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Abstract: The zero coupon bond pricing Vasicek and Cox-IngersollsR@&R) interest rate models are solved using the invariant
approach. The invariance criteria is employed on the liggarl) parabolic partial differential equations correspondimgiie Vasicek
and CIR models in order to perform reduction into one of the foe canonical forms. The invariant approach helps indfamming

the partial differential equation representing the Vasie®del into the first Lie canonical form which is the classiteat equation.
We also find that the invariant method aids in transformirgg @R model into the second Lie canonical form and with a prope
parametric selection, the CIR equation can be converteteditst Lie canonical form. For both the Vasicek and CIR msdele
obtain the transformations which map these equations rgdéat equation and also to the second Lie canonical forncdivgtruct

the fundamental solutions for the Vasicek and CIR modelshéae transformations by utilizing the well-known fundameaé solutions

of the classical heat equation as well as solution to thergbt@ canonical form. Finally, the closed-form analytisalutions of the
Cauchy initial value problems of the Vasicek and CIR modethk suitable choice of terminal boundary conditions are aleduced.

Keywords: Vasicek and CIR models, invariant approach, Lie symmetnygdémental solutions, cauchy problem.

1 Introduction

Much literature on the applications of Lie symmetries tdedintial equations are to be found since the earliest waoirks
Lie on the subject. In recent years, Lie group theoretic agghn has been applied to differential equations from firenci
mathematics and economics. One of the initial works has pediermed by Gazizov and Ibragimdi, in which the
authors have performed the symmetry analysis of the onemBianal Black-Scholes equation. God2flinvestigated
the same problem again using Lie theory to unearth furtredglms of the Black-Scholes and related models. Lo and Hui
in [3] utilized the Lie-algebraic approach for pricing moving fiiar options with time-dependent parameters. Mahomed
et al. [4] performed the complete classification of a bond pricing &goawith the use of the invariant approach.
Bakkaloglu et al. [5] worked on optimal investment-conguion problem with CEV model by invariant approach. Pooe
et al. [6], Izgi and Bakkaloglu[7],[8],[9] investigated the fundamental solutions to the zero-coupamd pricing
equations with the Lie symmetry analysis. In recent timles,group approach has been widely applied to other partial
differential equations of finance, for example, Naickerle{®0], lvanova et al[11], Liu and Wang[12], Caister et al.
[13], Sinkala[14] and an interesting topical review work by Hernandez eltlal.

The theory on bond-pricing models began in 1900 when thedRrarathematician Bacheli¢t6] deduced bond-pricing
on the assumption that stock prices follow a Brownian motiime works of Mertor[17] and Black and Schole€/d8]
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also opened a new era in the mathematical modelling of pnable finance. These models have been formulated in
terms of stochastic differential equations. Moreover, $blution space of stochastic models have rich behavior. For
example]zgi investigates the behavioral classification of sometsstic models in mathematical finance in [19]. On the
other hand, after certain assumptions these models may e written in the form of linear parabolic partial
differential equations (PDEs) with constant or variableftioients. The classical bond-pricing equation was iniaztl

by Vasicek[20], which was later modified by Cox et. &21], now known as the Cox-Ingersoll-Ross (CIR) Model.

A Lie symmetry group is used to construct symmetries of theeullying differential equations. Lie was the first who
initiated the group classification of differential equatso Lie classified scalar linear second-order PDEs in two
independent variables and developed a method for thegratien. One of the earlier studies that proposed the iaméari
approach to Fokker-Planck equations was made by JohnaithMahomed22]. Semi-invariants for thé1 + 1) linear
parabolic equations with two independent variables anddependent variable were derived[#2]. In addition, a joint
invariant equation was obtained for the linear parabolicagign and thé1+ 1) linear parabolic equation was reducible
via a local equivalence transformation to the one- dimeradibeat equation. They also proved necessary and sufficient
conditions for a scalar linegfl + 1) parabolic equation, in terms of the coefficient of the eaqumtto be reducible via
equivalence transformations to the classical heat equafiater, Mahomed[23] gave the complete invariant
characterization of a scalar line&t + 1) parabolic partial differential equation of one space \@daand one time
variable into four canonical forms. In the last few year itvariant approach has been successfully applied to some
interesting lineaf1+ 1) parabolic PDE$4,24.

