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Abstract
In this paper we study the properties of bounded linear operators
namely A,—class and Aj—class operators that satisfy 7T < (T*pT”)%
and TT* < (T*pr)% respectively. We use some known operator in-

equalities and we show that if T € B(#) is an A, —class or an Ay —class
operator, then r(T) =|| T || .
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1. Introduction

In this paper, we denote the set of all bounded linear operators on # by B(.s¢),
where 7 is a complex Hilbert space. Let T' € B(), we denote the spectrum of T' by
o(T) and the spectral radius of T by r(T') where

r(T) = sup{|Al,A € o(T)}.

We say that T € B(s#) is an A_class operator if |T|*> > |T?|. In [1, 2] the properties
of A_ class operators are studied and it is shown that operators in this class satisfy the
Weyl theorem.

Our main purpose in this paper is to introduce the Aj—class and A,—class operators
and to denote the properties of this class of operators. In the main section we prove that
operators in A, or Ay class satisfy 7(T') =|| T' || . These classes of operators present some
important classes of operators that probably fall in one of this A, classes. We are trying
to answer the following question; are there operators which belong to A, —class operators
but do not belong to A,—class operators? We give an example of operator 7" such that
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" < (T*QTQ)% and T"T £ (T*QTQ)%, this says that there is an operator 7" which is
Ay —class operator but T' is not A,— class operator. If T' € B(5), we write N(T') and
R(T) for the null space and the range space of T respectively. An operator T' € B(¢) is
called Fredholm if it has closed range and

dmN(T) < 0o, dimR(T)" < oo.
If T € B(s) is Fredholm then we denote the index of T' by ind(T) which is given by
ind(T) = dim(N(T)) — dim(R(T)").

An operator T' € B() is called a Weyl operator if it is Fredholm of index zero. Also,
let moo(T") be the set of isolated eigenvalues with finite multiplicity and w(7') be the Weyl
spectrum of 7. We have

moo(T") = {X € iso(c(T)); 0 < dimN(T — AI) < oo}
w(T)={\ € C; T — A is not weyl}
where iso(A) is the isolated point of the set A.

2. main results
We give some lemmas that we use in the next.
2.1. Lemma. [5] Let T be a self-adjoint operator on the Hilbert space F, we have
| T [|= sup{[(Tz, )|, | = [|= 1}

2.2. Lemma. [3] (Hansen inequality). If A,B € B(J€) satisfy A > 0 and || B ||< 1,
then

(B*AB)’ > B*A°B
forall0 < < 1.
2.3. Lemma. [1] (Holder-McCarthy inequality). If A € B(I€) is a positive operator and
x € I, then
(1) (A"z,z) > (Az,2)" || = > forr > 1,
(2) (A"z,z) < (Az,z)" ||« > for0<r<1.

2.4. Definition. The operator T' € B(s¢) is called an A,—class operator if
T*T < (T*"T?)» .

2.5. Definition. The operator T' € B(¢) is called an Aj—class operator if

(2.1)  TT* < (T*°T")» .

If in Definition 2.5 we put p = 2, we get the definition of (A, *)—class operator where
it has been introduced in [3]. Thus Aj—class operators are generalization of (A, x)—class
operators.

In the next, we show that A} —class operators are normaloid in the sense that r(T") =||
T ||, we give a useful lemma as follows,

2.6. Lemma. IfT € B(J¢) is an A,—class operator then
I T T e e A

where |T| = (T*T)%



Proof. Suppose that x € 52, ||z|| = 1 and T"" "'z % 0 then by the Lemma 2.3 we get

(@ T ) || |
= (T[T e, TP ) [T ||
> (| TPT™ " e, TP )
=
=

*np—p—1 |T|2Tnp7p71.r $>2
y

T
(2.3) THPTRTP TPy, 9[:)2 .
therefore

(24) (TP TPTP T g ) || TP |

> (TP P Py 1)

If T"P~P~'x = 0 then the inequality (2.4) is valid, too.
Now by taking the supremum over all € 5 such that ||z|| = 1 in the inequality (2.4)
and by use of the Lemma 2.1 we get

CRN bk 1 0 s st o
this completes the proof. O

2.7. Theorem. Assume that T is an Ay—class or an A,—class operator (p is an integer),
then r(T) =|| T | -

Proof. Since AT is A;— class ( Ap—class) operator for all A\ € C, where T is an Aj—
class (Ap—class) operator, without loss of generality we assume that |T|| = 1. Firstly,
suppose that T is an A;— class operator then

*NPprnp 1 _ *knp—1lpnmp—1 1
(T*"PT"")e = (T T 7P ='T) "

1
>T (TP ™) P T (by lemma 2.2)

(2.6) > T*"PP (T*PTP) 5 TP
By (2.1) and (2.6) we get
(T*'ﬂPT’ﬂp)% Z T*”P*P (T*PTP)% T'ﬂp*p
> T PP (TT*) TP P
_ T*np—p—1|T|4Tnp—p—1 .
Therefore
*M npy £ *Np—p— np—p—
@7 @y | > | T T T T
by the Lemma 2.6 we have
| 7P T | | e R et
ZH T*P—Pnp—p ”2 )
By using (2.7) we get,

2p

(2.8) H(T*”PT”P)%

> H (T*npprnpfp)%




We repeat the inequality (2.8) to get

2p)" 1

* 1 . 1 (

| (T PT"™)5 || > || (T T") > ||
>|| 7T ||

= || T >

)n—l

=1.

