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Abstract: The zero coupon bond pricing Vasicek and Cox-Ingersoll-Ross (CIR) interest rate models are solved using the invariant
approach. The invariance criteria is employed on the linear(1+1) parabolic partial differential equations corresponding to the Vasicek
and CIR models in order to perform reduction into one of the four Lie canonical forms. The invariant approach helps in transforming
the partial differential equation representing the Vasicek model into the first Lie canonical form which is the classical heat equation.
We also find that the invariant method aids in transforming the CIR model into the second Lie canonical form and with a proper
parametric selection, the CIR equation can be converted to the first Lie canonical form. For both the Vasicek and CIR models, we
obtain the transformations which map these equations into the heat equation and also to the second Lie canonical form. Weconstruct
the fundamental solutions for the Vasicek and CIR models viathese transformations by utilizing the well-known fundamental solutions
of the classical heat equation as well as solution to the second Lie canonical form. Finally, the closed-form analyticalsolutions of the
Cauchy initial value problems of the Vasicek and CIR models with suitable choice of terminal boundary conditions are also deduced.
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1 Introduction

Much literature on the applications of Lie symmetries to differential equations are to be found since the earliest worksof

Lie on the subject. In recent years, Lie group theoretic approach has been applied to differential equations from financial

mathematics and economics. One of the initial works has beenperformed by Gazizov and Ibragimov[1], in which the

authors have performed the symmetry analysis of the one-dimensional Black-Scholes equation. Goard[2] investigated

the same problem again using Lie theory to unearth further insights of the Black-Scholes and related models. Lo and Hui

in [3] utilized the Lie-algebraic approach for pricing moving barrier options with time-dependent parameters. Mahomed

et al. [4] performed the complete classification of a bond pricing equation with the use of the invariant approach.

Bakkaloğlu et al. [5] worked on optimal investment-consumption problem with CEV model by invariant approach. Pooe

et al. [6], İzgi and Bakkaloğlu[7], [8], [9] investigated the fundamental solutions to the zero-couponbond pricing

equations with the Lie symmetry analysis. In recent times, the group approach has been widely applied to other partial

differential equations of finance, for example, Naicker et al. [10], Ivanova et al.[11], Liu and Wang[12], Caister et al.

[13], Sinkala[14] and an interesting topical review work by Hernández et al.[15].

The theory on bond-pricing models began in 1900 when the French mathematician Bachelier[16] deduced bond-pricing

on the assumption that stock prices follow a Brownian motion. The works of Merton[17] and Black and Scholes[18]
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also opened a new era in the mathematical modelling of problems in finance. These models have been formulated in

terms of stochastic differential equations. Moreover, thesolution space of stochastic models have rich behavior. For

example,̇Izgi investigates the behavioral classification of some stochastic models in mathematical finance in [19]. On the

other hand, after certain assumptions these models may havebeen written in the form of linear parabolic partial

differential equations (PDEs) with constant or variable coefficients. The classical bond-pricing equation was introduced

by Vasicek[20], which was later modified by Cox et. al.[21], now known as the Cox-Ingersoll-Ross (CIR) Model.

A Lie symmetry group is used to construct symmetries of the underlying differential equations. Lie was the first who

initiated the group classification of differential equations. Lie classified scalar linear second-order PDEs in two

independent variables and developed a method for their integration. One of the earlier studies that proposed the invariant

approach to Fokker-Planck equations was made by Johnpillaiand Mahomed[22]. Semi-invariants for the(1+1) linear

parabolic equations with two independent variables and onedependent variable were derived in[22]. In addition, a joint

invariant equation was obtained for the linear parabolic equation and the(1+1) linear parabolic equation was reducible

via a local equivalence transformation to the one- dimensional heat equation. They also proved necessary and sufficient

conditions for a scalar linear(1+ 1) parabolic equation, in terms of the coefficient of the equation, to be reducible via

equivalence transformations to the classical heat equation. Later, Mahomed[23] gave the complete invariant

characterization of a scalar linear(1+ 1) parabolic partial differential equation of one space variable and one time

variable into four canonical forms. In the last few years, the invariant approach has been successfully applied to some

interesting linear(1+1) parabolic PDEs[4,24].

In this study, we investigate the scalar linear(1 + 1) parabolic PDEs representing the classical Vasicek and

Cox-Ingersoll-Ross (CIR) models from financial mathematics. We first briefly revisit the invariant criteria which can be

found in [23]. We employed this approach to show that the parabolic PDEs which models the Vasicek CIR models are

transformed into different Lie canonical forms. These transformations are further utilized to formulate the fundamental

solutions of these models. Finally, the closed-form solutions of the Cauchy initial value problem for both the Vasicek and

CIR models are also obtained.

2 Vasicek and Cox-Ingersoll-Ross (CIR) bond pricing models

A bond price is a long-term contract under which the borrowerpays the bond holder a known amount on a fixed date at

t = T, with T the expiration time of the option. The bond contract includes periodic payments of cash dividends also,

known as coupon, at fixed times during the life of the contract. If there is no coupon, the bond is known as azero-

coupon bond.

