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On the Geometric Series of Linear Positive Operators

RADU PĂLTĂNEA

ABSTRACT. We study the existence and the norm of operators obtained as power series of linear positive operators
with particularization to Bernstein operators. We also obtain a Voronovskaja-kind theorem.
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1. INTRODUCTION.

Let L : C[0, 1] → C[0, 1] be a positive linear operator. Denote by Lk, k ∈ N0 := N ∪ {0}, the
iterates of L, defined by L0 = I , where I is the identical operator and Lk = L ◦ . . . ◦L, where L
appears k times.
By geometric series of operator L we understand the series

(1.1) GL =

∞∑
k=0

Lk.

The geometric series of operators were studied in [11], [1], [2], [3], [12]. The existence of these
operators needs some restrictions of the domain of definition. It is necessary to consider some
special subspaces of functions. Let ψ : [0, 1]→ R, ψ(x) = x(1−x). The more simple is the space

ψC[0, 1] = {f ∈ C[0, 1] : ∃g ∈ C[0, 1], f = ψg},
which is a Banach space if it is endowed with the norm

(1.2) ‖f‖ψ := sup
x∈(0,1)

|f(x)|
ψ(x)

,

where f ∈ ψC[0, 1].
Denote by Bn the Bernstein operators. In [11] there is proved that operators An : ψC[0, 1] →
ψC[0, 1], given by

An =
1

n

∞∑
k=0

(Bn)k

are well defined and the following result is true:
Theorem A For any g ∈ C[0, 1] we have

(1.3) lim
n→∞

‖An(ψg)− 2F (g)‖ψ = 0,

where

(1.4) F (g)(x) = (1− x)

∫ x

0

tg(t)dt+ x

∫ 1

x

(1− t)g(t)dt, x ∈ [0, 1].
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Note that (F (g)(x))′′ = −g(x), for x ∈ [0, 1]. Because the convergence in norm ‖ · ‖ψ implies the
convergence in sup-norm ‖ · ‖, (‖f‖ = maxx∈[0,1] |f(x)|), we have
Corollary A For any g ∈ C[0, 1] we have

(1.5) lim
n→∞

‖An(ψg)− 2F (g)‖ = 0.

In [3], the geometric series are consider for a large class of operators, defined on an more ex-
tended space Cψ[0, 1] given by

Cψ[0, 1] := {f : [0, 1]→ R | ∃g ∈ B[0, 1] ∩ C(0, 1) : f = ψg},
or equivalently by:

Cψ[0, 1] := {f ∈ C[0, 1] | ∃M > 0 : |f(x)| ≤Mψ(x), x ∈ [0, 1]}.
Space Cψ[0, 1] is also a Banach space with regard the norm ‖ · ‖ψ , defined in (1.2), but is not
a Banach space with respect the sup-norm, ‖ · ‖. Theorem A is generalized in this extended
context and also an inverse Voronovskaja theorem is obtained.
A more general space is

C0[0, 1] = {f ∈ C[0, 1], f(0) = 0 = f(1)},
endowed by the usual sup-norm ‖ · ‖. Clearly, ΨC[0, 1] ⊂ Cψ[0, 1] ⊂ C0[0, 1], but the topologies
are different.
In paper [12] the geometric series are considered for multidimensional Bernstein operators for
a simplex, on the space of continuous functions which vanish at the vertexes. In the unidi-
mensional case we obtain the space C0[0, 1]. The definition of geometric series of Bernstein
operators is possible because the norms of operators Bn on space C0[0, 1] are strictly less than
1.
The first aim of the present paper is to study the norm of the operators defined by geometric
series and in the particular case the norm of the series of powers of Bernstein operators. This
allow us to extend Theorem A on space C0[0, 1]. In the final section, we derive a Voronovskaja
type theorem for the geometric series of Bernstein operators.
For a general theory on Bernstein operators see the papers [9], [6], [5]. For specific problems
regarding Voronovskaja theorem we indicate the papers [4], [7]. For general methods of esti-
mating the degree of approximation we mention [10] and [8].

2. PRELIMINARIES

Lemma 2.1. We have:
i) C0[0, 1] is a Banach space with regard the norm ‖ · ‖.

ii) With regard to the norm ‖ · ‖ we have:

ψC[0, 1] = C0[0, 1].

