Eigenvalues and eigenvectors of a certain complex tridiagonal matrix family

Ahmet Öteleş * and Mehmet Akbulak ${ }^{\dagger}$

Received 13: 01:2013 : Accepted 28: 08:2013

Abstract

In this paper, we obtain the eigenvalues and eigenvectors of a certain complex tridiagonal matrix family in terms of the Chebyshev polynomials of the first kind.

2000 AMS Classification: 40C05; 15A18; 12E10.
Keywords: Tridiagonal matrix; Eigenvalues; Eigenvectors; Chebyshev polynomial.

1. Introduction

Tridiagonal matrices frequently arise in many areas of mathematics and engineering, such as boundary value problems, parallel computing and telecommunication system analysis. Solving some difference, differential and delay differential equations we meet the necessity to compute the arbitrary positive integer powers of square matrices. Therefore, calculating eigenvalues of special square matrices is a very popular problem. Rimas investigated positive integer powers of certain tridiagonal matrices of odd and even order depending on the Chebyshev polynomials [1-4]. Some authors also investigated eigenvalues and eigenvectors of certain tridiagonal matrices [5-12].

In this paper, we obtain the eigenvalues and eigenvectors of one type of n-square complex tridiagonal matrix family, which is a generalization of [1-4],

$$
B_{n}=\left[\begin{array}{cccccc}
a & 2 b & & & & \tag{1.1}\\
c & a & b & & 0 & \\
& c & a & \ddots & & \\
& & \ddots & \ddots & b & \\
& 0 & & c & a & b \\
& & & & 2 c & a
\end{array}\right]
$$

[^0]where $b c \neq 0$.
Now, we are beginning with following lemma.
1.1. Lemma. [13] Let $\left\{H_{n}, n=1,2, \ldots\right\}$ be sequence of tridiagonal matrices of the form
\[

H_{n}=\left[$$
\begin{array}{ccccc}
h_{1,1} & h_{1,2} & & & \\
h_{2,1} & h_{2,2} & h_{2,3} & 0 & \\
& h_{3,2} & h_{3,3} & \ddots & \\
& 0 & \ddots & \ddots & h_{n-1, n} \\
& & & h_{n, n-1} & h_{n, n}
\end{array}
$$\right]
\]

Then the succesive determinants of H_{n} are given by the recursive formula:

$$
\begin{aligned}
\left|H_{1}\right| & =h_{1,1} \\
\left|H_{2}\right| & =h_{1,1} h_{2,2}-h_{1,2} h_{2,1}, \\
\left|H_{n}\right| & =h_{n, n}\left|H_{n-1}\right|-h_{n-1, n} h_{n, n-1}\left|H_{n-2}\right|
\end{aligned}
$$

Let $\left\{H_{n}^{\dagger}, n=1,2, \ldots\right\}$ be a sequence of tridiagonal matrices of the form

$$
H_{n}^{\dagger}=\left[\begin{array}{ccccc}
h_{1,1} & -h_{1,2} & & & \\
-h_{2,1} & h_{2,2} & -h_{2,3} & 0 & \\
& -h_{3,2} & h_{3,3} & \ddots & \\
& 0 & \ddots & \ddots & -h_{n-1, n} \\
& & & -h_{n, n-1} & h_{n, n}
\end{array}\right]
$$

Since the determinant of the sequences H_{n} and H_{n}^{\dagger} have the same recurrence formula, it can be written that

$$
\begin{equation*}
\left|H_{n}\right|=\left|H_{n}^{\dagger}\right| \tag{1.2}
\end{equation*}
$$

2. Eigenvalues and eigenvectors of B_{n}

In this section, we investigate the eigenvalues and eigenvectors of B_{n}, given in (1.1). Let U_{n} be the following n-square tridiagonal matrix

$$
U_{n}=\left[\begin{array}{cccccc}
0 & 2 & & & & \\
1 & 0 & 1 & & 0 & \\
& 1 & 0 & \ddots & & \\
& & \ddots & \ddots & 1 & \\
& 0 & & 1 & 0 & 1 \\
& & & & 2 & 0
\end{array}\right]
$$

By using (1.2), we write its characteristic polynomial as:

$$
\left|t I_{n}-U_{n}\right|=\left|\begin{array}{cccccc}
t & 2 & & & & \tag{2.1}\\
1 & t & 1 & & 0 & \\
& 1 & t & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& 0 & & 1 & t & 1 \\
& & & & 2 & t
\end{array}\right|
$$