Suppose a zero-coupon bond yieldsX dollars upon maturity at some future time sayT. We denoteu(t,T), the price of

the bond at timet 6 T. Whent = T , the bond is exactlyX dollars, that is,u(T,T) = X. Now the question arise here is

that how much it is worth whent < T. This is the main question of the zero-coupon bond-pricing problem. The bond

price also depends on the rate of interest in the market. Thisis incorporated with some nondeterministic functionx(t),

which is known as the instantaneous rate.

Two important models of the instantaneous rate which incorporate a number of empirically relevant characteristics of

interest rates are the Vasicek model[15] and the Cox-Ingersoll-Ross (CIR) model[16]. In the Vasicek model it is

assumed that the instantaneous ratex(t) is a solution of the Ornstein-Uhlenbeck process of the form

dx(t) = κ [θ − x(t)]dt+σdW(t), (1)
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with κ [θ − x(t)] known as the drift term which represents the effect of pulling the interest rate towards its long-term

mean with a magnitudeθ proportional to the deviation of the interest rate from the mean. The parameterκ determines

the speed of the adjustment andW(t) represents the standard Brownian motion.

On the other hand, in the CIR model, the instantaneous ratex(t) is assumed to be governed by a stochastic process of the

form

dx(t) = κ [θ − x(t)]dt+σ
√

x(t)dW(t). (2)

The price of a zero couponu(x, t), in the Vasicek model, satisfies the parabolic PDE

∂u
∂ t

+
1
2

σ2 ∂ 2u
∂ 2x

+κ(θ − x)
∂u
∂x

− xu= 0. (3)

The CIR model satisfies the PDE given by

∂u
∂ t

+
1
2

xσ2 ∂ 2u
∂ 2x

+κ(θ − x)
∂u
∂x

− xu= 0. (4)

For both the Vasicek and CIR models, there is a terminal boundary condition, given by

u(x,T) = 1. (5)

We here call the PDE (3) as the Vasicek equation and the PDE (4)the CIR equation.

3 Invariant criteria for linear parabolic equations

Here we give the main results of[18] on the invariant characterization of scalar linear(1+1) parabolic PDEs.

The scalar linear (1+1) parabolic PDE of one time and one space variable is given by

∂u
∂ t

= a(t,x)
∂ 2u
∂x2 +b(t,x)

∂u
∂x

+ c(t,x)u, (6)

wherea,b andc are the continuous functions oft andx. The equivalence transformations[18] of the parabolic PDE (6) is

an infinite group which comprises linear transformations ofthe dependent variable given by

ū= σ(t,x)u,σ 6= 0, (7)

and invertible transformations of independent variables

t̄ = φ(t), x̄= ψ(t,x), φ̇ 6= 0,ψx 6= 0, (8)

whereφ , ψ and σ are arbitrary functions with restrictions for invertibility of the transformations and ¯u is the new

dependent variable. Two linear parabolic PDEs of the form (6) are equivalent to each other if one can be mapped to the

other by appropriate combinations of the equivalence transformations (7) and (8).
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Lie proved that a scalar linear parabolic PDE (6) has the fourcanonical forms.

∂u
∂ t

=
∂ 2u
∂x2 ,

∂u
∂ t

=
∂ 2u
∂x2 +

A
x2 u,A 6= 0,

∂u
∂ t

=
∂ 2u
∂x2 + c(x)u,c 6= 0,A/x2,

∂u
∂ t

=
∂ 2u
∂x2 + c(t,x)u,c 6= 0,A/x2. (9)

The heat equation, which is the first Lie canonical form, has six nontrivial symmetries as well as the the infinite number

of trivial superposition symmetries. The second Lie canonical form has four nontrivial symmetries. The third in general

has two symmetries and the fourth has one nontrivial symmetry in general.

We now state the following theorems[18] which provide invariant criteria for the reduction of scalar linear (1+1)

parabolic PDE (6) into different Lie canonical forms given in Eq. (9).

Theorem 1.The scalar linear (1+1) parabolic PDE (6) is reducible via equivalence transformations (7) and (8) to the

heat equation
∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 , (10)

if and only if the coefficients of the parabolic PDE (6) satisfies the invariant condition

2Lx+2Mx−Nx = 0, (11)

where

L = |a| 1
2 [|a| 1

2 Jx]x, M = |a| 1
2 [|a| 1

2 ∂t(b/2a)]x. N = |a| 1
2 ∂ 2

t (1/|a|
1
2 ), (12)

with J is

J = c− bx

2
+

bax

2a
+

axx

4
− 3

16
a2

x

a
− at

2a
− b2

4a
. (13)

Theorem 2.The scalar linear (1+1) parabolic PDE (6) is reducible to thesecond Lie canonical form

∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 +

A
x̄2 ū, (14)

where A is a nonzero constant, if and only if the coefficients of the parabolic PDE (6) satisfy the invariant equation,

provided that condition (11) does not hold,

20Lx+20Mx−10Nx+10[|a| 1
2 Mx]x

∫

dx

|a| 1
2

−5[|a| 1
2 Nx]x

∫

dx

|a| 1
2

+10[|a| 1
2 Lx]x

∫

dx

|a| 1
2

+[|a| 1
2 [|a| 1

2 Lx]x]x

(

∫

dx

|a| 1
2

)2

+[|a| 1
2 [|a| 1

2 Mx]x]x

(

∫

dx

|a| 1
2

)2

− 1
2
[|a| 1

2 [|a| 1
2 Nx]x]x

(

∫

dx

|a| 1
2

)2

= 0, (15)

where L, M, N and J are as given in (12) and (13).
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Theorem 3.The scalar linear (1+1) parabolic equation (6) which does not satisfy the conditions of Theorems 1 and 2 is

equivalent to the third Lie canonical form
∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 + c̄(x̄)ū, (16)

if and only if the coefficients of parabolic equation (6) satisfy the invariant criterion, provided that the conditions (11) and

(15) do not apply,
∂
∂ t

[

J+
∂
∂ t

∫

b
2a

dx− 1
2

∫

1

|a| 1
2

(

∂ 2

∂ t2

∫

dx

|a| 1
2

)

dx

]

= 0. (17)

Theorem 4.The scalar linear (1+1) parabolic equation (6) is equivalent to the fourth Lie canonical form

∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 + c̄(x̄, t̄)ū, (18)

if and only if the coefficients of PDE (6) satisfy the invariant condition, provided that the conditions (11) and (14) do not

hold,
∂
∂ t

[

J+
∂
∂ t

∫

b
2a

dx− 1
2

∫

1

|a| 1
2

(

∂ 2

∂ t2

∫

dx

|a| 1
2

)

dx

]

6= 0. (19)

Theorem 5.The linear parabolic equation (6) is reducible to the classical heat PDE(10) via the transformations

t̄ = φ(t),

x̄=±
∫

[

φ̇a(t,x)−1]
1
2 dx+β (t),

ū= ν(t) [a(t,x)]−
1
4 uexp[

∫

b(t,x)
2a(t,x)

dx− 1
8

φ̈
φ̇

(

∫

dx

a(t,x)
1
2

)2

− 1
2

∫

1

a(t,x)
1
2

∂
∂ t

(

∫

dx

a(t,x)
1
2

)

dx± 1
2

β̇
φ̇

1
2

∫

dx

a(t,x)
1
2

]. (20)

whereφ̇ and a have the same sign, andφ , β and v satisfy

φ̇ c̄= J+
∂
∂ t

∫

b(t,x)
2a(t,x)

dx− 1
2

∫

1

a(t,x)
1
2

∂ 2

∂ t2

(

∫

dx

a(t,x)
1
2

)

dx

+ f (t)

(

∫

dx

a(t,x)
1
2

)2

+g(t)

(

∫

dx

a(t,x)
1
2

)

+h(t), (21)

in which J is as in Eq. (13) and

f (t) =
1
16

φ̈2

φ̇2
− 1

8

(

φ̈
φ̇

)

t
,

g(t) =±1
4

φ̈
φ̇

β̇
φ̇

1
2

± 1
2

(

β̇
φ̇

1
2

)

t

,

h(t) =
1
4

φ̈
φ̇
+

1
4

β̇ 2

φ̇
+

ν̇
ν
. (22)

The functions f, g and h are constrained by the relation defined in Eq. (21). Forreductions into the other Lie canonical

forms, the transformation relations are derived in[18].
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4 Invariant solutions of the Vasicek equation

In this section, we apply the above theorems to the Vasicek PDE (3). We use the invariant approach encapsulated in the

theorems above to simply and elegantly map the PDE (3) to their Lie canonical forms.

4.1 Reduction to the heat equation

With the comparison of Vasicek PDE (3) to the scalar linear (1+1) parabolic PDE (6), the coefficientsa(t,x) ,b(t,x) and

c(t,x) are written as

a(t,x) =−1
2

σ2,

b(t,x) =−κ(θ − x),

c(t,x) = x. (23)

Since the coefficients of the bond price PDE (3) are independent of t, so we haveM = N = 0. Therefore it is easy to

evaluateJ as given in Eq. (13) for the Vasicek equation (3). Indeed it is

J = x− κ
2
+

κ2

2σ2 (θ − x)2. (24)

The invariant condition (11) for reduction to the heat equation becomes

Lx = 0 (24)

Thus obviously the invariant condition (11) is identicallysatisfied and we get reduction of the Vasicek PDE (3) to the heat

equation.

