Hacettepe Journal of Mathematics and Statistics
〇 Volume 43 (5) (2014), 769-776

On star-K-Menger spaces

Yan-Kui Song *

Received 01: 09:2012 : Accepted 26:09:2013

Abstract

A space X is star- K-Menger if for each sequence ($U_{n}: n \in \mathbb{N}$) of open covers of X there exists a sequence ($K_{n}: n \in N$) of compact subsets of X such that $\left\{S t\left(K_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X. In this paper, we investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

2000 AMS Classification: 54D20, 54C10
Keywords: Selection principles, star-Menger, strongly star-Menger, star-K-Menger, starcompact, star Lindelöf, strongly starcompact, strongly star Lindelöf, star-L-Lindelöf

1. Introduction

By a space, we mean a topological space. We give definitions of terms which are used in this paper. Let \mathbb{N} denote the set of positive integers. Let X be a space and \mathcal{U} a collection of subsets of X. For $A \subseteq X$, let $S t(A, \mathcal{U})=\bigcup\{U \in \mathcal{U}: U \cap A \neq \emptyset\}$. As usual, we write $S t(x, \mathcal{U})$ instead of $\operatorname{St}(\{x\}, \mathcal{U})$.

Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X. Then the symbol $S_{1}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence ($U_{n}: n \in \mathbb{N}$) such that for each $n \in \mathbb{N}, U_{n} \in \mathcal{U}_{n}$ and $\left\{U_{n}: n \in\right\}$ is an element of \mathcal{B}. The symbol $S_{\text {fin }}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(U_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$ is an element of \mathcal{B} (see [3,8]).

Koc̆inac [4,5] introduced star selection hypothesis similar to the previous ones. Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X. Then:
(A) The symbol $S_{f i n}^{*}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of elements of \mathcal{A} there exists a sequence $\left(\mathcal{V}_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, \mathcal{V}_{n}$ is a finite subset of \mathcal{U}_{n} and $\bigcup_{n \in \mathbb{N}}\left\{S t\left(V, \mathcal{U}_{n}\right): V \in \mathcal{V}_{n}\right\}$ is an element of \mathcal{B}.

[^0](B) The symbol $S S_{\text {comp }}^{*}(\mathcal{A}, \mathcal{B})\left(S S_{\text {fin }}^{*}(\mathcal{A}, \mathcal{B})\right)$ denotes the selection hypothesis that for each sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of elements of \mathcal{A} there exists a sequence $\left(K_{n}: n \in N\right)$ of compact (resp., finite) subsets of X such that $\left\{\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right): n \in \mathbb{N}\right\} \in \mathcal{B}$.

Let \mathcal{O} denote the collection of all open covers of X.

1. Definition. ([4,5]) A space X is said to be star-Menger if it satisfies the selection hypothesis $S_{\text {fin }}^{*}(\mathcal{O}, \mathcal{O})$.
2. Definition. ([4,5]) A space X is said to be star-K-Menger (strongly star-Menger) if it satisfies the selection hypothesis $S S_{\text {comp }}^{*}(\mathcal{O}, \mathcal{O})$ (resp., $S S_{\text {fin }}^{*}(\mathcal{O}, \mathcal{O})$).
3. Definition. ($[1,7]$) A space X is said to be starcompact (star-Lindelöf) if for every open cover \mathcal{U} of X there exists a finite (resp., countable, respectively) $\mathcal{V} \subseteq \mathcal{U}$ such that $S t(\cup \mathcal{V}, \mathcal{U})=X$.
4. Definition. ($[1,6,9]$) A space X is said to be K-starcompact (strongly starcompact, strongly star-Lindelöf, star-L-Lindelöf) if for every open cover \mathcal{U} of X there exists a compact (resp., finite, countable, Lindelöf) subset F of X such that $S t(F, \mathcal{U})=X$.

From the definitions, it is clear that every K-starcompact space is star-K-Menger, every strongly star-Menger space is star-K-Menger and every star-K-Menger space is star-Menger. Since every σ-sompact subset is Lindelöf, thus every star-K-Menger space is star-L-Lindelöf. But the converses do not hold (see Examples 2.1, 2.2, 2.3 and 2.4 below).

