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Abstract

In this study, the Gaussian (s, t)-Pell and Pell-Lucas sequences are defined. Moreover, by using these sequences,
the Gaussian (s, t)-Pell and Pell-Lucas matrix sequences are defined. Furthermore, generating functions, Binet’s
formulas and some summation formulas of these sequences are given. Finally, some relationships between
Gaussian (s, t)-Pell and Pell-Lucas matrix sequences are obtained.
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Gauss (s, t)-Pell ve Pell-Lucas Dizileri ve Matris Gosterimleri

Oz

Bu ¢alismada, Gauss (s, t)-Pell ve Pell-Lucas dizileri tanimlanmigtir. Dahasi, bu dizileri kullanarak Gauss (s, t)-
Pell ve Pell-Lucas matris dizileri tanimlanmistir. Ayrica, bu dizilerin iireteg fonksiyonlari, Binet formiilleri ve bazi
toplam formiilleri verilmistir. Son olarak, Gauss (s, t)-Pell ve Pell-Lucas matris dizileri arasinda bazi iligkiler elde
edilmistir.

Anahtar Kelimeler: (s, t)-Pell dizisi, Gauss Pell dizisi, Gauss (s, t)-Pell dizisi, Gauss (s, t)-Pell matris dizisi.

1. Introduction

In recent years, we have seen so many studies on the different number sequences such as Fibonacci,
Lucas, Pell, Pell-Lucas, modified Pell sequences. We refer the reader to [1,6,9,14,16,19,20]. For n > 2,
the well-known Fibonacci {F,}, Lucas {L,,}, Pell {B,}, Pell-Lucas {Q,,} and modified Pell {q,,} sequences
are defined as F,, = F_1 + F_p, Ly = Lpy_q + Lyy_3, B, = 2P_1 + Pp_5, Qn = 2Qp-1 + @, and
Qn = 2Qn_1 + quyWhere Fy, =0,F, =1,Ly=2,L; =1,P,=0,P;, =1,Qy=2,Q, =2and qy =
1, g; = 1, respectively.

In [4,5,8], two-parameters generalizations of the Fibonacci and Pell sequences are given. In
[4,5], Civciv and Tirkmen introduced (s, t)-Fibonacci {F, (s, t)}n=o and (s,t)-Lucas {L, (s, t)}n=o
sequences by using Fibonacci and Lucas sequences. On the other hand, the matrix sequences that
concern this special number sequences have taken so much interest [4,5,8]. In [8], Giile¢ and Taskara
introduced (s, t)-Pell {MB, (s, t)},en and (s, t)-Pell-Lucas {MQ,,(s, t)},,en Matrix sequences by using
(s,t)-Pell and (s, t)-Pell-Lucas sequences. They showed some properties of these matrix sequences
using essentialy a matrix approach in [4,5,8].

Moreover, many authors studied on Gaussian Fibonacci, Lucas, Pell, Pell-Lucas and modified
Pell sequences. We refer the reader to [2,3,7,10,12,13,15,18,21]. Halict and Oz [10] introduced the
Gaussian Pell and Gaussian Pell-Lucas numbers respectively by
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GPy=i, GPy=1; GP,=2GPy_1+GP,_,,
GQo=2—2i, GQ; =2+2i; GQ,=2GQp_1+GQp_y,.

The authors also studied Gaussian Pell polynomials and their some properties in [11]. In
addition, Yagmur and Karaaslan [21] defined the Gaussian modified Pell numbers by

Ggo=1—-1, Gg1 =1+ Gqy=26Gqp-1 +G6qn_.
Also, they studied their properties in the same paper. In addition, Catarino and Campos [3] studied the
Gaussian modified Pell numbers. Moreover, in [17], Pektas gave the definition of (s, t)-Gaussian
Fibonacci and (s, t)-Gaussian-Lucas numbers and then presented their matrix representatios.