4.2 Transformation formulae and fundamental solutions

We now find the transformations which reduce the PDE (3) to theheat equation. These transformations are further

utilized to obtain the fundamental solutions of the VasicekPDE (3).

Making use of the coefficients defined in Eq. (23) in Eqs. (21) and (22) in Theorem 5, we find

f (t) =−κ2

4
,

g(t) =
κ2θ√

2σ
− σ√

2
,

h(t) =
κ
2
− κ2θ 2

2σ2 ,

φ(t) = c1

√

2
A

tan

(

√

A
2

t

)

,

β (t) =
2
√

c1B

Acos

(

√

A
2 t

) . (25)

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 2, 29-46 (2017) /www.ntmsci.com 35

with c1, A=−8 f (t) andB= g(t)/2 the constants of integration. With the use of the values of the functions from Eq. (25)

into Eq. (20), the transformations that reduce the parabolic equation (3) into the heat equation are

t̄ = c1

√

2
A

tan

(
√

A
2

t

)

,

−
x =±

√
2c1

σ cos

(

√

A
2 t

)x+
2
√

c1B

Acos

(

√

A
2 t

) + c2,

−
u =

(

1
2

σ2
)− 1

4

exp

[

1
2

lncos

(

√

A
2

t

)

− B2
√

2

2A
3
2

tan

(

√

A
2

t

)

+
B2

2A
t + c3

]

u

exp

[

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2c2

σ
√

A
tan

(
√

A
2

t

)

x+ c4

]

, (26)

whereci (i = 1, ...,4) are the constants of integration. The transformed terminalcondition for Vasicek equation is written

as

−
u(x,T) = exp

[

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(

√

A
2

T

))

x2± 2B

σ
√

A
tan

(

√

A
2

T

)

x+ c4

]

,

(

1
2

σ2
)− 1

4

exp

[

1
2

lncos

(
√

A
2

T

)

− B2
√

2

2A
3
2

tan

(
√

A
2

T

)

+
B2

2A
T + c3

]

. (27)

We now construct the fundamental solutions of the Vasicek PDE (3). We have seen that there exist transformations (26)

that reduce the PDE (3) to the classical heat equation. This result is used in the construction of the fundamental solution

of the Vasicek equation.

The fundamental solution of the heat equation is well-knownand is given in barred coordinates in[6]

u=
1

2
√

tπ
exp

[

−x2

4t

]

. (28)

We seek the fundamental solution for the PDE (3). The solution (28) is transformed by means of (26). Making use of Eqs.

(28) and (29), the solutionu(x, t) is written as

u(x, t) =

(

1
2

σ2
) 1

4 1

2
√

tπ
exp

[

−x2

4t

]

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2B

σ
√

A
tan

(
√

A
2

t

)

x+ c4

}]

exp

[

−
{

1
2

lncos

(

√

A
2

t

)

− B2

√
2A

3
2

tan

(

√

A
2

t

)

+
B2

2A
t + c3

}]

. (29)
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Finally with substitution of the values of̄t andx̄ from Eq. (26) into Eq. (29), the solution becomes

u(x, t) =

(

1
2

σ2
) 1

4 1

2

√

c1

√

2
A tan

(

√

A
2 t

)

π

exp

[

−
{

1
2

lncos

(

√

A
2

t

)

− B2

√
2A

3
2

tan

(

√

A
2

t

)

+
B2

2A
t + c3

}]

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2B

σ
√

A
tan

(
√

A
2

t

)

x+ c4

}]

exp



















−



±
√

2c1

σ cos

(

√

A
2 t

)x+
2
√

c1B

Acos

(

√

A
2 t

) + c3





2

4c1

√

2
A tan

(

√

A
2 t

)



















. (30)

Now we look for another form of solution for the Vasicek PDE (3) under the same set of transformation as for the heat

equation. Another form of solution in series of the heat equation [25]

ū=
∞

∑
n=1

bnexp

[

−
(nπ

l

)2
kt̄

]

sin

(

nπ x̄
l

)

, (31)

which converges uniformly for 0≤ x≤ l , t ≥ 0. The solution (31) is transformed by means of transformation (26) and is

given by

u(x, t) =

(

1
2

σ2
) 1

4 ∞

∑
n=1

bnexp

[

−
(nπ

l

)2
kt̄

]

sin

(

nπ x̄
l

)

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2B

σ
√

A
tan

(
√

A
2

t

)

x+ c4

}]

exp

[

−
{

1
2

lncos

(
√

A
2

t

)

− B2

√
2A

3
2

tan

(
√

A
2

t

)

+
B2

2A
t + c3

}]

. (32)

Finally by making use of the values oft̄ andx̄ from (26), the solutionu(x, t) in Eq. (32) takes the form

u(x, t) =

(

1
2

σ2
) 1

4

exp

[

−
{

1
2

lncos

(
√

A
2

t

)

− B2
√

2

2A
3
2

tan

(
√

A
2

t

)

+
B2

2A
t + c3

}]

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2B

σ
√

A
tan

(
√

A
2

t

)

x+ c4

}]

∞

∑
n=1

bnexp

[

−
(nπ

l

)2
kc1

√

2
A

tan

(

√

A
2

t

)]

∞

∑
n=1

sin

















nπ



±
√

2c1

σ cos

(

√

A
2 t

)x+
2
√

c1B

Acos

(

√

A
2 t

) + c2





l

















. (33)
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4.3 Exact solution via the Cauchy problem of the heat equation

In this section, we derive the closed-form analytical solution of the Cauchy problem (3) corresponding to the boundary
condition (5) for the Vasicek model. We make use of the appropriate results on the Cauchy problem for classical heat
equation to obtain the solution to our problem.