In this study, we investigate the scalar linegk + 1) parabolic PDEs representing the classical Vasicek and
Cox-Ingersoll-Ross (CIR) models from financial mathensatite first briefly revisit the invariant criteria which can be
found in [23]. We employed this approach to show that the parabolic PDEshwhodels the Vasicek CIR models are
transformed into different Lie canonical forms. These sfarmations are further utilized to formulate the fundataén
solutions of these models. Finally, the closed-form sohgiof the Cauchy initial value problem for both the Vasicek a
CIR models are also obtained.

2 Vasicek and Cox-Ingersoll-Ross (CIR) bond pricing models

A bond price is a long-term contract under which the borropagrs the bond holder a known amount on a fixed date at
t =T, with T the expiration time of the option. The bond contract inckigeriodic payments of cash dividends also,
known as coupon, at fixed times during the life of the contrHdhere is no coupon, the bond is known agezo-
coupon bond

Suppose a zero-coupon bond yieKiglollars upon maturity at some future time shyWe denoteu(t, T), the price of
the bond at time < T. Whent = T , the bond is exactlX dollars, that isu(T,T) = X. Now the question arise here is
that how much it is worth wheh< T. This is the main question of the zero-coupon bond-pricirabfem. The bond
price also depends on the rate of interest in the market. iShigorporated with some nondeterministic functidh),
which is known as the instantaneous rate.

Two important models of the instantaneous rate which inm@i@ a number of empirically relevant characteristics of
interest rates are the Vasicek modgb] and the Cox-Ingersoll-Ross (CIR) moddlg]. In the Vasicek model it is
assumed that the instantaneous rétgis a solution of the Ornstein-Uhlenbeck process of the form

dx(t) = K [0 — x(t)] dt + odW(t), )
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with k [6 — x(t)] known as the drift term which represents the effect of pgllihe interest rate towards its long-term
mean with a magnitud@ proportional to the deviation of the interest rate from theam The parameter determines
the speed of the adjustment aikit) represents the standard Brownian motion.

On the other hand, in the CIR model, the instantaneous(Btés assumed to be governed by a stochastic process of the
form

dx(t) = k [0 —x(t)] dt+ o+/x(t)dW(t). 2
The price of a zero couparn(x,t), in the Vasicek model, satisfies the parabolic PDE

du 1 ,0%u au

E#—EO'E(—FK(Q—X)&—XU—O. €))
The CIR model satisfies the PDE given by

du 1 ,0% au

E—l—EXG @—FK(G—X)&—XU—O. 4

For both the Vasicek and CIR models, there is a terminal bayyncbndition, given by
ux, T)=1. (5)

We here call the PDE (3) as the Vasicek equation and the PDiE€4JIR equation.

3 Invariant criteria for linear parabolic equations

Here we give the main results fifg] on the invariant characterization of scalar lin€ha# 1) parabolic PDEs.

The scalar linear (1+1) parabolic PDE of one time and oneespadable is given by

du d°u du
E—a(t,X)Wﬁ’b(t,X)&ﬁ’C(t,X)u, (6)

wherea, b andc are the continuous functions bandx. The equivalence transformatiofis) of the parabolic PDE (6) is
an infinite group which comprises linear transformationthefdependent variable given by

u=o(t,x)u,o # 0, (7)
and invertible transformations of independent variables
t=0(t). X=Y(t.x).9# 0,ys #0, (8)

where ¢, ¢ and o are arbitrary functions with restrictions for invertitjliof the transformations and is the new
dependent variable. Two linear parabolic PDEs of the forjra(é equivalent to each other if one can be mapped to the
other by appropriate combinations of the equivalence teamsations (7) and (8).
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Lie proved that a scalar linear parabolic PDE (6) has the ¢anonical forms.

u_ o
ot 9’
du d%u A
o TebAro
2
% = % +c(X)u,c# 0,A/x?,
du d%
3t = g5 +OLXUCHEOA/KE. ©)

The heat equation, which is the first Lie canonical form, iasisntrivial symmetries as well as the the infinite number
of trivial superposition symmetries. The second Lie canalfiorm has four nontrivial symmetries. The third in getera
has two symmetries and the fourth has one nontrivial symniregeneral.