In this study, we firstly define Gaussian (s, t)-Pell and Pell-Lucas sequences. Then, by using
these sequences, we also define Gaussian (s, t)-Pell and Pell-Lucas matrix sequences. In the last of the
study, we investigate the relationships between Gaussian (s, t)-Pell and Pell-Lucas matrix sequences.
2. The Gaussian (s, t)-Pell and Pell-Lucas Sequences
In this section, we first give the definitions of the Gaussian (s, ¢)-Pell and Pell-Lucas sequences, and
then we obtain Binet’s formulas, generating functions and sum formulas for these sequences.

Firstly, we give the fundamental definitions and properties for these sequences.

Definition 2.1. Let s and ¢ be any real numbers satisfying that s > 0, t # 0 and s? + t > 0. By the aid
of the reference [10], let us define the Gaussian (s,t)-Pell sequence {GP,(s,t)} ey 1S defined
recursively by

GP,(s,t) = 25GP,_1(s,t) + tGP,_,(s, 1), nz=2,
with initial values GP,(s,t) =i and GP,(s,t) = 1.

One can see that
GP,(s,t) = B,(s,t) + itP,_1(s,t)

where P, (s, t) is the nth (s, t)-Pell number.

Particular case of Gaussian (s, t)-Pell sequence is:
o Ifs= %and t = 1, the classical Gaussian Fibonacci sequence is obtained in [2, 15].
e Ifs=1andt = 1, the classical Gaussian Pell sequence is obtained in [10].

Definition 2.2. Let s and t be any real numbers satisfying that s > 0, t = 0 and s2 + t > 0. By the aid
of the reference [10], let us define the Gaussian (s, t)-Pell-Lucas sequence {GQ,,(s, t)} ey is defined
recursively by

GQ,(s,t) = 25GQ,,_1(s,t) + tGQ,_»(s,1), n=2,
with initial values GQy (s, t) = 2 — 2is and GQ4(s,t) = 2s + 2it.

Also, it can be seen that

GQn(S, t) = Qn(SJ t) + ith—l(Sr t)
where Q,,(s, t) is the nth (s, t)-Pell-Lucas number.

Particular case of Gaussian (s, t)-Pell-Lucas sequence is:
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o Ifs= %and t = 1, the classical Gaussian Lucas sequence is obtained in [15].
e Ifs=1andt =1, the classical Gaussian Pell-Lucas sequence is obtained in [10].

In this paper, we only present the proofs of the results given for the Gaussian (s, t)-Pell
sequence, because those for the Gaussian (s, t)-Pell-Lucas sequence are similar.

Now, we give the generating functions for these sequences by the following theorem.
Theorem 2.1. The generating functions for the Gaussian (s, t)-Pell and Pell-Lucas sequences are

F) = J;ti(l — 25%)

2sx — tx2’

(2 — 25x) + i(4s%x + 2tx — 25)

h(x) = 1 — 2sx — tx2

respectively.

Proof. Let f(x) be the generating function of the Gaussian (s, t)-Pell sequence {GP,(s, t)}. Then, we
can write

flx) = Z GP;(s,t)x' = GPy(s,t) + GPL(s,t)x + GPy(s,t)x? + -+ + GP, (s, t)x™ + ---.
i=0

Also, we can write by the recursive relations
F)(1 — 2sx — tx?) = GPy(s,t) + [GPy(s,t) — 2sGPy(s, t)]x.

Thus, we obtain
x+i(1—2sx)
f@) = 1 — 2sx — tx?2
which is desired. =

It must be noted that for s = t = 1, these functions generalise the formulas in the reference [10]. That
is

Flo) = x1+ i(1-2x)

—2x —x2’

(2-2x)+i(6x —2)
1—2x—x2

g(x) =
respectively.

Theorem 2.2. Leta = s + Vs2 + t and B = s — Vs2 + t be the roots of the equation x? — 2sx — t =
0. The Binet’s formulas for nth Gaussian (s, t)-Pell and Pell-Lucas number are

GPn(s,t)=aZ:§n+iaﬁ;:§an n=0

GQu(s,t) =@+ ™) —i(af™+Ba™) n=0,

and

respectively.
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Proof. We know that the general solution for the recurrence relation is given by
GP,(s,t) =ca™ +dp™

for some coefficients ¢ and d.
Using the initial values GPy(s,t) = i and GP,(s,t) =1,

