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Abstract 

In this study, the Legendre operational matrix method based on collocation points is introduced to solve high order ordinary differential 

equations with some nonlinear terms arising in physics and mechanics. This technique transforms the nonlinear differential equation 

into a matrix equation with unknown Legendre coefficients via mixed conditions. This solution of this matrix equation yields the 

Legendre coefficients of the solution function. Thus, the approximate solution is obtained in terms of Legendre polynomials. Some test 

problems together with residual error estimation are given to show the usefulness and applicability of the method and the numerical 

results are compared.  
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Fizik ve Mekanikte Ortaya Çıkan Bazı Lineer Olmayan Diferansiyel 

Denklemler için Legendre Matris-Kollokasyon Yaklaşımı 

Özet 

Bu çalışmada, fizik ve mekanikte ortaya çıkan lineer olmayan bazı terimlere sahip yüksek mertebeden adi diferansiyel denklemlerin 

çözümü için, kollokasyon noktalarına dayanan operasyonel Legendere matris metodu takdim edilmiştir. Bu teknik, karışık koşullar 

sayesinde, bilinmeyen Legendre katsayıları ile lineer olmayan bir diferansiyel denklemi bir matris denklemine dönüştürür. Bu matris 

denkleminin çözümü, çözüm fonksiyonunun Legendre katsayılarını verir. Böylece, yaklaşık çözüm Legendre polinomları cinsinden 

elde edilir. Yöntemin faydasını ve uygulanabilirliğini göstermek için, rezidüel hata tahmini ile birlikte bazı test problemleri verilir ve 

nümerik sonuçlar kıyaslanır. 
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1. Introduction 

Orthogonal polynomials are extensively considered in many area of mathematics, sciences and engineering. One of these 

polynomials is the Legendre polynomials which are orthogonal on  1,1  with respect to the weight function ( ) 1w x  . The mentioned 

polynomials play an important role in many branches such as mathematics, statics and other scientific (Kreyszig, 2013; El-Mikkawy et. 

al. 2005; Everitt et. al. 2002; Sezer and Gülsu, 2009; Gülsu et. al. 2009). 

The solutions of nonlinear ordinary differential equations are frequently investigated by many researches (Yüksel et. al. 2011; 

Akyüz Daşcıoğlu and Çerdik Yaslan, 2011; Gürbüz and Sezer 2016). These equations are characterized by the presence of the nonlinear 

terms and have a great importance in explaining many different phenomena. Generally, the nonlinear differential equations have no 

analytical solution. Therefore, we need to numerical methods to obtain approximate solutions. 

In this study, we develop a numerical method based on the matrix relations of Legendre polynomials and their derivatives by means 

of the matrix methods based on collocation points given by Sezer and co-workers (Sezer and Gülsu, 2009; Gülsu et. al. 2009; Yüksel 

et. al., 2011; Kürkçü et. al., 2017) and apply to the m-th order ordinary differential equation with first and second order nonlinear terms 

in the general form (Yüksel et. al., 2011; Akyüz Daşcıoğlu and Çerdik Yaslan, 2011) 

2
( ) ( ) ( )

0 0 0

( ) ( ) ( ) ( ) ( ) ( ); 1 1
pm

k p q

k pq

k p q

F t y t Q t y t y t g t t
  

                                                                                                (1) 

under the mixed conditions 

 ( ) ( ) ( )

0

( 1) (0) (1) ; 0,1,..., 1
m

k k k

kj kj kj i

k

a y b y c y i m


                                                                                                   (2) 

where ( ), ( )k pqF t Q t and ( )g t are analytic functions on interval 1 1t   , kjkjkj cba ,,  and i  are convenient real constants. The 

aim of this study is to get the solution of the problem (1)-(2) as the truncated Legendre series defined by  

 
n 0

( ) ( ); 1 1N n n

N

y t y t a P t t


                                                                                                                                            (3) 

where  ( ), 0,1,...,nP t n N  denotes the Legendre polynomials given in (Kreyszig, 2013; Everitt et. al. 2002). 

and na  Nn 0  are unknown Legendre coefficients  mN  .  