We now state the following theoren&g which provide invariant criteria for the reduction of sgalmear (1+1)
parabolic PDE (6) into different Lie canonical forms giver&q. (9).

Theorem 1. The scalar linear (1+1) parabolic PDE (6) is reducible viawggalence transformations (7) and (8) to the
heat equation

ou  o%u
— = 1
ot Ix2’ (10)
if and only if the coefficients of the parabolic PDE (6) sadisfihe invariant condition
2Ly +2My — Ny =0, (11)
where
1 1 1 1 1 1
L =[al2[|a|2dx, M = |a[2[|a|2d(b/2a)]x. N = |a|257(1/[al?), (12)
with J is

J=c— X=X (13)

u A
=t ou (14)

where A is a nonzero constant, if and only if the coefficiehth® parabolic PDE (6) satisfy the invariant equation,
provided that condition (11) does not hold,

"~ dx - dx
20Ly + 20My — 10N, + 1O[|a|71Mx]x/W_Sual%NX]X/—l
. al2 .

af
2
+10aft L [ % + (L <./ ﬂ)

a2 a2

2 2
+llallal? M ( / |:1_|X> ~ Slal? el Ny < / |:1_|X> ~o (15

where L M, N and J are as given in (12) and (13).
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Theorem 3.The scalar linear (1+1) parabolic equation (6) which doeg satisfy the conditions of Theorems 1 and 2 is
equivalent to the third Lie canonical form

. LA (16)

if and only if the coefficients of parabolic equation (6) sfytrthe invariant criterion, provided that the conditiori4§ and

(15) do not apply,
dx
[ at/Za 2/|a| <0t2/|a| )dx} =0 a7

Theorem 4.The scalar linear (1+1) parabolic equation (6) is equivalémthe fourth Lie canonical form

ou

——@er)?t_)u_ (18)
ot o T

if and only if the coefficients of PDE (6) satisfy the invatiaandition, provided that the conditions (11) and (14) doé no

hold,
dx
[ dt/Za 2/|a| <0t2/|a| )dX] 70 (19)

Theorem 5.The linear parabolic equation (6) is reducible to the classiheat PDE(10) via the transformations

|
||

x|
H

o(t),
/qoatx lzderﬁ'(t),
. 2
_ 1 b(t, 1 d
u:v(t)[a(t,x)]’élueXF{/ Za(ztx)z)dx—éq—“z </ " ;‘)%>
©dx 1[3 ©dx
2w alt? ot </ alt.x) )dXiEE/ Al 0
whereg and a have the same sign, apdp and v satisfy

R L [ =2 ) ax
ot 2atx)  2J) a,xi 02 \J at,x?

NI

H </ | a(t(,j;()% ) o </ | a(t(,j;()% ) o )
in which J is as in Eq. (13) and
0-554(3),
-sithad(8)
(t)=%%+%§+%. (22)

The functions fg and h are constrained by the relation defined in Eq. (21).reductions into the other Lie canonical
forms, the transformation relations are derived1g|.
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4 Invariant solutions of the Vasicek equation

In this section, we apply the above theorems to the Vasicek @&). We use the invariant approach encapsulated in the
theorems above to simply and elegantly map the PDE (3) toltieecanonical forms.