_1- l(S—\/SZ+) d= —1+i(s+\/sz+t)
/st 2Vs2+t

can be written.
Hence, the Binet’s formula for GP, (s, t) is obtained as

a’ =" ap" = Ba”
a

GP,(s,t) = =5 i prpy

So, the proof is completed. =

Theorem 2.3. For 2s + t # 1, the sums of the Gaussian (s, t)-Pell and -Pell-Lucas sequences are given
as

0 Z GPi(5,6) = 5 (6P (5, ) + 6Py (5,0) — 1 = it],

] [GQni1(s, ) +tGQ,(s,t) — 2(s + t) + 2it(s — 1)].

(i) ) 6.0 =3
i=1

Proof. By the definition of Gaussian (s, t)-Pell sequence recurrence relation, we have

1 t
GPi_l(S, t) = s GPL'(S, t) 3 Gpi_z(S, t).
From this equation

1 t
GPi(s,t) = Z_SGPZ(S't) _Z_SGPO(S' t),
GP. t) = ! GP. t t GP. t
Z(S' )_Z_S 3(5, )_2_5 1(5: );

1 t
GP3(s,t) = Z_SGP4(S' t) — Z_SGPZ(S' t),

1
GP,(s,t) = —GPn+1(s t) ——GPn 1(s, 1)

can be written.
Then, we have

n+1

Zap(s £ =— ch(s £ - SZGPi(s,t).

After necessary calculations we get
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n

1 .
Zl GPL'(S, t) = m [GPn+1(S' t) + tGPn(S, t) -1- lt].
i=

So, the proof is completed. =

Theorem 2.4. Let X be odd indexed Gaussian (s, t)-Pell numbers and Y be even indexed Gaussian
(s, t)-Pell numbers. Then the following equalities hold:

x2S oo = 4 t)[GPZnH(:StZ)_—(ll]j tz)szt[GPZn(s, 0-il
i=1

n
GPypiz(s,t) — t2GPy,(s,t) — 2s +it(t — 1)
Y=ZGP2i(S,t) = Lt P .
i=1

Proof. Terms of odd index of GP, (s, t) are
GP;(s,t) = 2sGPy(s,t) — tGP_,(s,t),
GP3(s,t) = 2sGP,(s,t) — tGPy(s,t),

GP5(s,t) = 25GP,(s,t) — tGPs(s,t),

GPyp1(s,t) = 25GPy_5(s,t) — tGPyp_3(s, 0).
Then, we obtain

P 2sY +1 = GPypy1(s,t)
B 1-—t '

(1)
Similarly, terms of even index of GB, (s, t) are
GP,(s,t) = 2sGP;(s,t) — tGPy(s,t),
GPy(s,t) = 2sGP5(s,t) — tGP,(s,t),

GPy(s,t) = 25GPs(s,t) — tGP,(s, 1),

GPZn(S: t) = ZSGPZn—l(Sp t) - tGPZn—Z(S: t)
Then, we get

v - 2sX —tGPy, (s, t) + it
B 1-t '

(2)

By considering Eq. (1) and (2), we obtain
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Xziﬁ%ﬂ@ﬂzu—omamig:gjﬁm%xm»4y
i=1

Yy = Zn: G, (s.0) = GPynt2(s,t) — t2GPyy(s, t) — 2s + it(t — 1)
- 20\ = 5 — .
i=1 452 —(1—1)

Theorem 2.5. Let X be odd indexed Gaussian (s,t)-Pell-Lucas numbers and Y be even indexed
Gaussian (s, t)-Pell-Lucas numbers. Then the following equalities hold:

. 1-016Q2n41(s,t) — 25 — 2it| + 25t[GQzp (s, t) — 2 + 2i
X:ZGQZi—l(s;t) :( )GQ2n41(s,t) 4;2 _(11]_ t)i [GQ2n (s, 1) 15]’
i=1

S GQonin(S,t) — t2GQun(s, t) — 2(252 + t + ist) + t2(2 — 2is)
i=1

Proof. This theorem is easily obtained by proceeding as in the proof of Theorem 2.4. =
We now investigate some identities of the Gaussian (s, t)-Pell and Pell-Lucas sequences.