2. Material and Method 

2.1. Matrix Relations associated with Legendre Polynomials and Series 

In this section, we constitute the matrix forms of each term in Eq. (1). Firstly, we can write the approximate solution ( )Ny t  

defined by truncated Legendre series (3) in the matrix form 

  ( ) ( )Ny t y t t P A                                                                                                                                              (4) 

where  0 1( ) ( ) ( ) ( )Nt P t P t P tP and  0 1

T

Na a aA . Using the recurrence formulas  
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  1 12 1 ( ) ( ) ( ); 1n n nn P t P t P t n 
      where 0 ( ) 0P t   and 1 0( ) ( )P t P t   for 0,1, ,n N , we have recurrence relation 

between the matrix ( )tP  and its derivate ( ) ( )P
k t  in the form 

( ) ( ) ( ) ; 0,1,...,k t t k m k
P P Π                                                                                                                   (5) 

   1 1

0 1 0 1 0 ... 0 1

0 0 3 0 3 ... 3 0

0 0 0 5 0 ... 0 5

0 0 0 0 7 ... 7 0

0 0 0 0 0 ... 2 3 0

0 0 0 0 0 ... 0 2 1

0 0 0 0 0 ... 0 0
N N

N

N

  







 
 
 
 
 
 
 
 
 
 
 
 

Π
               

( 1) ( 1)

1 0 ... 0

0 1 ... 0

0 0 ... 1
N N  



 
 
 
 
 
 

0
Π  

From (3) and (5), we obtain the matrix relation as follows: 

 ( ) ( ) ( )( ) ( ) ( ) ; 0,1,...,k k k k

Ny t y t t t k m   P A P Π A                                                                                            (6) 

Using the Legendre explicit form and taking the matrix relation (6) for 0,1,...,n N , the matrix relations in the following are obtained 

(Gülsu et. al., 2009; Yüksel et. al., 2011 ): 

 0 1( ) ( ) ; ( ) ( ) ( ) ... ( ) , ( ) 1 ... N

Nt t x P t P t P t t t t     P X D P X                                                        (7) 

 
2

(0) ( ) ( ) ( )y t t t P P A                         (1) (0)( ) ( ) ( ) ( )y t y t t tP ΠP A                             0 1 ...
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Na A a A a AA  
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2
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  2 2( 1) ( 1)
( ) ( ) ( ) ... ( )

N N
t diag P t P t P t

  
P                                      2 2

2 2 2

( 1) ( 1)
...

N N
diag

  
     

2
Π . 

Here, the transient matrix D  is given in (Sezer and Gülsu, 2010; Gülsu et. al., 2009). Now, we define the collocation points for 

interval  1,1  as  

2
1 ; 0,1,...,it i i N

N
                                                                                                                                                     (8) 

Substituting collocation points (8) into Eq. (1) and the matrix relations (7) yields 

2 2
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  F Y Q Y G                                                                                                                                (9) 
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Putting the collocation points (8) into the matrix relations (6) and (7), we have the system in the following 

 ( ) ( )( ) ( ) ; 0,1,...,k k k

i N i iy t y t t i N  P Π A  or ( )k kY PΠ A                                                                                                   (10) 

Thus, the nonlinear part of Eq. (9) can be written as 
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2
( , ) (0,0) (1,0) (1,1) (2,0) (2,1) (2,2)

00 10 11 20 21 22

0 0 

     
p

p q

pq

p q

Q Y Q Y Q Y Q Y Q Y Q Y Q Y  

Substituting the collocation points (8) into the mentioned matrix relations, then the following matrices are obtained:  

(0,0) *

0,0Y P A ,   
(1,0) *

1,0Y P A ,  
(1,1) *

1,1Y P A , 
(2,0) *

2,0Y P A ,   
(2,1) *

2,1Y P A ,   
(2,2) *

2,2Y P A  

where 

2
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* * * *1 1 1 1 1 1 1 1
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2.2. Legendre Operational Matrix Method  

Substituting the matrix relations (10) and (11) into Eq. (9), we obtain the fundamental matrix equation 