By using [2], we obtain the eigenvalues of U_{n} as

$$
\begin{equation*}
t_{k}=2 \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

where t_{k} denotes k th eigenvalue of U_{n}.
2.1. Lemma. Let Q_{n} be n-square tridiagonal matrix as in the following

$$
Q_{n}=\left[\begin{array}{cccccc}
a & 2 & & & & \tag{2.3}\\
1 & a & 1 & & 0 & \\
& 1 & a & \ddots & & \\
& & \ddots & \ddots & 1 & \\
& 0 & & 1 & a & 1 \\
& & & & 2 & a
\end{array}\right]
$$

where $a \in \mathbb{C}$. Then the eigenvalues of Q_{n} are

$$
\begin{equation*}
\mu_{k}=a+2 \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n . \tag{2.4}
\end{equation*}
$$

Proof. By using (1.2), the characteristic polynomial of Q_{n} can be written as

$$
\left|\mu I_{n}-Q_{n}\right|=\left|\begin{array}{cccccc}
\mu-a & 2 & & & & \\
1 & \mu-a & 1 & & 0 & \\
& 1 & \mu-a & \ddots & & \\
& & \ddots & \ddots & 1 & \\
& 0 & & 1 & \mu-a & 1 \\
& & & & 2 & \mu-a
\end{array}\right|
$$

Substituting $t=\mu-a$ and taking (2.1) and (2.2) into account, we find the eigenvalues of Q_{n} as

$$
\mu_{k}=a+2 \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n
$$

2.2. Theorem. Let B_{n} be n-square matrix as in (1.1). Then the eigenvalues of B_{n} are

$$
\begin{equation*}
\lambda_{k}=a+2 \sqrt{b c} \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

Proof. In order to prove the theorem, we need a relation between the B_{n} and Q_{n}. Let M_{n} be a complex tridiagonal matrix as in the following

$$
M_{n}=\left[\begin{array}{cccccc}
a / \sqrt{b c} & 2 & & & & \\
1 & a / \sqrt{b c} & 1 & & 0 & \\
& 1 & a / \sqrt{b c} & \ddots & & \\
& & \ddots & \ddots & 1 & \\
& 0 & & 1 & a / \sqrt{b c} & 1 \\
& & & & 2 & a / \sqrt{b c}
\end{array}\right]
$$

where $b c \neq 0$. Taking (2.3) and (2.4) into account, we find the eigenvalues of M_{n} as

$$
\frac{a}{\sqrt{b c}}+2 \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n
$$

By dividing all entries of B_{n} by $\sqrt{b c}$, we get a new n-square matrix $\widetilde{M_{n}}$ as

$$
\widetilde{M_{n}}=\left[\begin{array}{cccccc}
a / \sqrt{b c} & 2 b / \sqrt{b c} & & & & \\
c / \sqrt{b c} & a / \sqrt{b c} & b / \sqrt{b c} & & 0 & \\
& c / \sqrt{b c} & a / \sqrt{b c} & \ddots & & \\
& & \ddots & \ddots & b / \sqrt{b c} & \\
& 0 & & c / \sqrt{b c} & a / \sqrt{b c} & b / \sqrt{b c} \\
& & & & 2 c / \sqrt{b c} & a / \sqrt{b c}
\end{array}\right]
$$

From Lemma 1, the characteristic polynomials of M_{n} and $\widetilde{M_{n}}$ are equal. Therefore, the eigenvalues of these matrices are the same. Furthermore, the eigenvalues of B_{n} are just $\sqrt{b c}$ times the eigenvalues of $\widetilde{M_{n}}$. Consequently, we get

$$
\lambda_{k}=a+2 \sqrt{b c} \cos \frac{(k-1) \pi}{n-1}, \text { for } k=1,2, \ldots, n
$$

and the proof is complete.
Now, let us find the eigenvectors corresponding to each eigenvalue of B_{n}.
Each eigenvector of B_{n} is the solution of the following homogeneous linear equation system

$$
\begin{equation*}
\left(\lambda_{j} I_{n}-B_{n}\right) x=0, \tag{2.6}
\end{equation*}
$$