Theorem 2.6. Letn = 0 and n = r. Then Catalan’s identity for the Gaussian (s, t)-Pell and Pell-Lucas

IS

) (t+1-2is)(-)" " [4(-t)"—(a"+B7)?
(i) GPy_r(5,£)GPhyy(s,t) — GP(s,t) = 4(s£+t) ]’

(i) GQn—r(5,)GQnyr(s,£) — GQ2(s,) = (¢ + 1 = 2is)(=t)" " [(a” + B)* — 4(=t)"].

Proof. Let A =1 — Biand B = 1 — ai. Then, using Theorem 2.2, we can write

Aa™ T — BBn—r) (Aa,n+r _ Bﬁn+r> ~ (Aan _ Bﬂn>2

G&q@JMRHA&O—G&%&O=< =5 o p—;

After necessary calculations, we get

ABan—rﬁn—r(zarﬂr —q?— BZr)

GPy—r (s, t)GPn+r(S' t) - GPnZ(S' t) = (a— ﬁ)z

Hence, from AB =t + 1 — 2is, we have

(t+1=2is)(=)" "[4(=1)" — (a” + B")’]

GPor(5,6)GPoyr(s,t) — GBA(s,t) = 16710 ,

asrequired. m

By setting r = 1 in Theorem 2.6, we obtain the following corollary which is Cassini’s identity of the
Gaussian (s, t)-Pell and Pell-Lucas sequences.

Corollary 2.1. For positive integer n, we have

(i) GPy_1(5,)GPp1(5, ) — GR%(s5,t) = —(t + 1 — 2is)(—t)" 7,
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(i) GQn-1(5,)GQn11(5,8) = GQu(5,8) = 4(s* + £)(t + 1 = 2is) (=) .

In the rest of paper, the Gaussian (s, t)-Pell and Pell-Lucas sequences will be denoted by GP,
and GQ,, instead of GP,(s,t) and GQ,,(s, t), respectively.

3. The Matrix Representations For The Gaussian (s, t)-Pell and Pell-Lucas Sequences

In this section, we give the definitions of the Gaussian (s, ¢)-Pell and Pell-Lucas matrix sequences.
Then, we obtain Binet’s formulas, generating functions and sum formulas for these matrix sequences.
We also investigate their properties.

Definition 3.1. Let s and t be any real numbers satisfying that s > 0, t # 0 and s? +t > 0. The
Gaussian (s, t)-Pell matrix sequence {MGP, (s, t)}nen i defined recursively by

MGP,(s,t) = 2SMGP,,_1(s,t) + tMGP,,_,(s,t) n =2

1 i

with initial values MGPo(s,6) = (;, | ',

) and Mepy (st = (1" 1)

t it/

Also, it is easily seen that
MGP,(s,t) = MP,(s,t) + itMP,,_1(s, t)

where MP, (s, t) is the nth (s, t)-Pell matrix sequence.

Definition 3.2. Let s and t be any real numbers satisfying that s > 0, t # 0 and s +t > 0. The
Gaussian (s, t)-Pell-Lucas matrix sequence {MGQ,,(s, t)},en is defined recursively by

MGQ,(s,t) = 2sMGQ,_1(s,t) + tMGQ,,_,(s,t) n=>2

2s + 2it 2 —2is

with initial values MGQo(s,t) = (,° T8 TS

) and

452 + 2t + 2ist 25+2it>
MGQ, (s, t) = ( )
Qu(s0) 2st + 2it? 2t — 2ist

Also, it is easily seen that
MGQ,(s,t) = MQ,,(s,t) + itMQ,,_1(s,t)

where MQ,,(s, t) is the nth (s, t)-Pell-Lucas matrix sequence.

In the rest of paper, the Gaussian (s, t)-Pell and Pell-Lucas matrix sequences will be denoted
by MGP, and MGQ,, instead of MGP, (s, t) and MGQ,,(s, t), respectively.

Theorem 3.1. Let n > 0. We have

2 — GPn+1 GPn
(&) MGP, = ( tGP, tGPn_1>’

G G
@ M60. = (165" coor.)

