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Abstract

Nonlinear partial differential equations have an important place in applied mathematics and physics. Many
analytical methods have been found in literature. Using these methods, partial differential equations are
transformed into ordinary differential equations. These nonlinear partial differential equations are solved with the
help of ordinary differential equations. In this paper, we implemented an improved tanh function Method for some
exact solutions of Caudrey-Dodd-Gibbon (CDG) Equation and Dodd-Bullough-Mikhailov Equation.
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Caudrey-Dodd-Gibbon (CDG) Denklemi ve Dodd-Bullough-Mikhailov
Denkleminin Baz1 Kesin Coziimleri

Oz

Uygulamali matematik ve fizikte dogrusal olmayan kismi diferansiyel denklemler 6nemli bir yere sahiptir.
Literatiirde birgok analitik yontem bulunmustur. Bu yontemleri kullanarak, kismi diferansiyel denklemler, adi
diferansiyel denklemlere doniistiiriiliir. Bu dogrusal olmayan kismi diferansiyel denklemler, adi diferansiyel
denklemlerin yardimiyla ¢oziilmistiir. Bu c¢alismada, Caudrey-Dodd-Gibbon (CDG) Denklemi ve Dodd-
Bullough-Mikhailov Denkleminin kesin ¢6ztimleri i¢in gelistirilmis tanh fonksiyon metodu sunulmustur.

Anahtar kelimeler: Caudrey-Dodd-Gibbon (CDG) Denklemi, Dodd-Bullough-Mikhailov Denklemi, gelistirilmis
tanh fonksiyon metodu, tam ¢oziimler.

1. Introduction

Nonlinear partial differential equations (NPDES) have an important place in applied mathematics and
physics [1,2]. Many analytical methods have been found in literature [3-11]. Besides these methods,
there are many methods which reach to solution by using an auxiliary equation. Using these methods,
partial differential equations are transformed into ordinary differential equations. These nonlinear partial
differential equations are solved with the help of ordinary differential equations. These methods are
given in [12-25].

In this study, we implemented improved tanh function Method for finding the exact solutions
of Caudrey-Dodd-Gibbon (CDG) Equation and Dodd-Bullough-Mikhailov Equation.

2. Analysis of Method
Let's introduce the method briefly. Consider a general partial differential equation of four variables,

oW, Ve,V ...) = 0. 1)
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Using the wave variable (x,t) = v(@), @ = k(x —wt), here k and w are constants. The
equation (3) turns into an ordinary differential equation,

o'W, v v, ..)=0 2

With this conversion, we obtain a nonlinear ordinary differential equation for v(@). We can
express the solution of equation (2) as below,

v(@) = X, a;F (@), 3)

here n is a positive integer and is found as the result of balancing the highest order linear term and the
highest order nonlinear term found in the equation.

If we write these solutions in equation (2), we obtain a system of algebraic equations for
F(©),F%(®), ..., F{(@), after, if the coefficients of F(@), F2(®), ..., F{(®) are equal to zero, we can find
the constants k, w, ag, a4, ..., ay,.

The basic step of the method is to make full use of the Riccati equation satisfying the tanh
function and F (@) solutions. The Riccati equation required in this method is given below

F'(¢) = A+ BF(®) + CF%(®) (4)
here, F' (@) = dZ—((f) and A, B and C are constants. The authors expressed the solutions of this equation
[15].

Example 1.

We consider the Caudrey-Dodd-Gibbon (CDG) Equation,

Vi + Vsgxax T 300Vxsx + 300, Uy + 180020, = 0. (5)
Using the wave variable v(x, t) = v(z), z = k(x — wt) Eq. (5) becomes

—wv' + k*v® +30k2vv"" + 30k2v'v" + 180v2v" = 0, (6)
when balancing v'v" vv'""with v then M = 2 gives. The solution is as follows,
v=ay+aF+a,F>. (7

If the solution (7) is substituted in equation (6), a system of algebraic equations for
k,w,ay, a4, a, are obtained. The obtained systems of algebraic equations are as follows

AB*k*a; + 22A4%B*Ck*a, + 1643C%*k*a, — Awa, + 30AB*k?aqa, + 604%Ck?aqa, +
1804a2a, + 3042Bk?a? + 3042B3k*a, + 12043 BCk*a, + 18042Bk?aya, + 60A3k2a,a, = 0,

B°k*a, + 52AB3Ck*a, + 1364%2BC%k*a, — Bwa, + 30B3k?aqa,; + 240ABCk?aqa; +
180Ba3a; + 90AB%k?a? + 120A%Ck?a? + 360Aaya? + 62AB*k*a, + 584A?B2Ck*a, +
27243C?%k*a, — 2Awa, + 420AB*k?aya, + 4804%Ck?aqa, + 360Aa3a, + 480A*Bk?a a, +
12043%k?%aZ = 0. (8)

If this system is solved, the coefficients are found as
i

3Caq _ vay _ 2
” ,k—ﬁc,kio,W—9ao, 9)

B=0,a1 =0,a0 = Qo, AiO,CiO,a2=
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with the help of the Mathematica program. After these operations, The solutions of equation (5) for (9)
are as follows:
Solution 1.
2

