for all e ∈ (Z ∪ J) ∩ I. By the main features of set theory and the definitions of Q
along with T and considering that T is a piecewise function, we can write the below
equalities for Q:

Q(e) =





P (e) \W (e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(P (e) \R(e)) \W (e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I = {e2, e5, e6}.

Since (Z \J)∩I = (Z∩I)\(J∩I) = {e2}, Q(e2) = P (e2)\W (e2) = {h4, h5, h6}\
{h4, h5} = {h6}, since (J \Z)∩I = (J ∩I)\(Z∩I) = {e6}, Q(e6) = R(e6)\W (e6) =
{h7, h8} \ {h1, h3, h5, h6} = {h7, h8} and since (Z ∩ J) ∩ I = Z ∩ I ∩ J = {e5},
Q(e5) = (P (e5) \R(e5)) \W (e5) = φ \ {h3, h8} = φ. So,

(Q, (Z∪J)∩I) = ((P,Z) ∼E (R, J)) ∼R (W, I) = {(e2, {h6}), (e5, φ), (e6, {h7, h8}).

For the right hand side of the equality let (P, Z) ∼R (W, I) = (M, Z ∩ I), where
M(e) = P (e) \ W (e) for all e ∈ Z ∩ I = {e2, e5}, then M(e2) = P (e2) \ W (e2) =
{h4, h5, h6} \ {h4, h5} = {h6}, M(e5) = P (e5) \ W (e5) = {h7, h8, h9} \ {h3, h8} =
{h7, h9}.

Now let (R, J) ∼R (W, I) = (O, J ∩ I), where O(e) = R(e) \ W (e) for all e ∈
J ∩ I = {e5, e6}. Then, O(e5) = R(e5) \W (e5) = {h7, h8, h9} \ {h3, h8} = {h7, h9},
O(e6) = R(e6) \W (e6) = {h7, h8} \ {h1, h3, h5, h6} = {h7, h8}.

Now let (M, Z ∩ I) ∼E (O, J ∩ I) = (X, (Z ∩ I) ∪ (J ∩ I)), where
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X(e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I) ∪ (J ∩ I) = {e2, e5, e6}. Since (Z ∩ I) \ (J ∩ I) = {e2}, X(e2) =
M(e2) = P (e2) \ W (e2) = {h6}, since (J ∩ I) \ (Z ∩ I) = {e6}, X(e6) = O(e6) =
R(e6)\W (e6) = {h7, h8} and since (Z∩I)∩(J∩I) = {e5}, X(e5) = M(e5)\O(e5) =
(P (e5) \ (W (e5)) \ (R(e5) \ W (e5)) = φ. So, (X, (Z ∩ I) ∪ (J ∩ I)) = ((P,Z) ∼R

(W, I)) ∼E ((R, J) ∼R (W, I)) = {(e2, {h6}), (e5, φ), (e6, {h7, h8}). Since Q and X
are the same mappings, ((P, Z) ∼E (R, J)) ∼R (W, I) = ((P, Z) ∼R (W, I)) ∼E

((R, J) ∼R (W, I)) is satisfied.

4 Conclusion and Future Work

Here in this work, we have illustrated a brief analytical review of operations of
soft sets. We have defined the extended difference of soft sets and also proved
some of its properties. Moreover, we have shown the relationship between extended
difference and the restricted difference and some other operations of soft sets. The
main objective of this paper is to make soft set theory more effective and solid by
enhancing the conceptual feature of operations on soft sets. One can may define
the extended symmetric difference and can also construct a property which shows a
relationship or connects of extended symmetric difference with restricted symmetric
difference.
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