2
*

,

0 0 0

pm
k

k pq p q

k p q  

  F PΠ A Q P A G  or  WA VA G                                                                                                                  (12) 

where 

0
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m

k
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k
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     W F PΠ  and  

 2

2
2*

,,( 1)
0 0
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p

pq p qm n
p q
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  V Q P  

Then, the matrix equation (12) can be written in the augmented form  ; :W V G  or clearly 

 

2

2

2

00 01 0 00 01 00,( 1) 1

10 11 1 10 11 11,( 1) 1

0 1 0 1 ,( 1) 1

: : ( )

: : ( )
; :

: :

: : ( )

N N

N N

N N NN N N NN N

W W W V V V g t

W W W V V V g t

W W W V V V g t

 

 

 

 
 
 

  
 
 
 

W V G                                                                       (13) 

Using the matrix relation (6), the fundamental matrix equation corresponding to the mixed conditions (2) is obtained as 

 
1

0

( 1) (0) (1) ; 0,1,...,
m
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     P P P Π A  or       
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UA O A U;O :                                                  (14) 

(Here, zero matrix indicated with 0*  is a 21 1  ( ) ( )N N matrix) or more clearly 
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To calculate Legendre coefficients ( 0,1,..., )na n N related to the approximate solution (3) of the problem (1)-(2), by replacing the 

m  row matrices (14) by the last m  rows (or any m  rows) of the augmented matrix (16), we obtain the resulting matrix as follows; 

2

2

2

00 01 0 00 01 00,( 1) 1

10 11 1 10 11 11,( 1) 1

,0 ,1 , ,0 ,1 ,( 1) 1

00 0

10 1

1,0 1,1

: : ( )

: : ( )

: :

: : ( )

: 0 0 0 :

: 0 0 0 :

: :

; :

N N

N N

N m N m N m N N m N m N mN m N

m m

W W W V V V g t

W W W V V V g t

W W W V V V g t

U

U

U U





 

 

       

 

  W V G

1, 1: 0 0 0 :m N mU  

 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 (16) 

From this nonlinear algebraic system, that is, from the matrix equation  A  W V A G , the unknown Legendre coefficients 

 ( 0,1,..., )na n N  are determined. Thus, the truncated Legendre series solution (3) is obtained from Eqs. (4) and (7). 

3. Accuracy of Solutions and Residual Error Estimation   

We consider the residual error estimation to check accuracy of the obtained solutions. Since the truncated Legendre series (1) is an 

approximate solution of Eq. (1), when the solution 𝑦𝑁(𝑥) and its derivatives are substituted in Eq. (1), then resulting equation must be 

satisfied approximately as follows:  

             
2

( ) ( ) ( )

0 0 0

0
pm

k p q

N l k l l pq l l l l

k p q

R t F t y t Q t y t y t g t
  

                                                                                   (17) 

for   , 0,1,2,lt a b l   or   10 lk

N lR t


  where lk  is any positive numbers. Predetermining max10 10lk k  , then the 

truncation limit N  is increased until the difference  N lR t  at each of the points becomes smaller than predetermined 10 k
. Therefore, 

if   0N lR t   when N  is sufficiently large enough, then the error decreases (Everitt et.al. 2002; Sezer and Gülsu, 2010). 

 The accuracy of the solution can be checked and the error can be estimated via the residual function  NR t (Balcı and Sezer, 

2016; Oğuz and Sezer, 2015, Kürkçü et. al., 2016, Gürbüz and Sezer, 2017) and the mean value of the function  NR t  on the interval 

 1,1 . Using the inequality 

   
1 1

1 1

N NR t dt R t dt
 

                                                                                                                                                                   (18) 

and the mean value theorem, the upper bound of the mean error 
nR  is obtained as 

   
1

1

1

2
N N NR c R t dt R



                                                                                                                                                             (19) 

4. Applications  

Example 4.1. Consider the nonlinear differential equation 

22 2 4 ; (0) 3, (0) 2ty y y y y y e y y             

We assume that the problem has a Legendre polynomial solution in the form for 2N   
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2

2

0

( ) ( ); 1 1n n

n

y t a P t t


     

Performing the necessary procedures and considering the collocation points    2

0 1 2

3 1
( ) 1, ( ) , ( )