Proof. By induction on n we can prove the theorem. For n = 0, we get
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_(GP,  GPy\ _ (1 i
MGFPo = (tGP0 tGP_1> - (it 1-— 2i3)'
Now, assume that the theorem holds for n = k, that is

MGP, = (GP"“ GP )

tGP, tGPy_,
Then, forn = k + 1, we obtain
MGPy 1 = 2SMGP, + tMGP,_,

_, (ka+1 GP, )H( GP, ka_l)
=5\ t6P, tGP,_, tGPy_, tGPp_,

B ( 25GPy, 1 + tGP, 25GP, + tGP,_, )
"~ \25tGP, + t2GPy_; 25tGPy_q + t*>GPy_,

(ka+2 GPk+1)
tGPeyy tGP, )

So, we obtain the desired result. =

Theorem 3.2. For n = 0, we have

(i) MGP, = (Wﬁa%ﬂ;”m)) a — (Mcha_f%) g
(ii) MGQ,, = (MGQZ%[ZW%) o — (nm;%czwc%) gn,

Proof. We know that the general solution for the recurrence relation

MGP, = ca™ + dp™
for some coefficients ¢ and d.

Then, using the initial conditions imply that MGP, = ¢ + d and MGP, = ca + df.
Solving the system, we get

MGP;—[MGP, MGP;{—aMGP,
= MGP-PMGPy and d = — MGP—aMGPy

¢ ap ap

Thus, the Binet’s formula for MGP, is obtained as

MGP; — BMGP, MGP; — aMGP,
MGPn=( 1= B O)a"—( 1—a 0) n

a—=p a—p
So, the proof is completed. =

Theorem 3.3. The generating functions for the Gaussian (s, t)-Pell and Pell-Lucas matrix sequences
are

(x) = 1 [(1 i )+< it 1—2is )}
I =T o — ez \it 1—2is/ T ¥\t —2ist 25 +i(4s2+ 1))
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1 [( 2s + 2it 2 —2is ) ( 2t — 2sti —25 + 2it + 4is® )]
tx?

nx) = . . . X
(x) 1—2sx — 2t — 2ist  —2s + 2it + 4is” —2st + 2it? + 4is*t  4s® + 2t — 6ist — 8is®

respectively.

Proof. Let g(x) be the generating function of the Gaussian (s, t)-Pell sequence {MGP,}. Then we can
write

gx) = Z MGP;x' = MGPy + MGP,x + MGP,x? + -+ + MGB,x™ + ---.
i=0

Also, we can write by the recursive relations
g(@)(1 — 2sx — tx?) = MGPy + [MGP; — 2sMGPy]x.

Thus, we obtain

(x) = 1 [(1 i )+ ( it 1-2is )]
I =T ox—exz it 1-2is/ T ¥\t —2ist —2s5+i(4s2+1))]
The proof is completed. =

Theorem 3.4. For 2s + t + 1, the sums of the Gaussian (s, t)-Pell and Pell-Lucas matrix sequences
are given as

n

1

(D) Z MGP; = 5————[MGPy.y + tMGP, — MGP; + (25 — 1)MGPy],
i=1

c 1
(ll) ;MGQI = m[MGQrH_l + tMGQn - MGQZ + (25 - 1)MGQ1]

Proof. By the definition of Gaussian (s, t)-Pell matrix sequence recurrence relation, we have
—tMGP;_, = —MGP; + 2sMGP;_,.
From this equation
—tMGP; = —MGP; + 2sMGP,,
—tMGP, = —MGP, + 2sMGP;,

—tMGP; = —MGP5 + 2sMGP,,

—tMGP, = —MGPy,5 + 2SMGPp,

can be written.
Then, we have

n
—tz MGP; = (25 — 1)(MGP; + MGP, + -+ MGPp,,) — MGP,,,, + 2sMGP;.

i=1

54



N. Karaaslan, T. Yagmur / BEU Fen Bilimleri Dergisi 8 (1), 46-59, 2019

After necessary calculations we get
1
Z MGP; = 5—— [MGP, 4, + tMGP, — MGP, + (25 — 1)MGP,].
So, the proof is completed. =