Kočinac [4,5] studied the star-Menger and related spaces. In this paper, our purpose is to investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω_{1} the first uncountable cardinal, \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ, let κ^{+}be the smallest cardinal greater than κ. For each pair of ordinals α, β with $\alpha<\beta$, we write $[\alpha, \beta)=\{\gamma: \alpha \leq \gamma<\beta\},(\alpha, \beta]=\{\gamma: \alpha<\gamma \leq \beta\},(\alpha, \beta)=\{\gamma: \alpha<\gamma<\beta\}$ and $[\alpha, \beta]=\{\gamma: \alpha \leq \gamma \leq \beta\}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [2].

2. Star-K-Menger spaces and related spaces

In this section, we give some examples showing that the relationship between star-KMenger spaces and other related spaces.
2.1. Example. There exists a Tychonoff star-K-Menger space X which is not K-starcompact.

Proof. Let $X=\omega$ be the countably infinite discrete space. Clearly, X is not Kstarcompact. Since X is countable, the singleton sets can serve as the compact sets which witness that X is star-K-Menger, which completes the proof.
2.2. Example. There exists a Tychonoff star-K-Menger space which is not strongly star-Menger.

Proof. Let $D=\left\{d_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a discrete space of cardinality \mathfrak{c} and let $a D=D \cup\left\{d^{*}\right\}$ be one-point comactification of D. Let

$$
X=\left(a D \times\left[0, \mathfrak{c}^{+}\right)\right) \cup\left(D \times\left\{\mathfrak{c}^{+}\right\}\right)
$$

be the subspace of the product space $a D \times\left[0, \mathrm{c}^{+}\right]$. Clearly, X is a Tychonoff space.

First we show that X is star-K-Menger; we only show that X is K -starcompact, since every K-starcompact space is star-K-Menger. To this end, let \mathcal{U} be an open cover of X. For each $\alpha<\mathfrak{c}$, there exists $U_{\alpha} \in \mathcal{U}$ such that $\left\langle d_{\alpha}, \mathfrak{c}^{+}\right\rangle \in U_{\alpha}$. For each $\alpha<\mathfrak{c}$, we can find $\beta_{\alpha}<\mathfrak{c}^{+}$such that $\left\{d_{\alpha}\right\} \times\left(\beta_{\alpha}, \mathfrak{c}^{+}\right] \subseteq U_{\alpha}$. Let $\beta=\sup \left\{\beta_{\alpha}: \alpha<\mathfrak{c}\right\}$. Then $\beta<\mathfrak{c}^{+}$. Let $K_{1}=a D \times\{\beta\}$. Then K_{1} is compact and $U_{\alpha} \cap K_{1} \neq \emptyset$ for each $\alpha<\mathfrak{c}$. Hence

$$
D \times\left\{\mathfrak{c}^{+}\right\} \subseteq S t\left(K_{1}, \mathcal{U}\right)
$$

On the other hand, since $a D \times\left[0, \mathfrak{c}^{+}\right)$is countably compact and consequently $a D \times\left[0, \mathfrak{c}^{+}\right)$ is strongly starcompact (see $[1,6]$), hence there exists a finite subset K_{2} of $a D \times\left[0, \mathfrak{c}^{+}\right)$ such that

$$
a D \times\left[0, \mathfrak{c}^{+}\right) \subseteq S t\left(K_{2}, \mathcal{U}\right)
$$

If we put $K=K_{1} \cup K_{2}$. Then K is a compact subset of X such that $X=S t(K, \mathcal{U})$, which shows that X is K -starcompact.

