Hacettepe Journal of Mathematics and Statistics
Ø Volume 43 (5) (2014), 741-746

On operators of A_{p} and A_{p}^{*} class

R. Eskandari ${ }^{*}$, F. Mirzapour ${ }^{\dagger}$ and H. Rahmatan ${ }^{\ddagger}$

Received 11: 12:2012 : Accepted 11: 07: 2013

Abstract

In this paper we study the properties of bounded linear operators namely A_{p}-class and A_{p}^{*}-class operators that satisfy $T^{*} T \leq\left(T^{* p} T^{p}\right)^{\frac{1}{p}}$ and $T T^{*} \leq\left(T^{* p} T^{p}\right)^{\frac{1}{p}}$ respectively. We use some known operator inequalities and we show that if $T \in \mathcal{B}(\mathscr{H})$ is an A_{p}-class or an A_{p}^{*}-class operator, then $r(T)=\|T\|$.

2000 AMS Classification: Primary 47A63; Secondary 47A30, 47B20.
Keywords: A_{-}class operator, operator inequality, Spectral radius.

1. Introduction

In this paper, we denote the set of all bounded linear operators on \mathscr{H} by $\mathcal{B}(\mathscr{H})$, where \mathscr{H} is a complex Hilbert space. Let $T \in \mathcal{B}(\mathscr{H})$, we denote the spectrum of T by $\sigma(T)$ and the spectral radius of T by $r(T)$ where

$$
r(T)=\sup \{|\lambda|, \lambda \in \sigma(T)\}
$$

We say that $T \in \mathcal{B}(\mathscr{H})$ is an $A_{\text {-class operator if }|T|^{2} \geq\left|T^{2}\right| \text {. In [1, 2] the properties }}$ of A_{-}class operators are studied and it is shown that operators in this class satisfy the Weyl theorem.
Our main purpose in this paper is to introduce the A_{p}^{*}-class and A_{p}-class operators and to denote the properties of this class of operators. In the main section we prove that operators in A_{p} or A_{p}^{*} class satisfy $r(T)=\|T\|$. These classes of operators present some important classes of operators that probably fall in one of this A_{p} classes. We are trying to answer the following question; are there operators which belong to A_{p}^{*}-class operators but do not belong to A_{p}-class operators? We give an example of operator T such that

[^0]$T T^{*} \leq\left(T^{* 2} T^{2}\right)^{\frac{1}{2}}$ and $T^{*} T \not \leq\left(T^{* 2} T^{2}\right)^{\frac{1}{2}}$, this says that there is an operator T which is A_{p}^{*}-class operator but T is not A_{p} - class operator. If $T \in \mathcal{B}(\mathscr{H})$, we write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null space and the range space of T respectively. An operator $T \in \mathcal{B}(\mathscr{H})$ is called Fredholm if it has closed range and
$$
\operatorname{dim} \mathcal{N}(T)<\infty \quad, \quad \operatorname{dim} \mathcal{R}(T)^{\perp}<\infty
$$

If $T \in \mathcal{B}(\mathscr{H})$ is Fredholm then we denote the index of T by ind(T$)$ which is given by

$$
\operatorname{ind}(\mathrm{T})=\operatorname{dim}(\mathcal{N}(\mathrm{T}))-\operatorname{dim}\left(\mathcal{R}(\mathrm{T})^{\perp}\right)
$$

An operator $T \in \mathcal{B}(\mathscr{H})$ is called a Weyl operator if it is Fredholm of index zero. Also, let $\pi_{00}(T)$ be the set of isolated eigenvalues with finite multiplicity and $\omega(T)$ be the Weyl spectrum of T. We have

$$
\begin{gathered}
\pi_{00}(T)=\{\lambda \in \operatorname{iso}(\sigma(\mathrm{T})) ; 0<\operatorname{dim\mathcal {N}}(\mathrm{T}-\lambda \mathrm{I})<\infty\} \\
\omega(T)=\{\lambda \in \mathbb{C} ; T-\lambda I \text { is not weyl }\}
\end{gathered}
$$

where iso(A) is the isolated point of the set A.