2 2
P t P t t P t t    , then, we find 

the fundamental matrix equation in the following: 

 0 2 * *

0 1 2 00 0,0 21 2,1( )    Π Π ΠF P F P F P A Q P Q P A G  

where 

0

0

1 1 1

1 0 1 2

0 0 1

 
 

 
 
  

Π /F P
, 

1

0 2 6

0 2 0

0 2 6



 
 


 
   

ΠF P , 2

2

0 0 3

0 0 3

0 0 3



 
 
 
  

ΠF P , 

1( 1) 2 4

(0) 6

(1) 2 4

g e

g

g e

   
  

    
      

G  

* *

00 0,0 21 2,1

1 1 1 1 1 1 2 2 2

1 0 1/ 2 0 0 0 1/ 2 3 1/ 4

1 1 1 1 1 1 1 2 8

    
 

   
 
   

Q P Q P  

11 3 10 : 1 1 1 1 1 1 2 2 2 : 2 4

1 0 1/ 2 : 0 0 0 0 0 0 0 0 0 : 3

0 1 0 : 0 0 0 0 0 0 0 0 0 : 2

; :

      
     
 
 



e

W V G  

Then, the solution of the problem is obtained as the first three term in Maclaurin expansion of the exact solution 1 2 ty e  .  

Table 1. Numerical results for Example 4.1.  

 

 

 

 

 

 

      it  
Exact 

Solution 
( ) 2y t for N                 

Absolute 

Errors         

      0.0 3. 0 3. 0 0 

      0.2 3. 4428 3. 44 0. 0028 

      0.4 3. 9836 3. 96 0. 2364 

      0.6 4. 6442 4. 56 0. 8423 

      0.8 5. 4510 5. 24 0. 2110 

      1.0 6. 4365 6. 0 0. 4365 
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Figure 1. The comparison of numerical and exact solutions of Example 4.1 for 2N  . 

Example 4.2. [9,13] Consider Bratu-type problem 

   
2 0; 0 1

y x
y x e x      

with  0 0y   and  0 0y  . The exact solution of this problem is    2ln cosy x x  . Expanding 
 y x

e , we can write this 

equation [9] as  

     22 2 0y x y x y x     . 

Using Legendre matrix-collocation method with truncation limit 4N   and 5 , we solve this problem. The following solutions are 

obtained as 

  17 2 3 4

4 1.04 10 0.965317 0.0160093 0.196559y x x x x        

  17 2 3 4 5

5 2.08 10 0.971444 0.00924656 0.146425 0.0314368y x x x x x       

Table 2. Comparison of the absolute errors for different N  of Example 4.2. 

ix  N=4 N=5 
ix  N=4 N=5 

0.1 3.60e-04 2.78e-04 0.6 1.44e-02 1.08e-02 

0.2 1.47e-03 1.09e-03 0.7 2.15e-02 1.66e-02 

0.3 3.34e-03 2.44e-03 0.8 3.27e-02 2.60e-02 

0.4 6.00e-03 4.36e-03 0.9 5.17e-02 4.26e-02 

0.5 9.56e-03 7.02e-03 - - - 

 

Figure 2. Comparison of the Legendre polynomial solution  
5

y x  and exact solution for Example 4.2. 
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As seen from Fig. 2 and Table 2, the Legendre polynomial solutions  4y x  and  5y x  coincide with the exact solution. Also, the 

absolute error decreases as N  is increased. The upper bounds of the mean errors 4R  and 5R  are obtained as 2.07 01e  and 

1.82 01e , respectively. It is clearly seen that the mean errors are consistent with results in tables and figures. 

 

5. Conclusions and Recommendations 

In this study, we propose a matrix-collocation method based on Legendre polynomials to obtain the approximate solutions of 

nonlinear ordinary differential equations with quadratic terms. Besides, the error analysis is introduced to indicate the accuracy of the 

method. The present method and its error analysis are applied on some examples. Comparison of the obtained results with exact solutions 

displays that the present method is impressive and suitable. Also, the method can be extended on different type of mathematical models 

together with some modifications. 
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