4.1 Reduction to the heat equation

With the comparison of Vasicek PDE (3) to the scalar linearllparabolic PDE (6), the coefficierast, x) ,b(t,x) and
c(t,x) are written as

a(t,x) = —%02,
b(t,x) = —k (8 —x),
c(t,x) = x. (23)

Since the coefficients of the bond price PDE (3) are indepanofet, so we haveM = N = 0. Therefore it is easy to
evaluate] as given in Eq. (13) for the Vasicek equation (3). Indeed it is

1ox— X4 2 0-w2. (24)

2 202
The invariant condition (11) for reduction to the heat etgprabecomes

Thus obviously the invariant condition (11) is identicadtisfied and we get reduction of the Vasicek PDE (3) to the hea
equation.
4.2 Transformation formulae and fundamental solutions

We now find the transformations which reduce the PDE (3) tohth&t equation. These transformations are further
utilized to obtain the fundamental solutions of the VasiP&ke (3).

Making use of the coefficients defined in Eq. (23) in Egs. (210 @2) in Theorem 5, we find

K
n=-2_2
9= "5~ 7
K K262
=225
o) = cl\/%tan<\/§t> ,
L (25)

(© 2017 BISKA Bilisim Technology
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with c;, A= —8f(t) andB = g(t)/2 the constants of integration. With the use of the valueb®ftnctions from Eq. (25)
into Eq. (20), the transformations that reduce the paralegjuation (3) into the heat equation are

e 2,/c1B

+

acos<\/§t) Acos<\/7t)

u= }02 7%ex }Incos \/Et f%tan ét +B—2t+c u

—\2 P2 2 A2 20 ) TAlT®
_ K gy L \/E 2, 20 \/K

exp[ 202(9 X) 157 <\/2_Atan< zt))x ia\/_tan X+Cal, (26)

whereg; (i = 1,...,4) are the constants of integration. The transformed ternesioradlition for Vasicek equation is written

u(x,T):exp[ —(0—x)%— 412 <\/2_Atan<\/§T>>x iaz—\/_tan<\/KT) X+ Cy
<%02)zexplélncos<\/§T> B;A\?tan<\/§T>+zB—:T+03 .

We now construct the fundamental solutions of the Vasicek IP8). We have seen that there exist transformations (26)
that reduce the PDE (3) to the classical heat equation. €kidtris used in the construction of the fundamental satutio

of the Vasicek equation.

x|
I

C2,

as

)

(27)

The fundamental solution of the heat equation is well-knawd is given in barred coordinates[8}

1 %2
0= ﬁeXp[Zf]' (28)

We seek the fundamental solution for the PDE (3). The saly@8) is transformed by means of (26). Making use of Egs.
(28) and (29), the solution(x,t) is written as

1,\% 1 e
u(x,t) = (502) ﬁexp[—ﬁ]
exp l {%‘2(9 —x)?— riz <\/2_Atan<\/§t>> X2+ z—j_tan<\/xt> X+ c4}
exp [ {%In cos<\/§t> — \/_B—Zigtan<\/§t> + ZB_;t +cs}

(29)

(© 2017 BISKA Bilisim Technology
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Finally with substitution of the values dfandx from Eq. (26) into Eq. (29), the solution becomes

1 ,\4 1 1 A B2 A\ B?
u(x,t) = 50 exp|— Elncos Et fﬁtan Et +ﬁt+03
2\/c \/Etan( At) n o
1V A 2

I L. \/E 2, 2B \/E

exp { 5520 =% 75 <\/2_Atan< 2t>>x iaﬁtan St | X+Ca
- ”-
£V, 2VEB L
( acos<\/§t> Acos(\/gt) 3

401\/%tan(\/§t)

Now we look for another form of solution for the Vasicek PDB (®der the same set of transformation as for the heat
equation. Another form of solution in series of the heat ¢igug25]

u= nibnexp{— (?)Zkti sin (#X), (31)

which converges uniformly for & x <1, t > 0. The solution (31) is transformed by means of transforoma{26) and is
given by
1 ,\4 & 2
_ (1,2 _(hr in( 1T
u(x,t) = <20 ) nZlbnexp[ ( i ) kti sm< i )

exp[— {—%(9 —x)2— riz (x/_ZAtan<\/§t>> X2+ %tan(@t) x+c4}
exp l— {%Incos(@t) — %tan(@t) + ZB—:t +03}