Theorem 3.5. For 2s + t # 1, we have

® i vicp, — 1 (GPn+2 4+ tGPpyy — 25—t — it GPpyq + tGPy — 1 — it )
: 4 KT 254t —1\ tGPyyq +t2GP, —t —it?  tGP, + t2GP,_, —t + it(2s — 1))’

(i) Z MGQ, = (GQM2 + tGQppq — 2(25% + st + t) — i(t? + 2st) GQpiq +tGQ, — 2(s + t) + 2it(s — 1) )
& k™ 2s+t—1 tGQuyq +t2GQ, — 2t(s +t) + 2it?(s — 1) tGQ, + t?GQ,_; + 2t(s — 1) — 2it(2s? —s+ t/’

Proof. From the Theorem 3.1, we have

GPri1  GPy ) _
Z MGP, = 2 ( tGP, tGPy_1) "
Then, by using the Theorem 2.3 we obtain

i 1 (GPn+2 6Py, — 25—t —it GPyyy + tGP, — 1 — it )
4 Pe=osri=1 tGPpyq + t2GB, — t — it2  tGPy + t2GPy_q — t + it(2s — 1))’
This completes the proof. =

Theorem 3.6. Let X, Y be odd indexed Gaussian (s, t)-Pell and Pell-Lucas numbers and Z, T be even
indexed Gaussian (s, t)-Pell and Pell-Lucas numbers. Then the following equalities hold:

n
1—t)[MGP. — MGP;| + 2st|MGP,,, — MGP,
X=ZMGP2i 1=( [ 2n+1 1] [ 2n 0]

, 452 — (1 —1t)? ’
i=1

v i MG, = L= OIMGQanis = MGQ,] +25t[MGQs, = MGQy)

, 452 — (1 —1t)? ’
i=1

: MGPy,, 5 — t2MGP,, — MGP, + t2MGP,
Z=ZMGPZL-: (=07 ,

n
MGQpip — t?MGQqy — MGQ, + t° MGQO
T:ZMGQ“ 47— (1—-0)?

Proof. This theorem is easily obtained by proceeding as in the proof of Theorem 2.4. =
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Theorem 3.7. Let us consider, s +t > 0,s > 0 and t # 0. We get

MGP 1
(D B0t = i GMGPy + (32 = 250)MGPy) = ot (XMGPy g + EMGRY),
(i) X7 o Tk — (xMGQ, + (x? — 25X)MG — 1 (xMGQ,., +tMG
xk T x2-2sx-t 1 X sx) Qo) — x™(x2-2s5x—t) (xMGQpa Qn)-

Proof. From Theorem 3.2, we get

k

3 MOP, _(MGR NGRS ey (MGP,—altGryy (1)

By considering the definition of a geometric sequence, we have

- MGP, 3 (MGP1 - BMGPO) (x"“ - a"“) MGP; — aMGPy\ [ x™** — pn*t
xk a-— x—ay | ( a-— ) x—pf
B xnt1 ( " ) B xn+1 ( - )

k=0

~ 1 MGP, —BMGPo\ .\ 1o o (MGPL—aMGPy
T xn(x2 —2sx —1t) ( a—p )(x D = ) ( a—pB )(x BTG —a)
_ 1 MGP,—BMGP, n+2 _ yntlp 4 antl n+1
T xn(x2-2sx—t) ( a-B ) ( p—xa ta [)))
MGP,—aMGPo\ - n+2 n+l,, _ Lpn+l n+1
( pouy ) (x —x""a —xp +p a)].

Since a + B = 2s,af = —t and also by using the Binet’s formula of Gaussian (s, t)-Pell matrix
sequence, we get

MGPy, 1 n+2 n+1
Z = TG aer gy MGy — X (2SMGPy — MGPY) = XMGPyy — tMGP].
k=0

After necessary calculations we obtain

MGP, 1 , 1

Z = T aer =g CMOPL+ (2 = 250MGR) = s (<GP + UMGP),
k=0

| |

Theorem 3.8. For j > m, we get

MGPmn+m+j+(—t)mMGPj_m—(—t)mMGPmn+j—MGPj
am+pm—(—t)m—1 !