Proof. i) It is immediate.
ii) If f ∈ C0[0, 1], then Bn(f) ∈ ψC[0, 1], for n ∈ N, where Bn are the Bernstein operators. Since
limn→∞ ‖f−Bn(f)‖ = 0, it follows f ∈ ψC[0, 1]. The inverse inclusion follows since, obviously
ψC[0, 1] ⊂ C0[0, 1] and C0[0, 1] is closed. �

Lemma 2.2. If L : C[0, 1]→ C[0, 1] satisfies condition L(ej) = ej , j = 0, 1, then

L(C0[0, 1]) ⊂ C0[0, 1].
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Proof. It is well known that an operator L : C[0, 1]→ C[0, 1] which satisfies the given condition
has the property L(f)(0) = f(0) and L(f)(1) = f(1), for any f ∈ C[0, 1]. �

Definition 2.1. Denote by Λ0[0, 1], the class of positive linear operators L : C[0, 1] → C[0, 1] which
satisfy the following conditions:

a) L(ej) = ej , for j = 0, 1;
b) ‖L‖L(C0[0,1],C0[0,1]) < 1.

Lemma 2.3. For any L ∈ Λ0[0, 1] we have:
i) operator GL : C0[0, 1]→ C0[0, 1], given in (1.1) is well defined if we consider the convergence

with regard to the sup-norm ‖ · ‖;
ii) operator GL is positive and linear;

iii) (I − L) ◦GL = I , in the Banach space (C0[0, 1], ‖ · ‖);
iv) GL ◦ (I − L) = I , in the Banach space (C0[0, 1], ‖ · ‖).

Proof. i) Because the series
∑∞
k=0 ‖Lk‖L(C0[0,1],C0[0,1]) is convergent it follows that for each f ∈

C0[0, 1], series
∑∞
k=0 L

k(f) is convergent in space (C0[0, 1], ‖ · ‖).
Point ii) is obvious. The proof of points iii) and iv) is standard. �

3. THE NORM OF OPERATORS GL

In this section we give estimates of the norm ‖GL‖L(C0[0,1],C0[0,1]) for operators L ∈ Λ0[0, 1].
In the next lemma, for x ∈ (0, 1) we make the following conventions. If t = 1, then∫ t
x

t−u
u(1−u) du =

∫ 1

x
du
u and if t = 0, then

∫ t
x

t−u
u(1−u) du =

∫ x
0

du
1−u .

Lemma 3.4. For all x ∈ (0, 1) and t ∈ [0, 1] we have

(3.6) 0 ≤
∫ t

x

t− u
u(1− u)

du ≤ (t− x)2

x(1− x)
.

Proof. The left inequality is clear. For the second one first we consider that 0 < x ≤ t ≤ 1. For a
fixed t ∈ [0, 1] we have

d

du

(
t− u

u(1− u)

)
=
−u2 + 2ut− t
u2(1− u)2

≤ − (t− u)2

u2(1− u)2
≤ 0.

From this it follows relation (3.6). The case 0 ≤ t ≤ x < 1 can be reduced to the case above.
Indeed if we made the chang of variable u1 = 1− u and denote x1 = 1− x, t1 = 1− t then we
obtain ∫ t

x

t− u
u(1− u)

du =

∫ t1

x1

t1 − u1
u1(1− u1)

du1 ≤
(t1 − x1)2

x1(1− x1)
=

(t− x)2

x(1− x)
.

�

Consider function Φ ∈ C0[0, 1], defined by

(3.7) Φ(x) = x lnx+ (1− x) ln(1− x), x ∈ (0, 1), Φ(0) = 0, Φ(1) = 0.

Theorem 3.1. If L ∈ Λ0[0, 1], then

(3.8) ‖GL‖L(C0[0,1],C0[0,1]) ≥
‖Φ‖
αL

=
ln 2

αL
,

where

(3.9) αL = sup
x∈(0,1)

L((e1 − x)2)(x)

ψ(x)
.
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Proof. For x ∈ (0, 1) and t ∈ [0, 1], the Taylor formula yields

Φ(t) = Φ(x) + Φ′(x)(t− x) +

∫ t

x

(t− u)Φ′′(u)du.

Since Φ′′(u) = 1
u(1−u) , u ∈ (0, 1), by taking into account Lemma 3.4 we obtain

Φ(t) ≤ Φ(x) + Φ′(x)(t− x) +
(t− x)2

x(1− x)
.

Applying operator L we obtain
L(Φ)(x) ≤ Φ(x) + αL.