Finally by making use of the values bandx from (26), the solutiom(x,t) in Eq. (32) takes the form

u(x,t) = <%02) AQXp[ {%Incos(@t) - %tan( gt> + §t+c3}
exp l {Zé‘z(ex)2 riz <\/2_Atan<\/§t>> X2+ %tan(@t) X+ 04}

nn(i \/EA X+ Zﬁi +c2>
nilbnexpl— (?)chl\/%tan@/ét)]ilsin Gms(\/;) | A S(\/;t> . (33)

(30)

exp|—

(32)

(© 2017 BISKA Bilisim Technology
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4.3 Exact solution via the Cauchy problem of the heat equnatio

In this section, we derive the closed-form analytical Solubf the Cauchy problem (3) corresponding to the boundary
condition (5) for the Vasicek model. We make use of the appatgresults on the Cauchy problem for classical heat
equation to obtain the solution to our problem.

In the previous section, we have found the equivalence foemations which map the Vasicek equation (3) into the
classical heat equation. These transformations are dirivieq. (26) which reduce the Cauchy problem (3) subject}o (5
for the Vasicek model into the standard heat Cauchy proldéran by

2

Jdu oJ<u
o o (34
0% T) = (%), (35)

for some functiorp providedg is “well-behaved”. The solution to (34) and (35) is well-kmo[26] and is given by

e (X )2
0 = \/_ / o { = | de. (36)
We need to transform the solution (36) into the solution ¢f &ibstitutingu(x;t) from Eq. (36) into Eq. (26), we obtain
u(x,t) = ( > /(p exp[ E) }df
D BRSPS \/E 2 2B \/Z
expl { 5520 =X =75 <\/2_Atan< 2t>> + P~ tan t)x+cq
exp|— }Incos \/Et —B—Ztan \/Et +B—2t+c
P72 2" /a3 2 ) TaA T
whereg@(&) is found from Eq. (26) By keeping in mind the boundary comfitf{27), we have
B 1 AL\ ),e. 2B \/K
qo(E)expl 520~ x)2 — 707 <\/2_Atan<\/;T>> i—a\/_tan< T) X+ Cq
1,\% [1 \/K B2 \/K B2
(EU ) exp élncos ET — Etan ET +ﬁT +c3] .

Finally, using the values of andt from Eq. (26) into Eq. (37), the solutiar(x,t) takes the form

37)

(38)

e | gy
1) oo T

exp[— {—%(Q—X)z— 4%2 <\/2_Atan<\/§t)) X2+ 02—5_tan<\/K ) X+ c4}
exp [— {%Incos(@t) — \/_B—z;tan<\/§t) + ZB—:t +03}

u(x,t) =

(39)
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with @(&) given in Eg. (38). One can deduce the value of the integralgn(B9) in terms of the Kummer confluent
hypergeometric functions.

5 Invariant solutions of the Cox-Ingersoll-Ross (CIR) equ#éion

In this section, we employ the invariant approach to obtagndlosed-form solution of a parabolic PDE derived by Cox-
Ingersoll-Ross and given in Eq. (4). The PDE (4) is known a@3HR equation in the literature.

5.1 Reduction of the CIR equation to the heat equation

We now use the theorem of the invariant approach to find thevalgace transformations which reduce the PDE (4) to
the Lie canonical forms. Making comparison of PDE (4) to tbalar linear (1+1) parabolic partial differential equatio
(6), the coefficients functiors(t, x), b(t,x) andc(t,x) are written as:

a(t,x) = —%ozx,
b(t,x) = —k (8 —X),
c(t,x) =x. (40)

Making use of Theorem 1, the values of the parameters fortwthie PDE (4) can be mapped to the heat equation are
obtained. First we have to evalugktas given in Eq. (13) for the CIR equation (4). It is given by