(l) Z OMGPm1+]

MGan+m+]+( t)mMGQ] m_( t) MGan+] MGQ]
am+pm—(—t)Mm—1

(”) Z =0 MGQm1+]

MGP{—BMGP, MGPy

Proof. Let us consider 4 = and B = %. After, we write

n Aaml+] BBmH]

MGPmH] Z a—B
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= (A T pa™ — BRI T, p™)
= el (550) -5 ()

After necessary calculations we obtain

Z” vicp.. = MCPrnimj + (CO™MGP; = (—)"MGPrupyj — MGP,
= am+ M — ()"~ 1 '

So, the proof is completed. =

By using the matrix representation in the following theorem, we have given some equations for these
newly defined numbers.

Theorem 3.9. For m,n = 0, we get
(i) MGP,MGP, = MGP,MGP,,
(ii) MGQ,,MGQ,, = MGQ,MGQ,),,
(iii) MGP,,MGP,,, = MGP,,,;MGP,,
(iv) MGQuMGQni1 = MGQyp 1 MGQy,.
Proof. MGQ,,MGQ,, = (MQ,, + itMQ,_1)(MQ,, + itMQ,._1)
= MQuMQy + itMQmMQp_1 + itMQyy_1MQp, — t*MQyy 1 MQp 4

Since MQ,,MQ,+1 = MQ,,,1MQ,, (see [8, Theorem 13]) and MQ,,MQ,, = MQ,,MQ,, (see [8,
Proposition 9]) where MQ,, is the nth Pell-Lucas matrix, we have

MGQ,,MGQ,, = MQ,MQ,, + itMQ,MQ,,_ + itMQ,,_ MQ,, — t?MQ,,_ MQ,,_;
= (MQp + itMQp—1)(MQp + itMQp—1)
= MGQ,MGQ,,.
The proof is completed. =
Theorem 3.10. (Catalan’s Identity) For n = 0 and n > r, the following results hold.
(i) MGP,_ MGP, ., = MGP,?,
(i) MGQn_yMGQpsr = MGQy,7.

Proof. Let A = MGP, — BSMGP, and B = MGP;, — aMGP,. Then, using Theorem 3.2, we can write

, Aa™ T — BB [Aa™T — BT Aa™ — BB™ 2
MGP,_ MGP,, — MGP,” = — .

a—p a—p a—pB

After necessary calculations, we get
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ABan—rﬁn—r(zarﬁr — a2 — ﬁZr)

MGP,_.MGP,,,, — MGR,* = @ p)?

0 0

Hence, from AB = (0 0

), we have MGP,_,MGP,,, = MGP,?2, as required.

This completes the proof. =
Theorem 3.11. For n > 0, following equalities are valid:
(i) MGQ,, = 2sMGP, + 2tMGP,_,,
(ii) MGQ,, = MGP,,, + tMGP,_,.
Proof.
(i) 2sMGP, + 2tMGP,_; = 2s(MP,, + itMP,_;) + 2t(MP,_; + itMP,,_,)
= 2SMP, + 2tMP,_; + it(2sMP,_; + 2tMP,_).
Since MQ,, = 2sMP, + 2tMP,,_, (see [8, Theorem 10]), we have
2SMGP, + 2tMGP,_; = MQ,, + itMQ,_,
= MGQ,,.

(ii) MGP,,1 + tMGP,_y = (MB, + itMP,_,) + t(MP,,_, + itMP,,_,)

= (MP,4q + tMP,_;) + it(MP, + tMP,_,).
Since MQ,, = MP,,,, + tMP,_; (see [8, Theorem 10]), we get
MGP, .1 + tMGP,_; = MQ,, + itMQ,,_,

= MGQ,,.
| |

4. Conclusion

We firstly introduce the Gaussian (s, t)-Pell and Pell-Lucas sequences. By using these sequences, we
define Gaussian (s, t)-Pell and Pell-Lucas matrix sequences. We also give some results, such as Binet’s
formulas, generating functions and summation formulas for these sequences. Moreover, we obtain some

relationships between these matrix sequences.
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