2. main results

We give some lemmas that we use in the next.
2.1. Lemma. [5] Let T be a self-adjoint operator on the Hilbert space \mathscr{H}, we have

$$
\|T\|=\sup \{|\langle T x, x\rangle|,\|x\|=1\}
$$

2.2. Lemma. [3] (Hansen inequality). If $A, B \in \mathcal{B}(\mathscr{H})$ satisfy $A \geq 0$ and $\|B\| \leq 1$, then

$$
\left(B^{*} A B\right)^{\delta} \geq B^{*} A^{\delta} B
$$

for all $0<\delta \leq 1$.
2.3. Lemma. [4] (Hölder-McCarthy inequality). If $A \in \mathcal{B}(\mathscr{H})$ is a positive operator and $x \in \mathscr{H}$, then
(1) $\left\langle A^{r} x, x\right\rangle \geq\langle A x, x\rangle^{r}\|x\|^{2(1-r)}$ for $r>1$,
(2) $\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}\|x\|^{2(1-r)}$ for $0 \leq r \leq 1$.
2.4. Definition. The operator $T \in \mathcal{B}(\mathscr{H})$ is called an A_{p}-class operator if

$$
T^{*} T \leq\left(T^{* p} T^{p}\right)^{\frac{1}{p}}
$$

2.5. Definition. The operator $T \in \mathcal{B}(\mathscr{H})$ is called an A_{p}^{*}-class operator if

$$
\begin{equation*}
T T^{*} \leq\left(T^{* p} T^{p}\right)^{\frac{1}{p}} \tag{2.1}
\end{equation*}
$$

If in Definition 2.5 we put $p=2$, we get the definition of $(A, *)$-class operator where it has been introduced in [3]. Thus A_{p}^{*}-class operators are generalization of $(A, *)$-class operators.
In the next, we show that A_{p}^{*}-class operators are normaloid in the sense that $r(T)=\|$ $T \|$, we give a useful lemma as follows,
2.6. Lemma. If $T \in \mathcal{B}(\mathscr{H})$ is an A_{p}^{*}-class operator then

$$
\begin{equation*}
\left\|T^{* n p-p-1}|T|^{4} T^{n p-p-1}\right\| \geq\left\|T^{* n p-p} T^{n p-p}\right\|^{2}\left\|T^{n p-p-1}\right\|^{-2} \tag{2.2}
\end{equation*}
$$

where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$

Proof. Suppose that $x \in \mathscr{H},\|x\|=1$ and $T^{n p-p-1} x \neq 0$ then by the Lemma 2.3 we get

$$
\begin{aligned}
& \left.\left.\left\langle T^{* n p-p-1}\right| T\right|^{4} T^{n p-p-1} x, x\right\rangle\left\|T^{n p-p-1} x\right\|^{2} \\
& \left.=\left.\langle | T\right|^{4} T^{n p-p-1} x, T^{n p-p-1} x\right\rangle\left\|T^{n p-p-1} x\right\|^{2} \\
& \left.\geq\left.\langle | T\right|^{2} T^{n p-p-1} x, T^{n p-p-1} x\right\rangle^{2} \\
& \left.=\left.\left\langle T^{* n p-p-1}\right| T\right|^{2} T^{n p-p-1} x, x\right\rangle^{2} \\
& =\left\langle T^{* n p-p} T^{n p-p} x, x\right\rangle^{2} .
\end{aligned}
$$

therefore

$$
\begin{equation*}
\left.\left.\left\langle T^{* n p-p-1}\right| T\right|^{4} T^{n p-p-1} x, x\right\rangle\left\|T^{n p-p-1} x\right\|^{2} \geq\left\langle T^{* n p-p} T^{n p-p} x, x\right\rangle^{2} \tag{2.4}
\end{equation*}
$$

If $T^{n p-p-1} x=0$ then the inequality (2.4) is valid, too.
Now by taking the supremum over all $x \in \mathscr{H}$ such that $\|x\|=1$ in the inequality (2.4) and by use of the Lemma 2.1 we get

$$
\begin{equation*}
\left\|T^{* n p-p-1}|T|^{4} T^{n p-p-1}\right\|\left\|T^{n p-p-1}\right\|^{2} \geq\left\|T^{* n p-p} T^{n p-p}\right\|^{2} \tag{2.5}
\end{equation*}
$$

this completes the proof.
2.7. Theorem. Assume that T is an $A_{p}^{*}-$ class or an $A_{p}-$ class operator (p is an integer), then $r(T)=\|T\|$.

