
Hacettepe Journal of Mathematics and Statistics
Volume 43 (5) (2014), 763 – 767

Eigenvalues and eigenvectors of a certain complex
tridiagonal matrix family

Ahmet Öteleş ∗ and Mehmet Akbulak †

Received 13 : 01 : 2013 : Accepted 28 : 08 : 2013

Abstract
In this paper, we obtain the eigenvalues and eigenvectors of a certain
complex tridiagonal matrix family in terms of the Chebyshev polyno-
mials of the first kind.
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1. Introduction
Tridiagonal matrices frequently arise in many areas of mathematics and engineering,

such as boundary value problems, parallel computing and telecommunication system
analysis. Solving some difference, differential and delay differential equations we meet
the necessity to compute the arbitrary positive integer powers of square matrices. There-
fore, calculating eigenvalues of special square matrices is a very popular problem. Rimas
investigated positive integer powers of certain tridiagonal matrices of odd and even order
depending on the Chebyshev polynomials [1-4]. Some authors also investigated eigenval-
ues and eigenvectors of certain tridiagonal matrices [5-12].

In this paper, we obtain the eigenvalues and eigenvectors of one type of n-square
complex tridiagonal matrix family, which is a generalization of [1-4],
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where bc 6= 0.
Now, we are beginning with following lemma.

1.1. Lemma. [13] Let {Hn, n = 1, 2, . . .} be sequence of tridiagonal matrices of the form

Hn =



h1,1 h1,2

h2,1 h2,2 h2,3 0

h3,2 h3,3

. . .

0
. . .

. . . hn−1,n

hn,n−1 hn,n

 .

Then the succesive determinants of Hn are given by the recursive formula:

|H1| = h1,1,

|H2| = h1,1h2,2 − h1,2h2,1,

|Hn| = hn,n |Hn−1| − hn−1,nhn,n−1 |Hn−2| .

Let
{
H†n, n = 1, 2, . . .

}
be a sequence of tridiagonal matrices of the form

H†n =



h1,1 −h1,2

−h2,1 h2,2 −h2,3 0

−h3,2 h3,3

. . .

0
. . .

. . . −hn−1,n

−hn,n−1 hn,n

 .

Since the determinant of the sequences Hn and H†n have the same recurrence formula, it
can be written that

(1.2) |Hn| =
∣∣∣H†n∣∣∣ .

2. Eigenvalues and eigenvectors of Bn

In this section, we investigate the eigenvalues and eigenvectors of Bn, given in (1.1).
Let Un be the following n-square tridiagonal matrix

Un =



0 2
1 0 1 0

1 0
. . .

. . .
. . . 1

0 1 0 1
2 0


.

By using (1.2), we write its characteristic polynomial as:

(2.1) |tIn − Un| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

t 2
1 t 1 0

1 t 1

. . .
. . .

. . .
0 1 t 1

2 t

∣∣∣∣∣∣∣∣∣∣∣∣∣
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By using [2], we obtain the eigenvalues of Un as

(2.2) tk = 2 cos
(k − 1)π

n− 1
, for k = 1, 2, . . . , n

where tk denotes kth eigenvalue of Un.

2.1. Lemma. Let Qn be n-square tridiagonal matrix as in the following

(2.3) Qn =



a 2
1 a 1 0

1 a
. . .

. . .
. . . 1

0 1 a 1
2 a


where a ∈ C. Then the eigenvalues of Qn are

(2.4) µk = a+ 2 cos
(k − 1)π

n− 1
, for k = 1, 2, . . . , n.

Proof. By using (1.2), the characteristic polynomial of Qn can be written as

|µIn −Qn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− a 2
1 µ− a 1 0

1 µ− a
. . .

. . .
. . . 1

0 1 µ− a 1
2 µ− a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Substituting t = µ − a and taking (2.1) and (2.2) into account, we find the eigenvalues
of Qn as

µk = a+ 2 cos
(k − 1)π

n− 1
, for k = 1, 2, . . . , n

�

2.2. Theorem. Let Bn be n-square matrix as in (1.1). Then the eigenvalues of Bn are

(2.5) λk = a+ 2
√
bc cos

(k − 1)π

n− 1
, for k = 1, 2, . . . , n.

Proof. In order to prove the theorem, we need a relation between the Bn and Qn. Let
Mn be a complex tridiagonal matrix as in the following

Mn =



a/
√
bc 2

1 a/
√
bc 1 0

1 a/
√
bc

. . .
. . .

. . . 1

0 1 a/
√
bc 1

2 a/
√
bc


where bc 6= 0. Taking (2.3) and (2.4) into account, we find the eigenvalues of Mn as

a√
bc

+ 2 cos
(k − 1)π

n− 1
, for k = 1, 2, . . . , n.



By dividing all entries of Bn by
√
bc, we get a new n-square matrix M̃n as

M̃n =



a/
√
bc 2b/

√
bc

c/
√
bc a/

√
bc b/

√
bc 0

c/
√
bc a/

√
bc

. . .
. . .

. . . b/
√
bc

0 c/
√
bc a/

√
bc b/

√
bc

2c/
√
bc a/

√
bc


.

From Lemma 1, the characteristic polynomials of Mn and M̃n are equal. Therefore, the
eigenvalues of these matrices are the same. Furthermore, the eigenvalues of Bn are just√
bc times the eigenvalues of M̃n. Consequently, we get

λk = a+ 2
√
bc cos

(k − 1)π

n− 1
, for k = 1, 2, . . . , n,

and the proof is complete. �

Now, let us find the eigenvectors corresponding to each eigenvalue of Bn.
Each eigenvector of Bn is the solution of the following homogeneous linear equation

system

(2.6) (λjIn −Bn)x = 0,

where λj is the j th eigenvalue of Bn (1 ≤ j ≤ n) . We clearly write the expression (2.6)
as follows:

(2.7)

(λj − a)x1 − 2bx2 = 0
−cx1 + (λj − a)x2 − bx3 = 0
−cx2 + (λj − a)x3 − bx4 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−cxn−2 + (λj − a)xn−1 − bxn = 0

−2cxn−1 + (λj − a)xn = 0.

By dividing all terms of equations in (2.7) by
√
bc, choosing x1 = 1 arbitrarily and solving

the set of systems (2.7) according to x1, we find the eigenvectors of Bn as

(2.8) xij =

(√
c

b

)i−1

Ti−1

(
λj − a
2
√
bc

)
for i, j = 1, 2, . . . , n,

where Tk(x) is the kth degree Chebyshev polynomial of the first kind [14]:

Tk (x) = cos k (arccosx) , −1 ≤ x ≤ 1.
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