On the other hand (7)) = limy, 00 ||T”||%, this yields that
[F(T)F = r(T)e(T) = Tim [T°77 5] 777 ||

(2.9) > lim || 7T |75 > 1.

Therefore r(T) = 1.
secondly, if T" is an A,—class operator then by the Definition 2.4 and the Lemma 2.2 we
have

(T*n(pfl)T"(Pfl))% > (T*T*n(]?*l)flT’n(pfl)flT)%

1
> T* (T*n(p—l)—lTn(p—l)—l) P T

> T*(”*U(Pfl)*l (T*pr)% T(”*D(Pfl)*l

> T*(nfl)(pfl)fl (T*T) T(nfl)(pfl)fl

(2.10) — pr(n=1)(p=1)pn-1)(p-1) ’
therefore
= 1P
(2.11) H(T*n@fl)Tn(pfl))zl» N H (T*(nf1)(p71)T(n71)<p71)) Q.
if we repeat the inequality (2.11) we get
n—1
H(T*”(Pfl)Tn(Pfl))% > H (T*(pfl)Tpfl)% P
_ ||T*<p71)TP*1Hp"72
n—2
* * —_ —_ p
= (IIT [ ]T P=Dpr=t ||T||)

" n—2
> | TP
> |77 =1

According to the (2.9) it can be concluded that r(7") > 1, thus in this case r(T) = 1,
too. g

2.8. Corollary. IfT is an A,—class or an Ap—class operator and also T is quasinilpotent
operator, then T = 0.

Proof. By Theorem 2.7, T' is normaloid, on the other hand, zero is single operator such
that it is normaloid and quasinilpotent, hence T' = 0. O

2.9. Theorem. Suppose that T € B(H) and A € C, if T is an A;—class operator and
(T =X (x) =0 then (T — )" (z) =0.



Proof. Without lose of generality we take || z ||= 1, so by use of the Lemma 2.3 we have
(T =) | = (T =Xz, (T - N)"z)

(
(T =X (T" = X) z,2)

= (TT*z,2) — \T"x,z) — ATz, z) + | X |*(z,z)
(

<{

| T* P2, 2) — Mz, Tz) — MTxz,z) + | A | (z, z)
(TPT")% o,2) — | A Pz, @) < (TPT")2,2)F — | A [2z,2) = 0.
Thus (T — X\)*z = 0.

(]
2.10. Theorem. If T is an Ay,— class operator and 0 € o(T)\w(T'), then 0 € moo(T).

Proof. Let 0 € o(T)\w(T), then T is a Weyl operator. Hence T is a Fredholm operator
with indT = 0. This yields that R(T) is close and dimN(T) = dim®R(T)*. We show that
zero is the isolated eigenvalue of T'. If zero is not eigenvalue of T', then dimN(T) = 0.
Therefore

dimR(T)* =0 , R(T)=.¢

so T is an invertible operator, this is a contradiction. Now let 0 ¢ iso(o(T)), we have

since dimN(T) = dimR(T)*, so N(T') = R(T)*. We consider s and T as the following,
3 . (0 0
H =N(T)®N(T) Tf<0 B)
N

because of the operator B : N(T')* —
we have

R(B) = R(T) = N(T)~

therefore B is a surjective operator, hence B is an invertible operator.

On the other hand 0 ¢ isoo(T) and o(T') = {0} U o(B), so there exists a sequence like
{An} of o(B) such that A, — 0, therefore 0 € o(B). This is a contradiction and the
proof is complete. O

In the next, we give an example that it clarifies the set of A;— class operators are
different from the set of A,— class operators.

2.11. Example. We consider the infinite matrix operators 1" as follows,

0 0 0 0 0
1
% 0 0 0 0
0 L o0 o0 o0
=10 0o L 0o o
0 0 0 % o

Hence we get TT™* < (T*QTQ)% and T°T £ (T*ZTQ)%. Thus T is an A5— class operator
but T is not As— class operator.



2.12. Remark. Note that if T € B(J#) is an invertible and T*,T~" are Aj—class
operator, then by the Definition 2.5 we have

(2.12) T'Tt < (72T
and T*T < (T2T**)2, by taking the inverse of (2.12) we get T*T > (T?T*?)2 this
inequalities showed 7T = (T2T*2)%, moreover

T = |T7).
2.13. Remark. If T'is an Aj—class operator then by the Theorem 2.9 we have N(7") C

N(T™). If T" is an Aj—class operator then N(7™) C N(T'). Therefore if T and T™ are
Ay —class operators then we have N(T') = N(T™) and we get

R(T) = R(T).

2.14. Remark. Note that if T"is an A;—class operator and T? is Ay—class operator then
T is A,,—class operator, also if T* is Ap—class operator and T7 is Aj—class operator
then T' is A; —class operator.
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