Next we show that X is not strongly star-Menger. We only show that X is not strongly star-Lindelöf, since every strongly star-Menger space is strongly star-Lindelöf. Let us consider the open cover

$$
\mathcal{U}=\left\{\left\{d_{\alpha}\right\} \times\left[0, \mathfrak{c}^{+}\right]: \alpha<\mathfrak{c}\right\} \cup\left\{a D \times\left[0, \mathfrak{c}^{+}\right)\right\}
$$

of X. It remains to show that $S t(F, \mathcal{U}) \neq X$ for any countable subset F of X. To show this, let F any countable subset of X. Then there exists $\alpha_{0}<\mathfrak{c}$ such that $F \cap\left(\left\{d_{\alpha_{0}}\right\} \times\right.$ $\left.\left[0, \mathfrak{c}^{+}\right]\right)=\emptyset$. Hence $\left\langle d_{\alpha_{0}}, \mathfrak{c}^{+}\right\rangle \notin S t(F, \mathcal{U})$, since $\left\{d_{\alpha_{0}}\right\} \times\left[0, \mathfrak{c}^{+}\right]$is the only element of \mathcal{U} containing the point $\left\langle d_{\alpha_{0}}, \mathfrak{c}^{+}\right\rangle$, which shows that X is not strongly star-Lindelöf.
2.3. Example. There exists a Tychonoff star-L-Lindelöf space which is not star-KMenger..

Proof. Let $D=\left\{d_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a discrete space of cardinality \mathfrak{c} and let $b D=D \cup\left\{d^{*}\right\}$, where $d^{*} \notin D$. We topologize $b D$ as follows: for each $\alpha<\mathfrak{c},\left\{d_{\alpha}\right\}$ is isolated and a set U containing d^{*} is open if and only if $b D \backslash U$ is countable. Then $b D$ is Lindelöf and every compact subset of $b D$ is finite. Let

$$
X=(b D \times[0, \omega]) \backslash\left\{\left\langle d^{*}, \omega\right\rangle\right\}
$$

be the subspace of the product space $b D \times[0, \omega]$. Then X is star-L-Lindelöf, since $b D \times \omega$ is a Lindelöf dense subset of X.

Next we show that X is not star-K-Menger. For each $\alpha<\mathfrak{c}$, let $U_{\alpha}=\left\{d_{\alpha}\right\} \times[0, \omega]$. For each $n \in \omega$, let $V_{n}=b D \times\{n-1\}$. For each $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}=\left\{U_{\alpha}: \alpha<\mathfrak{c}\right\} \cup\left\{V_{n}: n \in \mathbb{N}\right\} .
$$

Then \mathcal{U}_{n} is an open cover of X. Let us consider the sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of open covers of X. It suffices to show that $\bigcup_{n \in \mathbb{N}} S t\left(K_{n}, \mathcal{U}_{n}\right) \neq X$ for any sequence $\left(K_{n}: n \in \mathbb{N}\right)$ of compact subsets of X. Let $\left(K_{n}: n \in \mathbb{N}\right)$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, since K_{n} is compact and $\left\{\left\langle d_{\alpha}, \omega\right\rangle: \alpha<\mathfrak{c}\right\}$ is a discrete closed subset of X, the set $K_{n} \cap\left\{\left\langle d_{\alpha}, \omega\right\rangle: \alpha<\mathfrak{c}\right\}$ is finite. Then there exists $\alpha_{n}<\mathfrak{c}$ such that

$$
K_{n} \cap\left\{\left\langle d_{\alpha}, \omega\right\rangle: \alpha>\alpha_{n}\right\}=\emptyset .
$$

Let $\alpha^{\prime}=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\alpha^{\prime}<\mathfrak{c}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \cap\left\{\left\langle d_{\alpha}, \omega\right\rangle: \alpha>\alpha^{\prime}\right\}=\emptyset
$$

For each $n \in \mathbb{N}$, since $K_{n} \cap V_{m}$ is finite for each $m \in \mathbb{N}$, there exists $\alpha_{n m}<\mathfrak{c}$ such that

$$
K_{n} \cap\left\{\left\langle d_{\alpha}, n\right\rangle: \alpha>\alpha_{n m}\right\}=\emptyset .
$$

Let $\alpha_{n}^{\prime}=\sup \left\{\alpha_{n m}: m \in \mathbb{N}\right\}$. Then $\alpha_{n}^{\prime}<\mathfrak{c}$ and

$$
K_{n} \cap\left\{\left\langle d_{\alpha}, m\right\rangle: \alpha>\alpha_{n}^{\prime}, m \in \mathbb{N}\right\}=\emptyset
$$