Proof. Since λT is $A_{p}^{*}-$ class (A_{p}-class) operator for all $\lambda \in \mathbb{C}$, where T is an $A_{p}^{*}-$ class (A_{p}-class) operator, without loss of generality we assume that $\|T\|=1$. Firstly, suppose that T is an A_{p}^{*} - class operator then

$$
\begin{align*}
\left(T^{* n p} T^{n p}\right)^{\frac{1}{p}} & =\left(T^{*} T^{* n p-1} T^{n p-1} T\right)^{\frac{1}{p}} \\
& \geq T^{*}\left(T^{* n p-1} T^{n p-1}\right)^{\frac{1}{p}} T \quad(\text { by lemma 2.2) } \\
& \vdots \\
& \geq T^{* n p-p}\left(T^{* p} T^{p}\right)^{\frac{1}{p}} T^{n p-p} . \tag{2.6}
\end{align*}
$$

By (2.1) and (2.6) we get

$$
\begin{aligned}
\left(T^{* n p} T^{n p}\right)^{\frac{1}{p}} & \geq T^{* n p-p}\left(T^{* p} T^{p}\right)^{\frac{1}{p}} T^{n p-p} \\
& \geq T^{* n p-p}\left(T T^{*}\right) T^{n p-p} \\
& =T^{* n p-p-1}|T|^{4} T^{n p-p-1}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|\left(T^{* n p} T^{n p}\right)^{\frac{1}{p}}\right\| \geq\left\|T^{* n p-p-1}|T|^{4} T^{n p-p-1}\right\| \tag{2.7}
\end{equation*}
$$

by the Lemma 2.6 we have

$$
\begin{aligned}
\left\|T^{* n p-p-1}|T|^{4} T^{n p-p-1}\right\| & \geq\left\|T^{* n p-p} T^{n p-p}\right\|^{2}\left\|T^{n p-p-1}\right\|^{-2} \\
& \geq\left\|T^{* n p-p} T^{n p-p}\right\|^{2} .
\end{aligned}
$$

By using (2.7) we get,

$$
\begin{equation*}
\left\|\left(T^{* n p} T^{n p}\right)^{\frac{1}{p}}\right\| \geq\left\|\left(T^{* n p-p} T^{n p-p}\right)^{\frac{1}{p}}\right\|^{2 p} \tag{2.8}
\end{equation*}
$$

We repeat the inequality (2.8) to get

$$
\begin{aligned}
\left\|\left(T^{* n p} T^{n p}\right)^{\frac{1}{p}}\right\| & \geq\left\|\left(T^{* p} T^{p}\right)^{\frac{1}{p}}\right\|^{(2 p)^{n-1}} \\
& \geq\left\|T T^{*}\right\|^{(2 p)^{n-1}} \\
& =\|T\|^{2(2 p)^{n-1}}=1 .
\end{aligned}
$$

On the other hand $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$, this yields that

$$
\begin{align*}
{[r(T)]^{2}=r\left(T^{*}\right) r(T) } & =\lim _{n \rightarrow \infty}\left\|T^{* n p}\right\|^{\frac{1}{n p}}\left\|T^{n p}\right\|^{\frac{1}{n p}} \\
& \geq \lim _{n \rightarrow \infty}\left\|T^{* n p} T^{n p}\right\|^{\frac{1}{n p}} \geq 1 \tag{2.9}
\end{align*}
$$

Therefore $r(T)=1$.
secondly, if T is an A_{p}-class operator then by the Definition 2.4 and the Lemma 2.2 we have

$$
\begin{align*}
\left(T^{* n(p-1)} T^{n(p-1)}\right)^{\frac{1}{p}} & \geq\left(T^{*} T^{* n(p-1)-1} T^{n(p-1)-1} T\right)^{\frac{1}{p}} \\
& \geq T^{*}\left(T^{* n(p-1)-1} T^{n(p-1)-1}\right)^{\frac{1}{p}} T \\
& \vdots \\
& \geq T^{*(n-1)(p-1)-1}\left(T^{* p} T^{p}\right)^{\frac{1}{p}} T^{(n-1)(p-1)-1} \\
& \geq T^{*(n-1)(p-1)-1}\left(T^{*} T\right) T^{(n-1)(p-1)-1} \\
& =T^{*(n-1)(p-1)} T^{(n-1)(p-1)}, \tag{2.10}
\end{align*}
$$

therefore

$$
\begin{equation*}
\left\|\left(T^{* n(p-1)} T^{n(p-1)}\right)^{\frac{1}{p}}\right\| \geq\left\|\left(T^{*(n-1)(p-1)} T^{(n-1)(p-1)}\right)^{\frac{1}{p}}\right\|^{p}, \tag{2.11}
\end{equation*}
$$

if we repeat the inequality (2.11) we get

$$
\begin{aligned}
\left\|\left(T^{* n(p-1)} T^{n(p-1)}\right)^{\frac{1}{p}}\right\| & \geq\left\|\left(T^{*(p-1)} T^{p-1}\right)^{\frac{1}{p}}\right\|^{p^{n-1}} \\
& =\left\|T^{*(p-1)} T^{p-1}\right\|^{p^{n-2}} \\
& =\left(\left\|T^{*}\right\|\left\|T^{*(p-1)} T^{p-1}\right\|\|T\|\right)^{p^{n-2}} \\
& \geq\left\|T^{* p} T^{p}\right\|^{p^{n-2}} \\
& \geq\left\|T^{*} T\right\|^{p^{n-2}}=1 .
\end{aligned}
$$