In the previous section, we have found the equivalence transformations which map the Vasicek equation (3) into the
classical heat equation. These transformations are derived in Eq. (26) which reduce the Cauchy problem (3) subject to (5)
for the Vasicek model into the standard heat Cauchy problem,given by

∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 , (34)

ū(x̄,T) = φ(x̄), (35)

for some functionφ providedφ is “well-behaved”. The solution to (34) and (35) is well-known [26] and is given by

ū(x̄, t̄) =
1

2
√

t̄π

+∞
∫

−∞

φ(ξ )exp

[

− (x̄− ζ )2

4t̄

]

dξ . (36)

We need to transform the solution (36) into the solution of (3). Substituting ¯u(x̄, t̄) from Eq. (36) into Eq. (26), we obtain

u(x, t) =

(

1
2

σ2
) 1

4
+∞
∫

−∞

φ(ξ )exp

[

− (x̄− ξ )2

4t̄

]

dξ

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(

√

A
2

t

))

x2± 2B

σ
√

A
tan

(

√

A
2

t

)

x+ c4

}]

exp

[

−
{

1
2

lncos

(
√

A
2

t

)

− B2

√
2A

3
2

tan

(
√

A
2

t

)

+
B2

2A
t + c3

}]

, (37)

whereφ(ξ ) is found from Eq. (26) By keeping in mind the boundary condition (27), we have

φ(ξ ) = exp

[

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

T

))

x2± 2B

σ
√

A
tan

(
√

A
2

T

)

x+ c4

]

(

1
2

σ2
)− 1

4

exp

[

1
2

lncos

(
√

A
2

T

)

− B2

√
2A

3
2

tan

(
√

A
2

T

)

+
B2

2A
T + c3

]

. (38)

Finally, using the values of ¯x andt̄ from Eq. (26) into Eq. (37), the solutionu(x, t) takes the form

u(x, t) =

(

1
2

σ2
) 1

4
+∞
∫

−∞

φ(ξ )exp



















−



±
√

2c1

σ cos

(

√

A
2 t

)x+
2
√

c1B

Acos

(

√

A
2 t

) + c3− ξ





2

4c1

√

2
A tan

(

√

A
2 t

)



















dξ

exp

[

−
{

− κ
2σ2 (θ − x)2− 1

4σ2

(

√
2Atan

(
√

A
2

t

))

x2± 2B

σ
√

A
tan

(
√

A
2

t

)

x+ c4

}]

exp

[

−
{

1
2

lncos

(
√

A
2

t

)

− B2

√
2A

3
2

tan

(
√

A
2

t

)

+
B2

2A
t + c3

}]

, (39)
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with φ(ξ ) given in Eq. (38). One can deduce the value of the integral in Eq. (39) in terms of the Kummer confluent
hypergeometric functions.

5 Invariant solutions of the Cox-Ingersoll-Ross (CIR) equation

In this section, we employ the invariant approach to obtain the closed-form solution of a parabolic PDE derived by Cox-
Ingersoll-Ross and given in Eq. (4). The PDE (4) is known as the CIR equation in the literature.

5.1 Reduction of the CIR equation to the heat equation

We now use the theorem of the invariant approach to find the equivalence transformations which reduce the PDE (4) to
the Lie canonical forms. Making comparison of PDE (4) to the scalar linear (1+1) parabolic partial differential equation
(6), the coefficients functionsa(t,x), b(t,x) andc(t,x) are written as:

a(t,x) =−1
2

σ2x,

b(t,x) =−κ(θ − x),

c(t,x) = x. (40)

Making use of Theorem 1, the values of the parameters for which the PDE (4) can be mapped to the heat equation are
obtained. First we have to evaluateJ as given in Eq. (13) for the CIR equation (4). It is given by

J = x− κ
2
+

κ(x−θ )
2x

+
3
32

σ2

x
+

κ2(x−θ )2

2σ2x
. (41)

Since the coefficients of the zero-coupon bond price PDE (4) are independent oft , M andN are zero in the conditions
defined in Theorem 1. For the value ofJ given in Eq. (41), the invariant condition(11) for reduction to the heat equation
becomes

Lx =−3
8

(

σ4+2κθσ2−2κ2θ 2)x−3. (42)

From Eq. (42), we can deduce

σ2 =
−8κθ ±4κθ

−3
, (43)

which results in

σi(i = 1,2,3,4) =

[

−2

√

κθ
3

,2

√

κθ
3

,−2
√

κθ ,2
√

κθ

]

. (44)

The values ofσ in Eq. (44) give the non-trivial cases for which the invariant condition (11) is satisfied which results in
the reduction of the CIR equation (4) to the heat equation.