Let $\alpha^{\prime \prime}=\sup \left\{\alpha_{n}^{\prime}: n \in \mathbb{N}\right\}$. Then $\alpha^{\prime}<\mathfrak{c}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \cap\left\{\left\langle d_{\alpha}, m\right\rangle: \alpha>\alpha^{\prime \prime}, m \in \mathbb{N}\right\}=\emptyset .
$$

If we pick $\beta>\max \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$. Then $U_{\beta} \cap K_{n}=\emptyset$ for each $n \in \mathbb{N}$. Hence $\left\langle d_{\beta}, \omega\right\rangle \notin$ $\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right)$ for each $n \in \mathbb{N}$, since U_{β} is the only element of \mathcal{U}_{n} containing the point $\left\langle d_{\beta}, \omega\right\rangle$ for each $n \in \mathbb{N}$, which shows that X is not star-K-Menger.
2.4. Example. There exists a T_{1} star-Menger space which is not star-K-Menger.

Proof. Let $X=\left[0, \omega_{1}\right) \cup D$, where $D=\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ is a set of cardinality ω_{1}. We topologize X as follows: $\left[0, \omega_{1}\right)$ has the usual order topology and is an open subspace of X; a basic neighborhood of a point $d_{\alpha} \in D$ takes the form

$$
O_{\beta}\left(d_{\alpha}\right)=\left\{d_{\alpha}\right\} \cup\left(\beta, \omega_{1}\right), \text { where } \beta<\omega_{1} .
$$

Then X is a T_{1} space.
First we show that X is star-Menger. We only show that X is starcompact, since every starcompact space is star-Menger. To this end, let \mathcal{U} be an open cover of X. Without loss of generality, we can assume that \mathcal{U} consists of basic open subsets of X. Thus it is sufficient to show that there exists a finite subset \mathcal{V} of \mathcal{U} such that $S t(\cup \mathcal{V}, \mathcal{U})=X$. Since $\left[0, \omega_{1}\right)$ is countably compact, it is strongly starcompact (see $[1,6]$), then we can find a finite subset \mathcal{V}_{1} of \mathcal{U} such that $\left[0, \omega_{1}\right) \subseteq S t \bigcup \mathcal{V}_{1}, \mathcal{U}$). On the other hand, if we pick $\alpha_{0}<\omega_{1}$, then there exists $U_{\alpha_{0}} \in \mathcal{U}$ such that $d_{\alpha_{0}} \in U_{\alpha_{0}}$. For each $\alpha<\omega_{1}$, there is $U_{\alpha} \in U$ such that $d_{\alpha} \in U_{\alpha}$. Hence we have $U_{\alpha_{0}} \cap U_{\alpha} \neq \emptyset$ by the construction of the topology of X. Therefore $D \subseteq S t\left(U_{\alpha_{0}}, \mathcal{U}\right)$. If we put $\mathcal{V}=\mathcal{V}_{1} \cup\left\{U_{\alpha_{0}}\right\}$, then \mathcal{V} is a finite subset of \mathcal{U} and $X=S t(\bigcup \mathcal{V}, \mathcal{U})$, which shows that X is starcompact.

Next we show that X is not star-K-Menger. For each $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}=\left\{O_{\alpha}\left(d_{\alpha}\right): \alpha<\omega_{1}\right\} \cup\left\{\left[0, \omega_{1}\right)\right\} .
$$

Then \mathcal{U}_{n} is an open cover of X. Let us consider the sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of open covers of X. It suffices to show that $\bigcup_{n \in \mathbb{N}} S t\left(K_{n}, \mathcal{U}_{n}\right) \neq X$ for any sequence ($K_{n}: n \in \mathbb{N}$) of compact subsets of X. Let $\left(K_{n}: n \in \mathbb{N}\right)$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, the set $K_{n} \cap\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ is finite, since K_{n} is compact and $\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ is a discrete closed subset of X. Then there exists $\alpha_{n}<\omega_{1}$ such that

$$
K_{n} \cap\left\{d_{\alpha}: \alpha>\alpha_{n}\right\}=\emptyset
$$

Let $\alpha^{\prime}=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\alpha^{\prime}<\omega_{1}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \cap\left\{d_{\alpha}: \alpha>\alpha^{\prime}\right\}=\emptyset .
$$