According to the (2.9) it can be concluded that $r(T) \geq 1$, thus in this case $r(T)=1$, too.
2.8. Corollary. If T is an A_{p}^{*}-class or an A_{p}-class operator and also T is quasinilpotent operator, then $T=0$.

Proof. By Theorem 2.7, T is normaloid, on the other hand, zero is single operator such that it is normaloid and quasinilpotent, hence $T=0$.
2.9. Theorem. Suppose that $T \in \mathcal{B}(\mathscr{H})$ and $\lambda \in \mathbb{C}$, if T is an A_{p}^{*}-class operator and $(T-\lambda)(x)=0$ then $(T-\lambda)^{*}(x)=0$.

Proof. Without lose of generality we take $\|x\|=1$, so by use of the Lemma 2.3 we have

$$
\begin{aligned}
\left\|(T-\lambda)^{*} x\right\|^{2} & =\left\langle(T-\lambda)^{*} x,(T-\lambda)^{*} x\right\rangle \\
& =\left\langle(T-\lambda)\left(T^{*}-\bar{\lambda}\right) x, x\right\rangle \\
& =\left\langle T T^{*} x, x\right\rangle-\left\langle\lambda T^{*} x, x\right\rangle-\langle\bar{\lambda} T x, x\rangle+|\lambda|^{2}\langle x, x\rangle \\
& \left.=\left.\langle | T^{*}\right|^{2} x, x\right\rangle-\lambda\langle x, T x\rangle-\bar{\lambda}\langle T x, x\rangle+|\lambda|^{2}\langle x, x\rangle \\
& \leq\left\langle\left(T^{* p} T^{p}\right)^{\frac{1}{p}} x, x\right\rangle-|\lambda|^{2}\langle x, x\rangle \leq\left\langle\left(T^{* p} T^{p}\right) x, x\right\rangle^{\frac{1}{p}}-|\lambda|^{2}\langle x, x\rangle=0 .
\end{aligned}
$$

Thus $(T-\lambda)^{*} x=0$.
2.10. Theorem. If T is an A_{p}^{*} class operator and $0 \in \sigma(T) \backslash \omega(T)$, then $0 \in \pi_{00}(T)$.

Proof. Let $0 \in \sigma(T) \backslash \omega(T)$, then T is a Weyl operator. Hence T is a Fredholm operator with indT $=0$. This yields that $\mathcal{R}(T)$ is close and $\operatorname{dim} \mathcal{N}(T)=\operatorname{dim} \mathcal{R}(T)^{\perp}$. We show that zero is the isolated eigenvalue of T. If zero is not eigenvalue of T, then $\operatorname{dim} \mathcal{N}(T)=0$. Therefore

$$
\operatorname{dim} \mathcal{R}(\mathrm{T})^{\perp}=0 \quad, \quad \mathcal{R}(\mathrm{~T})=\mathscr{H}
$$

so T is an invertible operator, this is a contradiction. Now let $0 \notin \operatorname{iso}(\sigma(\mathrm{~T}))$, we have

$$
\mathcal{N}(T) \subseteq \mathcal{N}\left(T^{*}\right)=\mathcal{R}(T)^{\perp}
$$

since $\operatorname{dim} \mathcal{N}(\mathrm{T})=\operatorname{dim} \mathcal{R}(\mathrm{T})^{\perp}$, so $\mathcal{N}(T)=\mathcal{R}(T)^{\perp}$. We consider \mathscr{H} and T as the following,

$$
\mathscr{H}=\mathcal{N}(T) \oplus \mathcal{N}(T)^{\perp} \quad T=\left(\begin{array}{cc}
0 & 0 \\
0 & B
\end{array}\right)
$$

because of the operator $B: \mathcal{N}(T)^{\perp} \rightarrow \mathcal{N}(T)^{\perp}$ is one to one and $\mathcal{N}(T)^{\perp}=\overline{\mathcal{R}(T)}=\mathcal{R}(T)$, we have

$$
\mathcal{R}(B)=\mathcal{R}(T)=\mathcal{N}(T)^{\perp}
$$

therefore B is a surjective operator, hence B is an invertible operator.
On the other hand $0 \notin \operatorname{iso} \sigma(T)$ and $\sigma(T)=\{0\} \cup \sigma(B)$, so there exists a sequence like $\left\{\lambda_{n}\right\}$ of $\sigma(B)$ such that $\lambda_{n} \rightarrow 0$, therefore $0 \in \sigma(B)$. This is a contradiction and the proof is complete.