We use the immediate equality L((e1−x)2)(x) = L(e2)(x)− e2(x) and the equalities L(Φ)(0)−
Φ(0) = 0 and L(Φ)(1) − Φ(1) = 0. Since function Φ is convex and L preserves linear func-
tions we have L(Φ) − Φ ≥ 0. From these we deduce that 1

αL
(L(Φ) − Φ) ∈ C0[0, 1] and∥∥(αL)−1(L(Φ)− Φ)

∥∥ ≤ 1. Therefore

‖GL‖L(C0[0,1],C0[0,1]) ≥ ‖GL((αL)−1(L(Φ)− Φ))‖.
But using Lemma 2.3 - iv) we obtain

GL(L(Φ)− Φ) = −Φ.

Consequently we obtain relation (3.8). �

4. CONVERGENCE OF GEOMETRIC SERIES OF BERNSTEIN OPERATORS IN THE SPACE C0[0, 1]

Let Bn, n ∈ N be the Bernstein operators. It is clear that Bn ∈ Λ0[0, 1], for any n ∈ N, see [13].
From Lemma 2.3, GBn

is well defined on space C0[0, 1].

Theorem 4.2. For n ∈ N, n ≥ 2 we have

(4.10) n ln 2 ≤ ‖GBn
‖L(C0[0,1],C0[0,1]) ≤ 1 + 3n ln 2.

Proof. For simplicity let denote Gn = GBn
. The left inequality follows from Theorem 3.1, by

taking into account that αBn
= 1

n , for n ∈ N.
We pass to the right inequality. Let x ∈ (0, 1) we have

Φ′′(x) =
1

x(1− x)
, Φ(3)(x) =

2x− 1

x2(1− x)2
, Φ(4)(x) =

2(1− 3Ψ(x))

Ψ3(x)
.

Since Φ(4) ≥ 0, using the Taylor formula for x ∈ (0, 1), t ∈ [0, 1]:

Φ(t) =

3∑
k=0

Φ(k)(x)(t− x)k

k!
+

∫ t

x

(t− u)3

3!
Φ(4)(u)du

≥
3∑
k=0

Φ(k)(x)(t− x)k

k!

We have Bn((e1 − xe0)3)(x) = 1
n2 (1− 2x)x(1− x). Applying operator Bn we obtain:

Bn(Φ)(x) ≥ Φ(x) +
1

2n
− 1

6n2
· (1− 2x)2

x(1− x)
.

Take here x = k
n , 1 ≤ k ≤ n− 1. We obtain, for n ≥ 2:

max
1≤k≤n−1

1

6n2
·
(
1− 2 kn

)2
k
n

(
1− k

n

) =
1

6n2
·
(
1− 2

n

)2
1
n

(
1− 1

n

) ≤ 1

6n
.
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Hence

(4.11) Bn(Φ)
(k
n

)
− Φ

(k
n

)
≥ 1

3n
, 1 ≤ k ≤ n− 1.

Since Gn = I +Gn ◦Bn we obtain

(4.12) ‖Gn‖L(C0[0,1],C0[0,1]) ≤ 1 + ‖Gn ◦Bn‖L(C0[0,1],C0[0,1]).

Fix f0 ∈ C0[0, 1] arbitrary such that, f0 ≥ 0 and f0
(
k
n

)
= 1, 1 ≤ k ≤ n− 1. It is easy to see that

(4.13) ‖Gn ◦Bn‖L(C0[0,1],C0[0,1]) = ‖Gn(Bn(f0))‖.
From relation (4.11) and since f0(0) = 0 = f0(1) and (Bn(Φ) − Φ)(0) = 0 = (Bn(Φ) − Φ)(1) it
follows that

f0

(k
n

)
≤ 3n

[
Bn(Φ)

(k
n

)
− Φ

(k
n

)]
, 0 ≤ k ≤ n

and from this we obtain
Bn(f0) ≤ 3nBn(Bn(Φ)− Φ).

Applying operator Gn to this inequality we arrive to

Gn(Bn(f0)) ≤ 3nGn ◦ (Bn − I)(Bn(Φ)).

By tacking into account Lemma 2.3 - iv) we get

Gn(Bn(f0)) ≤ −3nBn(Φ).