Iy K+K(X—9)+ 3 02+K2(X—9)2
T2 2X 32 x 202x

(41)

Since the coefficients of the zero-coupon bond price PDE r@jradependent af, M andN are zero in the conditions
defined in Theorem 1. For the valuebgiven in Eq. (41), the invariant conditiqid 1) for reduction to the heat equation
becomes

Ly = _g (0% +2k00% — 2k26%) x 3. (42)

From Eq. (42), we can deduce
o2 — —8k0+4k0

-3 ’

oi(i=1,2,3,4) = lz\/K:e,z\/K:e,zﬂ, 2\/@] . (44)

The values ot in Eq. (44) give the non-trivial cases for which the invatiaandition (11) is satisfied which results in
the reduction of the CIR equation (4) to the heat equation.

(43)

which results in

5.2 Transformation formulae and fundamental solutions

Here we compute the transformations which reduce the PDB (e heat equation. These transformations are further
utilized to obtain the fundamental solutions of the CIR dique(4). Making use of the coefficients defined in Eq. (40) in

(© 2017 BISKA Bilisim Technology
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Egs. (21) and (22) in Theorem 5, we have

o) = cl\/gtan<\/§t) )
B(t) = Cz/ a ;
cos<\/§t> Incos<\/§t>

1 A z
u(t) =exp Elncos<\/;t>—% t 5 +Bt+cal, (45)

el )

with ¢ (i=1,2,3,4), A= —8f(t) andB = h(t) are the constants of integration aidakes one of the values given in Eq.
(44). With the use of the values of the functions from Eq. @5 Eg. (20) and simplification, the transformations that
reduce the parabolic equation (4) into the heat equatioolateéned as follows

=C \/?tan \/Et

=L A 2 ;
T

— 1 2v/2¢C1 \/)_(+02/ d
t

t
acos(\/gt) cos( %t) In cos(\/gt)
1 ,\4 |1 A\ & /T dt
ax,t) = <—02x> exp —Incos<\/jt> - / 5 +Bt+Cs
2 2 2 4 J;
[Incos(\/gt)]

uexp %(Glnx—x)—\{j—sztan<\/§t) xiL\/i , (46)

A
oln cos<\/;t>
whereg; (i = 1,...,4) are the constants of integration. The transformed terncioiadlition for the CIR equation is written
1,\ 4 [1 A
ux,T) = <§02x> exp lé Incos<\/;T> +BT+cy

exp %(Blnx—X)—\/G—sztan<\/§T> xiLﬁ : (47)

oln cos<\/§T)

|

+Cs,

x|

as:
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Following the same methodology as adopted previously fer\tasicek model, the fundamental solutions of the CIR
equation (4) for the case of reduction into the heat equatiater the transformations (46) are given by

1 A 2 7 dt
exp|— élncos<\/;t> -8 5 +Bt+cy
2

exp|— %(Blnx—x)—\{j—sztanO/ét)xiL\/} ,

3
A
alncos(\/;t)
-
42/

T dt
ocos<\/§t> \/)_(Jr e ft cos(@t) In cos(@t) - C3)
4c, \/% tan ( \/gt)

exp|— (48)

and

42/

N Y +c)
(}sz)z isin ( UCOS(\E‘) o COS<\/;t> |ncos<\/;> 3
2 n=1

u(x,t) =

exp|— %(elnxx)\/a—sztanQ/ét)xiLﬁ . (49)

5.3 Reduction to the second Lie canonical form

Now we focus on the situation when the PDE (4) is equivalerthéosecond Lie canonical form (14). For this case we

have
—8k0+4k0
-3

0%+ = Ly #0. (50)