Vi =ag— %ao(Coth[—i,/—Bao x + 9ia%,/—3a, t] + Cosech[—i,/—3a, x + 9ia3,/—3a, t])

2
vy = ag — %ao(Tanh[—i,/—3a0 X + 9ia%./—3a, t] + iSech[—i,/—3ay x + 9iaZ/—3a,t])".  (10)

Solution 2.

ap + %ao(Sec[i 3a, x — 9ia3,/3a, t] £ Tan[i/3a, x — 9ia3,/3a, t])2

vy =39+ %ao(Cosec[i 3a, x — 9ia3./3a, t] £ Cot[i,/3a, x — 9ia3,/3a, t])2

Vs =ag + %ao(Cosec[—i\/3_ao x + 9ia3,/3a, t] + Cot[—i,/3a, x + 9ia3 /32 t])2

Ve =ag + %ao(Sec[—i\/S_ao x + 9ia3,/3a, t| + Cot[—i,/3a, x + 9ia3 /32, t])z. (11)

Solution 3.

V3

(Tanh [—i,/;3ao - 9ia%‘/2—3ao t])z

3
V7 = 4qp _an

Vg =ag — %ao (Coth [_i‘/ﬁ X+ 9iag‘/2_3_a° tDZ. (12)
Solution 4.
Vg =39 + %ao (Tan [i 32a° X — 9iag‘2/3_a° t])z. (13)
Solution 5.
Vip = a9 + %ao (Cot [_i 23a0 X+ 9ia(2"2/3_a° tDZ. (14)
Example 2.

Consider Dodd-Bullough-Mikhailov Equation,
Upp — Uy + % + 2724 =0, (15)

If we make transformation u = Inv. Using the wave variable v(x,t) = v(z), z = k(x — wt)
then Eqg. (15) becomes

(K*w? — k2)vv" + (=k*w? + k) @')? +v3+1=0, (16)
when balancing vv''with v3 then M = 2 gives. The solution is given by
u=ay+a,F+a,F2 (17)

Substituting (17), into Eq. (16), yields a set of algebraic equations for k,w, ay, a;,a, these
systems are finding as
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1+ a3 — ABk?aqga, + ABk*w?aga, + A%k?a? — A%k?*w?a? — 24%k?aqa, + 2A%k*w?aqa, = 0,
—B%k2aga, — 2ACk%aqa, + B*k*w?aga, + 2ACk*w?aqa, + 3a3a; + ABk?a? — ABk*w?a? —
6ABk2a0a2 + 6ABk2W2a0a2 + 2A2k2a1a2 - 2A2k2W2a1a2 = 0, (18)

if this system is solved, the coefficients are found as

1 3C J2ACk?2-3
B=0a,=0a =3 A#0,C#0,a, =2k =kw="g==2%, (19)

with the help of the Mathematica program. After these operations, The solutions of equation (15) for
(19) are as follows:

Solution 1.

u; =Ln {% - % (Coth[kx + (iV—k? — 3)t] + Cosech[kx + (iV—k? — 3)t])2}
u, = Ln {2 — 2 (Tanh[kx + (V=K = 3)t]  iSechkx + (iV=KkZ = 3)]) }. (20)

Solution 2.

uz = Ln {% + % (Sec[kx — (VkZ = 3)t] + Tan[kx — (VkZ — 3)t])2}
s = L} + 3 (Cosecfoc — (VIZ=3)t]  Cotlioe - (VP = 2)1)’)
uz = Ln {% +%(Cosec[kx + (\/k2 — 3)t] T COt[kX + (sz - 3)t])2}

ug = Ln {2 + 2 (Seclloc+ (VEZ = 3)t] + Tan[kx + (VEZ = 3)t])}. (21)
Solution 3.

u; = Ln {% - % (Tanh [kx + (i@) t])z}

ug = Ln {% 2 (Coth [kx + (‘@) t])z}. 22)
Solution 4.

Ug = Ln {% + % (Tan [kx — (@) t])z}. (23)
Solution5.

U9 = Ln {% + % (Cot [kx + (\/41(22—_3) t])z}. (24)

3. Conclusion
We used the improved tanh function method to find the exact solutions of Caudrey-Dodd-Gibbon (CDG)

Equation and Dodd-Bullough-Mikhailov Equation. This method has been successfully applied to solve
some nonlinear wave equations and can be used to many other nonlinear equations or coupled ones.
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4. Explanations and Graphical Presentments of the Found Solutions

The graphs of some of the solutions of Equation (15) are as follows

a) b)

Figure 1. a) The 3D surfaces of Eq.(21-b)for the value k=2 within the interval =5 < x < 5,-1<t<1
b) The 2D surfaces of Eq.(21-b)for the values k=2,t=1 within the interval =5 < x <5

a) b)

VPV \\ / \ ‘
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Figure 2. a) The 3D surfaces of Eq.(23)for the value k=2 within the interval -5 < x <5,-1 <t <1
b) The 2D surfaces of Eq.(23)for the values k=2,t=1 within the interval -5 < x < 5
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