5.2 Transformation formulae and fundamental solutions

Here we compute the transformations which reduce the PDE (4)to the heat equation. These transformations are further
utilized to obtain the fundamental solutions of the CIR equation (4). Making use of the coefficients defined in Eq. (40) in
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Eqs. (21) and (22) in Theorem 5, we have

f (t) =−1
8

(

σ2+
κ2

2

)

,

g(t) = 0,

h(t) =
κ2θ
σ2 ,

φ(t) = c1

√

2
A

tan

(
√

A
2

t

)

,

β (t) = c2

∫

dt

cos

(

√

A
2 t

)

lncos

(

√

A
2 t

) ,

υ(t) = exp











1
2

lncos

(

√

A
2

t

)

− c2
3

4

∫

dt
[

lncos

(

√

A
2 t

)]2 +Bt+ c4











, (45)

with ci (i = 1,2,3,4), A=−8 f (t) andB= h(t) are the constants of integration andσ takes one of the values given in Eq.
(44). With the use of the values of the functions from Eq. (45)into Eq. (20) and simplification, the transformations that
reduce the parabolic equation (4) into the heat equation areobtained as follows

t̄ = c1

√

2
A

tan

(
√

A
2

t

)

,

x̄=± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x+ c2

∫ T

t

dt

cos

(

√

A
2 t

)

lncos

(

√

A
2 t

) + c3,

ū(x, t) =

(

1
2

σ2x

)− 1
4

exp











1
2

lncos

(

√

A
2

t

)

− c2
3

4

∫ T

t

dt
[

lncos

(

√

A
2 t

)]2 +Bt+ c4











uexp









κ
σ2 (θ lnx− x)−

√
2A

σ2 tan

(
√

A
2

t

)

x±
√

2c3

σ lncos

(

√

A
2 t

)

√
x









, (46)

whereci (i = 1, ...,4) are the constants of integration. The transformed terminalcondition for the CIR equation is written
as:

−
u(x,T) =

(

1
2

σ2x

)− 1
4

exp

[

1
2

lncos

(
√

A
2

T

)

+BT+ c4

]

exp















κ
σ2 (θ lnx− x)−

√
2A

σ2 tan

(
√

A
2

T

)

x±
√

2c3

σ lncos

(

√

A
2T

)

√
x















. (47)
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Following the same methodology as adopted previously for the Vasicek model, the fundamental solutions of the CIR
equation (4) for the case of reduction into the heat equationunder the transformations (46) are given by

u(x, t) =
1

2

√

c1

√

2
A tan

(

√

A
2 t

)

π

(

1
2

σ2x

) 1
4

exp











−



















1
2

lncos

(
√

A
2

t

)

− c2
3

4

∫ T

t

dt
[

lncos

(

√

A
2 t

)]2 +Bt+ c4





























exp









−















κ
σ2 (θ lnx− x)−

√
2A

σ2 tan

(

√

A
2

t

)

x±
√

2c3

σ lncos

(

√

A
2 t

)

√
x























,

exp



















−



± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x+ c2

∫ T
t

dt

cos

(

√

A
2 t

)

lncos

(

√

A
2 t

) + c3





2

4c1

√

2
A tan

(

√

A
2 t

)



















, (48)

and

u(x, t) =

(

1
2

σ2x

) 1
4 ∞

∑
n=1

sin

















nπ



± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x+ c2

∫ T
t

dt

cos

(

√

A
2 t

)

lncos

(

√

A
2 t

) + c3





l

















∞

∑
n=1

bnexp

[

−
(nπ

l

)2
kc1

√

2
A

tan

(
√

A
2

t

)]

exp











−



















1
2

lncos

(

√

A
2

t

)

− c2
3

4

∫ T

t

dt
[

lncos

(

√

A
2 t

)]2 +Bt+ c4





























exp









−















κ
σ2 (θ lnx− x)−

√
2A

σ2 tan

(
√

A
2

t

)

x±
√

2c3

σ lncos

(

√

A
2 t

)

√
x























. (49)

5.3 Reduction to the second Lie canonical form

Now we focus on the situation when the PDE (4) is equivalent tothe second Lie canonical form (14). For this case we
have

σ2 6= −8κθ ±4κθ
−3

⇒ Lx 6= 0. (50)

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 2, 29-46 (2017) /www.ntmsci.com 41

Using the same methodology adopted in the previous sections, the transformations that reduce the parabolic equation (4)
into the second Lie canonical form are

f (t) =−1
8

(

σ2+
κ2

2

)