Now, since f0 ≥ 0 it follows Gn(Bn(f0)) ≥ 0 and from the inequality above we obtain

(4.14) ‖Gn(Bn(f0))‖ ≤ 3n‖Bn(Φ)‖
From relations (4.12), (4.13), (4.14) and inequality ‖Bn(Φ)‖ ≤ ‖Φ‖we deduce relation (4.15). �

Lemma 4.5. Let F be the operator defined in relation (1.4). We have:
i) F

(
ψ−1

)
= −Φ.

ii) If f ∈ C[0, 1], then F (ψ−1f) is well defined and F (ψ−1f) ∈ C0[0, 1].

Proof. i) It follows by a simple direct calculus.
ii) Let x ∈ (0, 1). Then 0 ≤ F (ψ−1|f |)(x) ≤ ‖f‖F (ψ−1)(x) = −‖f‖Φ(x) <∞. Since F (ψ−1|f |) is
well defined it follows that F (ψ−1f) is well defined. Also, from the inequality above it follows
that F (ψ−1f) ∈ C0[0, 1]. �

According to notations used in the previous sections we have An = 1
nGBn

, n ∈ N.

Theorem 4.3. We have

(4.15) lim
n→∞

‖n−1GBn(f)− 2F (ψ−1f)‖ = 0, for all f ∈ C0[0, 1].

Proof. Let f ∈ C0[0, 1]. Let ε > 0 be arbitrarily chosen. Since the space ψC[0, 1] is dense in
C0[0, 1] (Lemma 2.1), we can find g ∈ ψC[0, 1] such that ‖f − g‖ < ε. From Corollary A there is
nε ∈ N such that ‖n−1GBn

(g)− 2F (ψ−1g))‖ < ε, for n ≥ nε. Then, for such index n we obtain

‖n−1GBn(f)− 2F (ψ−1f)‖
≤ ‖n−1GBn

(f − g)‖+ ‖n−1GBn
(g)− 2F (ψ−1g)‖+ ‖2F (ψ−1(f − g))‖

≤ n−1‖GBn‖L(C0[0,1],C0[0,1])‖f − g‖+ ε+ ‖f − g‖ · ‖2F (ψ−1)‖
≤ (n−1 + 3 ln 2)ε+ ε+ 2 ln 2 · ε.

Since ε > 0 was arbitrary, the proof is finished. �
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5. VORONOVSKAYA TYPE RESULT

Recall that An = 1
n

∑∞
k=0(Bn)k, where Bn is the Bernstein operator of order n.

Theorem 5.4. If f ∈ C4[0, 1], then

(5.16) lim
n→∞

n(An(ψf)(x)− F (f)(x)) =
1

2
ψ(x)f(x)− 1

3
F (f)(x),

uniformly with regard to x ∈ [0, 1].

Proof. Fix f ∈ C4[0, 1] and denote F (t) = F (f)(t), t ∈ [0, 1]. Because F ′′(t) = −f(t), we have
from Taylor formula, for s, t ∈ [0, 1]:

F (s) = F (t) + F ′(t)(s− t)− 1

2
f(t)(s− t)2 − 1

6
f ′(t)(s− t)3

− 1

24
f ′′(t)(s− t)4 − 1

120
f ′′′(t)(s− t)5 −R5(t, s),(5.17)

where

R5(t, s) =
1

5!

∫ s

t

(s− u)5f IV (u)du.

Denote mk(t) = Bn((e1 − t)k)(t), for k = 0, 1, 2, . . ., t ∈ [0, 1]. In [9] the following relation is
given:

ms+1(t) =
ψ(t)

n
[m′s(t) + sms−1(t)] , s = 1, 2, . . . , t ∈ [0, 1].

we obtain

m2(t) =
1

n
ψ(t)

m3(t) =
1

n2
ψ(t)ψ′(t),

m4(t) =
3

n2
ψ2(t) +

1

n3
ψ(t)(1− 6ψ(t)),

m5(t) =
10

n3
ψ2(t)ψ′(t) +

1

n4
(ψ(t)ψ′(t)− 12ψ2(t)ψ′(t)),

m6(t) =
15

n3
ψ3(t) +

1

n4
(24ψ2(t)− 124ψ3(t)) +

1

n5
(ψ(t)− 28ψ2(t) + 120ψ3(t)).

Applying operator Bn from relation (5.17) we obtain

(I −Bn)(F )(t) =
1

2
f(t)m2(t) +

1

6
f ′(t)m3(t) +

1

24
f ′′(t)m4(t) +

1

120
f ′′′(t)m5(t)

+Bn(R5(t, ·))(t).