In the next, we give an example that it clarifies the set of A_{p}^{*} - class operators are different from the set of A_{p} - class operators.
2.11. Example. We consider the infinite matrix operators T as follows,

$$
T=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \ldots \\
\frac{1}{\sqrt{8}} & 0 & 0 & 0 & 0 & \ldots \\
0 & \frac{1}{4} & 0 & 0 & 0 & \ldots \\
0 & 0 & \frac{1}{2} & 0 & 0 & \ldots \\
0 & 0 & 0 & \frac{1}{2} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right)
$$

Hence we get $T T^{*} \leq\left(T^{* 2} T^{2}\right)^{\frac{1}{2}}$ and $T^{*} T \not \leq\left(T^{* 2} T^{2}\right)^{\frac{1}{2}}$. Thus T is an A_{2}^{*} - class operator but T is not A_{2} class operator.
2.12. Remark. Note that if $T \in \mathcal{B}(\mathscr{H})$ is an invertible and T^{*}, T^{-1} are A_{2}^{*}-class operator, then by the Definition 2.5 we have
(2.12) $T^{-1} T^{*-1} \leq\left(T^{*-2} T^{-2}\right)^{\frac{1}{2}}$
and $T^{*} T \leq\left(T^{2} T^{* 2}\right)^{\frac{1}{2}}$, by taking the inverse of (2.12) we get $T^{*} T \geq\left(T^{2} T^{* 2}\right)^{\frac{1}{2}}$ this inequalities showed $T^{*} T=\left(T^{2} T^{* 2}\right)^{\frac{1}{2}}$, moreover

$$
|T|^{2}=\left|T^{* 2}\right|
$$

2.13. Remark. If T is an A_{p}^{*}-class operator then by the Theorem 2.9 we have $\mathcal{N}(T) \subset$ $\mathcal{N}\left(T^{*}\right)$. If T^{*} is an A_{p}^{*}-class operator then $\mathcal{N}\left(T^{*}\right) \subset \mathcal{N}(T)$. Therefore if T and T^{*} are A_{p}^{*}-class operators then we have $\mathcal{N}(T)=\mathcal{N}\left(T^{*}\right)$ and we get

$$
\overline{\mathcal{R}(T)}=\overline{\mathcal{R}\left(T^{*}\right)} .
$$

2.14. Remark. Note that if T is an A_{p}^{*}-class operator and T^{p} is A_{q}-class operator then T is $A_{p q}^{*}$-class operator, also if T^{*} is A_{p}-class operator and T^{p} is A_{q}^{*}-class operator then T is $A_{p q}^{*}$-class operator.

Acknowledgment. The authors would like to sincerely thank the referee for several useful comments.

References

[1] N.L.Braha, M.Lohaj, F.H. Marevei, Sh Lohaj, Some properties of paranormal and hyponormal Operators, Bulletin of Mathematical Analysis and Application (2010), no. 2, 23-361.
[2] I. H. Jeon, I.H. Kim, On Operators Satisfyng $T^{*}\left|T^{2}\right| T^{k} \geq T^{*}|T|^{2} T^{k}$, Linear Algebra Appl, 418 (2006), no. 2-3, 319-331.
[3] I.H. Kim, Weyls Theorem and Tensor Product For Operators Satisfyng $T^{* k}\left|T^{2}\right| T^{k} \geq$ $T^{* k}|T|^{2} T^{k}$, J. Korean. Math. Soc. 47 (2010), no. 2, 351-361.
[4] J.Pečarić, T. Furta, J. M. Hot and Y. sep, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb,2005.
[5] J.Weidmann, Linear Operators in Hilbert Spaces,Springer-Verlag, New York-Heidelberg, 1980.

[^0]: * Department of Mathematics, Payame Noor University, 19395-4697, Tehran, Iran. Also Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan 45195-313,Iran, Email: eskandari@znu.ac.ir
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan 45195313,Iran,
 Email:f.mirza@znu.ac.ir
 ${ }^{\ddagger}$ Department of Mathematics, Payame Noor University, 19395-4697, Tehran, Iran, Email:h.rahmatan@gmail.com