,

g(t) = 0,

h(t) =
κ2θ
σ2 ,

φ(t) = c1

√

2
A

tan

(

√

A
2

t

)

,

υ(t) = eBt+c2

√

√

√

√cos

(

√

A
2

t

)

, (51)

which results in

t̄ = c1

√

2
A

tan

(

√

A
2

t

)

,

x̄=± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x,

ū=

√

√

√

√cos

(
√

A
2

t

)

(

1
2

σ2x

)− 1
4

uexp[Bt+ c2]

exp

[

k
σ2 (θ lnx− x)−

√
2A

σ2 tan

(

√

A
2

t

)

x

]

, (52)

with c1, c2, A=−8 f (t) andB= h(t) are the constants of integration

5.4 The fundamental solutions

We now construct the fundamental solutions when the CIR equation (4) is reduced into the second Lie canonical form.
We have deduced the transformations (52) which reduce the PDE (4) to the second Lie canonical form, which is given by

∂ ū
∂ t̄

=
∂ 2ū
∂ x̄2 +

A
x̄2 ū. (53)

We first derive the solution for the PDE (43) and then use the transformations (52) to construction of the fundamental
solution of the above-mentioned CIR problem.

In order to derive the solution for PDE (53), we make use of themethod of separation of variables. We assume the
solution of PDE (53) of the form

ū(x̄, t̄) = X(x̄)T(t̄). (54)

Making use of Eq. (54) into Eq. (43) and separating, we obtain

dT
dt̄

+λT = 0, (55)

d2X
dx̄2 +

(

A
x̄2 +λ

)

X = 0, (56)
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whereλ ≥ 0 is the separation constant.

Case I: whenλ = 0
For this case the general solution of the ODEs (55) and (56) are:

T(t̄) = K1, (57)

X(x̄) = K2x̄
1
2(1−

√
1−4A) +K3x̄−

1
2(1−

√
1−4A), (58)

with K1, K2 andK3 the constants of integration. Thus the solution of PDE (53) is written as

ū(x̄, t̄) = K1

[

K2x̄
1
2(1−

√
1−4A) +K3x̄−

1
2(1−

√
1−4A)

]

. (59)

In order to find the fundamental solution for the PDE (4) the solution (59) is transformed by means of (52). Making use
of Eqs. (59) and (52), the solutionu(x, t) is written as

u(x, t) = K1

[

K2x̄
1
2(1−

√
1−4A) +K3x̄−

1
2(1−

√
1−4A)

]

(

cos

(

√

A
2

t

))− 1
2 (1

2

) 1
4

exp[−{Bt+ c2}]

exp

[

−
{

k
σ2 (θ lnx− x)−

√
2A

σ2 tan

(

√

A
2

t

)

x

}]

. (60)

Finally, with the substitution of the values oft̄ andx̄ from (52) into Eq. (60), the solution (60) for the CIR equation (4)
takes the form

u(x, t) = K1











K2









± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x









1
2(1−

√
1−4A)

+K3









± 2
√

2c1

σ cos

(

√

A
2 t

)

√
x









− 1
2(1−

√
1−4A)











(

cos

(
√

A
2

t

))− 1
2 (1

2
σ2x

) 1
4

exp[−{Bt+ c2}]

exp

[

−
{

k
σ2 (θ lnx− x)−

√
2A

σ2 tan

(
√

A
2

t

)

x

}]

. (61)

Case II: whenλ > 0
For this case the general solution of the ODE (55) is

T(t̄) = K1 exp(−λ t̄). (62)

The general solution of the homogenous equation (56) is (see, e.g.,[27])

X(x̄) =

[

K2
√

x̄J

(

1
2

√
1−4A;

√
λ x̄

)

+K3
√

x̄Y

(

1
2

√
1−4A;

√
λ x̄

)]

, (63)

whereK1, K2 andK3 are the constants of integration andJ andY are Bessel functions of the first and second kind,
respectively (see, e.g.,[28]). Thus the separable solution of the second Lie canonical form (53) is given by

ū(x̄, t̄) = K1 exp(−λ t̄)

[

K2
√

x̄J

(

1
2

√
1−4A;

√
λ x̄

)

+K3
√

x̄Y

(

1
2

√
1−4A;

√
λ x̄

)]

. (64)
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To find the fundamental solution for the PDE (4), the solution(64) is transformed by means of (52). Using Eqs. (64) and

(52), the solutionu(x, t) is given by

u(x, t) = K1exp(−λ t̄)

[

K2
√

x̄J

(

1
2

√
1−4A;

√
λ x̄

)

+K3
√

x̄Y

(

1
2

√
1−4A;

√
λ x̄

)]

(

cos

(
√

A
2

t

))− 1
2 (1

2
σ2x

) 1
4

exp[−{Bt+ c2}]exp

[

−
{

k
σ2 (θ lnx− x)−

√
2A

σ2 tan

(
√

A
2

t

)

x

}]