Note that F ∈ ψC[0, 1]. Also mk ∈ ψC[0, 1], k = 2, 3, 4, 5. From the above equality it follows
that also Bn(R5(t, ·))(t) ∈ ψC[0, 1]. So that we can apply operator GBn

= nAn to the tems of
the both side of above equality and from Lemma 2.3 - iv), we obtain

F (x) =
1

2
An(fψ)(x) +

n

6
An(f ′m3)(x) +

n

24
An(f ′′m4)(x) +

n

120
An(f ′′′m5)(x)

+nAn(Bn(R5(t, ·))(t))(x),
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Finally we obtain

n(An(fψ)(x)− 2F (x)) = −1

3
n2An(f ′m3)(x)− 1

12
n2An(f ′′m4)(x)− n2

60
An(f ′′′m5)(x)

−2n2An(Bn(R5(t, ·))(t))(x),

Using Corollary A we obtain

−1

3
n2An(f ′m3)(x) = −1

3
An(f ′ψψ′)(x)

= −2

3
F (f ′ψ′)(x) + o(1);

− 1

12
n2An(f ′′m4)(x) = −1

4
An(f ′′ψ2)(x)− 1

12n
An(f ′′ψ(1− 6ψ))(x)

= −1

4
(2F (f ′′ψ)(x) + o(1))− 1

12n
(2F (f ′′(1− 6ψ))(x) + o(1))

= −1

2
F (f ′′ψ)(x) + o(1);

−n
2

60
An(f ′′′m5)(x) = − 1

6n
An(f ′′′ψ2ψ′)(x)− 1

60n2
An(f ′′′(ψψ′ − 12ψ2ψ′))(x)

= − 1

6n
(2F (f ′′′ψψ′)(x) + o(1))− 1

60n2
(2F (f ′′′(ψ′ − 12ψψ′)) + o(1))

= o(1).

In all these relations o(1) is uniform with regard to x ∈ [0, 1]. Also we have

|R5(t, s)| ≤ ‖f
IV ‖
5!

∫ s

t

(s− u)5du =
(s− t)6

6!
‖f IV ‖.

Therefore

Bn(|R5(t, ·)|)(t) ≤ 1

6!
m6(t)‖f IV ‖.

It follows

| − 2n2An(Bn(R5(t, ·))(t))(x)| ≤ 2n2

6!
‖f IV ‖An(m6)(x)

≤ 2‖f IV ‖
6!

An

(
15

n
ψ3 +

1

n2
(24ψ2 − 124ψ3) +

1

n3
(ψ − 28ψ2 + 120ψ3

)
(x)

=
2‖f IV ‖

6!

[
2F

(
15

n
ψ2 +

1

n2
(24ψ − 124ψ2) +

1

n3
(e0 − 28ψ + 120ψ2

)
(x) + o(1)

]
= o(1).

From the relation above we coclude that

(5.18) lim
n→∞

n(An(fψ)(x)− 2F (x)) = −2

3
F (f ′ψ′)(x)− 1

2
F (f ′′ψ)(x).

Next integrating by parts we obtain

−2

3
F (f ′ψ′)(x) = −2

3

[
(1− x)

∫ x

0

t(1− 2t)f ′(t)dt+ x

∫ 1

x

(1− t)(1− 2t)f ′(t)dt

]
=

2

3
(1− x)

∫ x

0

(1− 4t)f(t)dt+
2

3
x

∫ 1

x

(4t− 3)f(t)dt.
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−1

2
F (f ′′ψ)(x) = −1

2

[
(1− x)

∫ x

0

t2(1− t)f ′′(t)dt+ x

∫ 1

x

t(1− t)2f ′′(t)dt
]

=
1

2
(1− x)

∫ x

0

(2t− 3t2)f ′(t)dt+
1

2
x

∫ 1

x

(1− 4t+ 3t2)f ′(t)dt

=
1

2
f(x)ψ(x) + (1− x)

∫ x

0

(3t− 1)f(t)dt+ x

∫ 1

x

(2− 3t)f(t)dt.

Hence

−2

3
F (f ′ψ′)(x)− 1

2
F (f ′′ψ)(x) =

1

2
ψ(x)f(x)− 1

3

[
(1− x)

∫ x

0

(1− t)f(t)dt+ x

∫ 1

x

tf(t)dt

]
.

�
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