For each $n \in \mathbb{N}$, the set K_{n} is compact and $\left[0, \omega_{1}\right)$ is countably compact. Hence $K_{n} \cap\left[0, \omega_{1}\right)$ is bounded in $\left[0, \omega_{1}\right)$. Thus there exists $\alpha_{n}^{\prime}<\omega_{1}$ such that

$$
K_{n} \cap\left(\alpha_{n}^{\prime}, \omega_{1}\right)=\emptyset .
$$

Let $\alpha^{\prime \prime}=\sup \left\{\alpha_{n}^{\prime}: n \in \mathbb{N}\right\}$. Then $\alpha^{\prime \prime}<\omega_{1}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \cap\left(\alpha^{\prime \prime}, \omega_{1}\right)=\emptyset
$$

If we pick $\beta>\max \left\{\alpha^{\prime}, \alpha^{\prime \prime}\right\}$. Then $O_{\beta}\left(d_{\beta}\right) \cap K_{n}=\emptyset$ for each $n \in \mathbb{N}$. Hence $d_{\beta} \notin$ $\operatorname{St}\left(K_{n}, \mathcal{U}_{n}\right)$ for each $n \in \mathbb{N}$, since $O_{\beta}\left(d_{\beta}\right)$ is the only element of \mathcal{U}_{n} containing the point d_{β} for each $n \in \mathbb{N}$, which shows that X is not star-K-Menger.
2.5. Remark. The author does not know if there exists a Hausdorff (or Tychonoff) star-Menger space which is not star-K-Menger.

3. Properties of star-K-menger spaces

In this section, we study topological properties of star-K-Menger spaces. The space X of the proof of Example 2.2 shows that a closed subset of a Tychonoff star-K-Menger space X need not be star-K-Menger, since $D \times\left\{\mathfrak{c}^{+}\right\}$is a discrete closed subset of cardinality c. Now we give an example showing that a regular-closed subset of a Tychonoff star-KMenger space X need not be star-K-Menger. Here a subset A of a space X is said to be regular-closed in X if cl_{X} int $_{X} A=A$.
3.1. Example. There exists a Tychonoff star-K-Menger space having a regular-closed subspace which is not star-K-Menger.

Proof. Let $D=\left\{d_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a discrete space of cardinality \mathfrak{c} and let $a D=D \cup\left\{d^{*}\right\}$ be one-point comactification of D.

Let S_{1} be the same space X in the proof of Example 2.2. Then S_{1} is a Tychonoff star-K-Menger space.

Let

$$
S_{2}=(a D \times[0, \mathfrak{c})) \cup(D \times\{\mathfrak{c}\})
$$

be the subspace of the product space $a D \times[0, \mathfrak{c}]$. To show that S_{2} is not star-K-Menger. For each $\alpha<\mathfrak{c}$, let

$$
U_{\alpha}=\left\{d_{\alpha}\right\} \times(\alpha, c] \text { and } V_{\alpha}=a D \times[0, \alpha)
$$

For each $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}=\left\{U_{\alpha}: \alpha<\mathfrak{c}\right\} \cup\left\{V_{\alpha}: \alpha<\mathfrak{c}\right\} .
$$

Then \mathcal{U}_{n} is an open cover of S_{2}. Let us consider the sequence ($\mathcal{U}_{n}: n \in \mathbb{N}$) of open covers of S_{2}. It suffices to show that $\bigcup_{n \in \mathbb{N}} S t\left(K_{n}, \mathcal{U}_{n}\right) \neq X$ for any sequence ($K_{n}: n \in \mathbb{N}$) of compact subsets of X. Let ($K_{n}: n \in \mathbb{N}$) be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, since K_{n} is compact and $\left\{\left\langle d_{\alpha}, \mathfrak{c}\right\rangle: \alpha<\mathfrak{c}\right\}$ is a discrete closed subset of S_{2}, the set $A_{n}=\left\{\alpha:\left\langle d_{\alpha}, \mathfrak{c}\right\rangle \in K_{n}\right\}$ is finite. Let

$$
K_{n}^{\prime}=K_{n} \backslash \bigcup\left\{U_{\alpha}: \alpha \in A_{n}\right\}
$$