. (65)

Finally using oft̄ andx̄ from (52) into Eq. (65), the solutionu(x, t) takes the form

u(x, t) = K1exp

(

−λc1

√

2
A

tan

(
√

A
2

t

))

[K2

√

√

√

√

√

± 2
√

2xc1

σ cos

(

√

A
2 t

)J









1
2

√
1−4A;

√
λ

±2
√

2xc1

σ cos

(

√

A
2 t

)









+K3

√

√

√

√

√

± 2
√

2xc1

σ cos

(

√

A
2 t

)Y









1
2

√
1−4A;

√
λ

±2
√

2xc1

σ cos

(

√

A
2 t

)









]

(

cos

(

√

A
2

t

))− 1
2 (1

2
σ2x

) 1
4

exp[−{Bt+ c2}]exp

[

−
{

k
σ2 (θ lnx− x)−

√
2A

σ2 tan

(

√

A
2

t

)

x

}]

. (66)

5.5 Solution via the Heat Cauchy problem

In this section, we construct the fundamental solution of the Cauchy problem (4) and (5) for the CIR model. In the

previous section, we have found the equivalence transformations which map the PDE (4) to the classical heat equation.

We further utilize these transformations for constructionof the fundamental solutions of the underlying model.

The transformations are derived in Eq. (46) which reduce theCauchy problem (4) and (5) for the CIR model into the

standard heat Cauchy problem given in Eqs. (34) and (35). Thesolution to the Cauchy problem (34) and (35) is given by.

ū(x̄, t̄) =
1

2
√

t̄π

+∞
∫

−∞

η(ζ )exp

[

− (x̄− ζ )2

4t̄

]

dζ , (67)

for some functionη . We have to transform the solution (67) into the solution of the CIR equation (4). We substitute ¯u(x̄, t̄)

from Eq. (67) into Eq. (46), to obtain

u(x, t) =

(

1
2

σ2x

) 1
4

exp
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






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
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


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




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√
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2
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)
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(

√

A
2 t

)]2 +Bt+ c4
















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
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
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√
2A

σ2 tan
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√

A
2
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)

x±
√

2c3

σ lncos

(

√

A
2 t

)

√
x























1

2
√

t̄π

+∞
∫

−∞

η(ζ )exp

[

− (x̄− ζ )2

4t̄

]

dζ .

(68)
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We findη(ζ ) in Eq. (68). By keeping in mind the condition (47), we have

η(ζ ) =
(

1
2

σ2x

)− 1
4

exp

[

1
2

lncos

(

√

A
2

T

)

+BT+ c4

]

exp








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
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σ2 tan
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√
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)
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√
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






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



. (69)

Finally, with the insertion of the values of ¯x andt̄ from Eq. (46) into Eq. (68), the solution is written as

u(x, t) = exp
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cos

(

√

A
2 t

)

lncos

(

√

A
2 t

) + c3− ζ





2

4t̄














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dζ , (70)

whereη(ζ ) is defined in Eq. (69). One can deduce the value of the integralin (70) in terms of the Kummer confluent

hypergeometric functions and one can also perform the numerical integration.

6 Concluding remarks

The class of linear(1+1) parabolic partial differential equations (PDEs) for the Vasicek and Cox-Ingersoll-Ross (CIR)

models of financial problems are investigated from the viewpoint of the invariant approach. The classification of these

PDEs depend on Lie’s classification results of parabolic equations and the use of transformation formulae. This fact

substantially simplified the task of obtaining the Cauchy solutions of the models under question. The invariant method

enabled us to compute the equivalence transformations which reduced the underlying class of PDEs to the different Lie

canonical forms.

For the case of the Vasicek model, we derived the transformations formulae which reduced the Vasicek equation (3) into

the first Lie canonical form, which is the heat equation. These transformations are further utilized to obtain the

fundamental solutions of the Vasicek equation by employingthe well-known fundamental solutions of the heat equation.

For the CIR model (4), we have shown that it can be mapped by choosing the appropriate values of the parameters to the

first Lie canonical form. Otherwise it is mapped to the secondLie canonical form. For both the cases of the heat equation
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and the second Lie canonical form, we derived the equivalence transformations and obtained the closed-form

fundamental solutions of the CIR equation (4).

The use of invariant analysis of parabolic PDEs to obtain thesolutions of the corresponding Cauchy problems is

significant. Therefore, using the invariant approach, the closed-form solutions of the Cauchy problem for the Vasicek and

Cox-Ingersoll-Ross (CIR) models with suitable choice of terminal conditions are derived for the first time. The solution

process involved transforming the Cauchy initial value problems into the standard heat Cauchy problem and then taking

advantage of the well-known solution to the Cauchy problem of the heat equation.

Also to note here is that invariant criteria utilized can be extended to other parabolic models which transform not only to

the heat equation but to other canonical forms as well.
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