(© 2017 BISKA Bilisim Technology
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Using the same methodology adopted in the previous sectioasransformations that reduce the parabolic equatipn (4
into the second Lie canonical form are

u(t) =eftte cos(@t) , (51)

which results in

u= cos<\/§t> (%azx)f1 uexp[Bt + c;]
expl%(@lnxx)ﬁ—?‘tan(@t) x] , (52)

with ¢1, ¢z, A= —8f(t) andB = h(t) are the constants of integration

5.4 The fundamental solutions

We now construct the fundamental solutions when the CIR temuéd) is reduced into the second Lie canonical form.
We have deduced the transformations (52) which reduce ttie(B]Xo the second Lie canonical form, which is given by

au  d%u A

a_li_:ﬁ+)_(2u' (53)

We first derive the solution for the PDE (43) and then use taesfiormations (52) to construction of the fundamental
solution of the above-mentioned CIR problem.

In order to derive the solution for PDE (53), we make use ofrttethod of separation of variables. We assume the
solution of PDE (53) of the form

0%, = X (3T (©). (54)
Making use of Eq. (54) into Eq. (43) and separating, we obtain

.
dd—t—+)\T:0, (55)

d?x /A
d?ﬁL(X?ﬁL)\)XO, (56)
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whereA > 0 is the separation constant.

Case t whenA =0
For this case the general solution of the ODEs (55) and (%8) ar

T(t) =Ky, (57)
X(X) = Kzﬁ(lﬂ/lf%) + KST%(L\/LM), (58)
with K1, Kz andK3 the constants of integration. Thus the solution of PDE (53yritten as

u(x,t) = Ky [Kzﬁ(lf\/m) + sté(lf\/m)} : (59)

In order to find the fundamental solution for the PDE (4) thiegon (59) is transformed by means of (52). Making use
of Egs. (59) and (52), the solutiarix,t) is written as

u(xt) = Kq [sz—% (1-VI-3A) | 5 3(1 \/mw

<cos<\/§t>> <%) ’ exp[— {Bt+cy}]
expl{%(@lnxx)ﬁ—?‘tan(@t) XH . (60)

Finally, with the substitution of the values bandx from (52) into Eq. (60), the solution (60) for the CIR equati@)
takes the form

3(1-vI-4A) -3(1-vi-4A)

u(xt) =Kz [Kz iﬂ\/i +Kz iﬂ\/i

acos( %t) acos(\/ét)
(cos(@t) ) 7 (%sz) % exp[— {Bt+cy}]
expl{%(@lnxx)ﬁ—?‘tan(@t) X}‘| . (61)

Case Il: whenA >0
For this case the general solution of the ODE (55) is

NI

T(t) = Kyiexp(—At). (62)
The general solution of the homogenous equation (56) is ésge[27])
X(X) = [KZ\/;?/ (%\/14,% ﬁi) + KaV/x# <%\/14A; \/Xzﬂ , (63)

whereKz, K> andKjz are the constants of integration and and% are Bessel functions of the first and second kind,
respectively (see, e.g28)). Thus the separable solution of the second Lie canonical {63) is given by

a(xt) = Ky exp(—At) [KZ\/;?/ <%\/1—4A; \FM) + KaV/x# (%m \/Xiﬂ : (64)
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To find the fundamental solution for the PDE (4), the solu(i@4) is transformed by means of (52). Using Egs. (64) and
(52), the solutionu(x,t) is given by

) = Ksoxp A0 [Kev & (SVITAVAR) +ovie ( SV aAVIR)|

-1 3
(cos(@t)) (%azx) eXp[{Bt+cz}]eXp[{%(9lnxX)\{J—Z_ZAtan<\/§t>xH. (65)
Finally using oft andxfrom (52) into Eq. (65), the solution(x,t) takes the form
u(xt) = Kiexp| —Ac \/?tan \/Et Ko | +——2 Yy oV W e W
IR TEAE ) ()P o)
2 2

22 1 127
K |2 2Y2@ SVI=4AVA V20,

O'COS(\/%'[) O'COS(\/%'[)
<cos<\/§t> ) N (%sz) : exp[— {Bt+cy}]exp l— {%(9 InX—x) — \{j—z_zAtan (@t) XH . (66)

5.5 Solution via the Heat Cauchy problem

2\/5(Cl iZ\/Z(C]_

In this section, we construct the fundamental solution ef @auchy problem (4) and (5) for the CIR model. In the
previous section, we have found the equivalence transfisngawhich map the PDE (4) to the classical heat equation.
We further utilize these transformations for constructibthe fundamental solutions of the underlying model.