where λ_{j} is the j th eigenvalue of $B_{n}(1 \leq j \leq n)$. We clearly write the expression (2.6) as follows:

$$
\begin{align*}
&\left(\lambda_{j}-a\right) x_{1}-2 b x_{2}=0 \\
&-c x_{1}+\left(\lambda_{j}-a\right) x_{2}-b x_{3}=0 \\
&-c x_{2}+\left(\lambda_{j}-a\right) x_{3}-b x_{4}=0 \tag{2.7}\\
& \cdots \\
&-c x_{n-2}+\left(\lambda_{j}-a\right) x_{n-1}-b x_{n}=0 \\
&-2 c x_{n-1}+\left(\lambda_{j}-a\right) x_{n}=0 .
\end{align*}
$$

By dividing all terms of equations in (2.7) by $\sqrt{b c}$, choosing $x_{1}=1$ arbitrarily and solving the set of systems (2.7) according to x_{1}, we find the eigenvectors of B_{n} as

$$
\begin{equation*}
x_{i j}=\left(\sqrt{\frac{c}{b}}\right)^{i-1} T_{i-1}\left(\frac{\lambda_{j}-a}{2 \sqrt{b c}}\right) \text { for } i, j=1,2, \ldots, n \tag{2.8}
\end{equation*}
$$

where $T_{k}(x)$ is the k th degree Chebyshev polynomial of the first kind [14]:

$$
T_{k}(x)=\cos k(\arccos x),-1 \leq x \leq 1
$$

Acknowledgement The authors thank the anonymous referees for their careful reading of the paper and very detailed proposals that helped improve the presentation of the paper.

References

[1] J. Rimas, On computing of arbitrary positive integer powers for one type of tridiagonal matrices of even order, Appl. Math. Comput. 164 (2005) 829-835.
[2] J. Rimas, On computing of arbitrary positive integer powers for one type of tridiagonal matrices, Appl. Math. Comput. 161 (2005) 1037-1040.
[3] J. Rimas, On computing of arbitrary positive integer powers for one type of even order tridiagonal matrices with eigenvalues on imaginary axis- II, Appl. Math. Comput. 190 (2007) 1466-1471.
[4] J. Rimas, On computing of arbitrary positive integer powers for one type of even order tridiagonal matrices with eigenvalues on imaginary axis- I, Appl. Math. Comput. 189 (2007) 1916-1920.
[5] J. Gutiérrez-Gutiérrez, Positive integer powers of certain tridiagonal matrices, Appl. Math. Comput. 202 (2008) 133-140.
[6] J. Gutiérrez-Gutiérrez, Powers of tridiagonal matrices with constant diagonals, Appl. Math. Comput. 206 (2008) 885-891.
[7] J. Gutiérrez-Gutiérrez, Powers of real persymmetric anti-tridiagonal matrices with constant anti-diagonals, Appl. Math. Comput. 206 (2008) 919-924.
[8] A. Oteles, M. Akbulak, Positive integer powers of certain complex tridiagonal matrices, Appl. Math. Comput., 219 (2013) 10448-10455.
[9] A. Oteles, M. Akbulak, Positive integer powers of certain complex tridiagonal matrices, Math. Sci. Lett. 2, No.1, (2013) 63-72.
[10] A. Oteles, M. Akbulak, Positive integer powers of one type of complex tridiagonal matrices, Bull. Malays. Math. Sci. Soc. Accepted.
[11] M. Elouafi, A. D. Aiat Hadj, On the powers and the inverse of a tridiagonal matrix, Appl. Math. Comput., 211(2009), 137-141.
[12] H. Kiyak, I. Gurses, F. Yilmaz, D. Bozkurt, A formula for computing integer powers for one type of tridiagonal matrix, Hacet. J. Math. Stat., 39 (3), (2010), 351-363.
[13] N. D. Cahill, J. R. D'Ericco, J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (1) (2003), 13-19.
[14] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, CRC Press, Washington, 2003.

[^0]: *Dicle University, Education Faculty, Department of Mathematics, TR-21280, Diyarbakir/Turkey
 Email: aoteles85@gmail.com Corresponding author
 ${ }^{\dagger}$ Siirt University, Art and Science Faculty, Department of Mathematics, TR-56100, Siirt/Turkey
 Email:makbulak@gmail.com