The transformations are derived in Eq. (46) which reduceGhechy problem (4) and (5) for the CIR model into the
standard heat Cauchy problem given in Egs. (34) and (35)s®h#ion to the Cauchy problem (34) and (35) is given by.

Y 7)2
a0 = 5= [ n@e| -5 az, ©7)

for some functiom . We have to transform the solution (67) into the solutiorhef €IR equation (4). We substituiéx,t)
from Eq. (67) into Eg. (46), to obtain

ot o] o) 20 ot
2

+oo — 2
exp|— %(Glnx—x)—\{j—sztan<\/§t) X4 - V2cs X %T'O/OQ(Z)eXp[_(X 4t_5) }dZ.

ol cos(\/§t>

> +Bt+c4

(68)
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We findn (<) in Eq. (68). By keeping in mind the condition (47), we have

n) = (%azx) e exp E Incos<\/§T> +BT+cy

V2A A V2
exp %(Glnxx)Ftan<\/;T> X+ ﬁ\/ﬁ - (69)
2

olnco

Finally, with the insertion of the values &fandt from Eq. (46) into Eq. (68), the solution is written as

1 A g [T dt
u(x,t) =exp|— 5Incos<\/;t) =3 5 +Bt+Cs

)

exp|— %(elnxfx) - \/G—sztan<\/§t> X+ ﬁﬁ

a|ncos(\/§t)

1, * 1
(50
2\/01 %tan( %t)n
_ .
3 (izi‘/ﬁéﬁﬂsz - A +C3—Z>
f/’)(f)exp _ ( 2t) Zg_\/;>l 5( 7t> dz. (70)

wheren({) is defined in Eq. (69). One can deduce the value of the intégr@Oo) in terms of the Kummer confluent
hypergeometric functions and one can also perform the nuoeléntegration.

6 Concluding remarks

The class of lineafl+ 1) parabolic partial differential equations (PDESs) for thesi¢ak and Cox-Ingersoll-Ross (CIR)
models of financial problems are investigated from the vigwpof the invariant approach. The classification of these
PDEs depend on Lie’s classification results of parabolicatiqns and the use of transformation formulae. This fact
substantially simplified the task of obtaining the Cauchlgons of the models under question. The invariant method
enabled us to compute the equivalence transformationswhituced the underlying class of PDEs to the different Lie
canonical forms.

For the case of the Vasicek model, we derived the transféomsaformulae which reduced the Vasicek equation (3) into
the first Lie canonical form, which is the heat equation. Ehémnsformations are further utilized to obtain the

fundamental solutions of the Vasicek equation by employtirgwell-known fundamental solutions of the heat equation.
For the CIR model (4), we have shown that it can be mapped bysthg the appropriate values of the parameters to the
first Lie canonical form. Otherwise it is mapped to the sedoiedccanonical form. For both the cases of the heat equation
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and the second Lie canonical form, we derived the equivaletnansformations and obtained the closed-form
fundamental solutions of the CIR equation (4).

The use of invariant analysis of parabolic PDEs to obtain dbkitions of the corresponding Cauchy problems is
significant. Therefore, using the invariant approach, theed-form solutions of the Cauchy problem for the Vasiaedt a
Cox-Ingersoll-Ross (CIR) models with suitable choice ofrtmal conditions are derived for the first time. The solntio
process involved transforming the Cauchy initial valuehpems into the standard heat Cauchy problem and then taking
advantage of the well-known solution to the Cauchy probléthe heat equation.

Also to note here is that invariant criteria utilized can k&eaded to other parabolic models which transform not omly t
the heat equation but to other canonical forms as well.
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