If $K_{n}^{\prime}=\emptyset$. Then there exists $\alpha_{n}^{\prime}<\mathfrak{c}$ such that

$$
K_{n} \cap U_{\alpha}=\emptyset \text { for each } \alpha>\alpha_{n}^{\prime}
$$

If $K_{n}^{\prime} \neq \emptyset$. Since K_{n}^{\prime} is closed in K_{n}, K_{n}^{\prime} is compact and $K_{n}^{\prime} \subseteq a D \times[0, \mathfrak{c})$. Then $\pi\left(K_{n}^{\prime}\right)$ is a compact subset of a countable compact space $[0, \mathfrak{c})$, where $\pi: a D \times[0, \mathfrak{c}) \rightarrow[0, \mathfrak{c})$ is the projection. Hence $\pi\left(K_{n}^{\prime}\right)$ is bounded in $[0, \mathfrak{c})$, Thus there exists $\beta_{n}<\mathfrak{c}$ such that $\pi\left(K_{n}^{\prime}\right) \cap\left(\beta_{n}, \mathfrak{c}\right)=\emptyset$. Choose $\alpha_{n}^{\prime \prime}>\max \left\{\alpha: \alpha \in A_{n}\right\} \cup\left\{\beta_{n}\right\}$. Then

$$
U_{\alpha} \cap K_{n}=\emptyset \text { for each } \alpha>\alpha_{n}^{\prime \prime} .
$$

Hence, for each $n \in \mathbb{N}$ either $K_{n}^{\prime}=\emptyset$ or $K_{n}^{\prime} \neq \emptyset$, there exists $\alpha_{n}<\mathfrak{c}$ such that

$$
U_{\alpha} \cap K_{n}=\emptyset \text { for each } \alpha>\alpha_{n} .
$$

Let $\beta_{0}=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\beta_{0}<\mathfrak{c}$ and

$$
U_{\alpha} \cap K_{n}=\emptyset \text { for each } \alpha>\beta_{0} \text { and each } n \in \mathbb{N} .
$$

If we pick $\alpha^{\prime}>\beta_{0}$. Then

$$
U_{\alpha^{\prime}} \cap K_{n}=\emptyset \text { for each } n \in \mathbb{N} .
$$

Hence

$$
\left\langle d_{\alpha^{\prime}}, \mathfrak{c}\right\rangle \notin S t\left(K_{n}, \mathcal{U}_{n}\right) \text { for each } n \in \mathbb{N}
$$

since $U_{\alpha^{\prime}}$ is the only element of \mathcal{U}_{n} containing the point $\left\langle d_{\alpha^{\prime}}, \mathfrak{c}\right\rangle$ for each $n \in \mathbb{N}$, which shows that S_{2} is not star-K-Menger.

We assume $S_{1} \cap S_{2}=\emptyset$. Let $\pi: D \times\left\{\mathfrak{c}^{+}\right\} \rightarrow D \times\{\mathfrak{c}\}$ be a bijection and let X be the quotient image of the disjoint sum $S_{1} \oplus S_{2}$ by identifying $\left\langle d_{\alpha}, \mathfrak{c}^{+}\right\rangle$of S_{1} with $\left.\pi\left(\left\langle d_{\alpha}, \mathfrak{c}^{+}\right\rangle\right\}\right)$ of S_{2} for every $\alpha<\mathfrak{c}$. Let $\varphi: S_{1} \oplus S_{2} \rightarrow X$ be the quotient map. It is clear that $\varphi\left(S_{2}\right)$ is a regular-closed subspace of X which is not star-K-Menger, since it is homeomorphic to S_{2}.

Finally we show that X is star-K-Menger; we only show that X is K-starcompact, since every K-starcompact space is star-K-Menger. To this end, let \mathcal{U} be an open cover of X. Since $\varphi\left(S_{1}\right)$ is homeomorphic to S_{1} and consequently $\varphi\left(S_{1}\right)$ is K-starcompact. Thus there exists a compact subset K_{1} of $\varphi\left(S_{1}\right)$ such that

$$
\varphi\left(S_{1}\right) \subseteq S t\left(K_{1}, \mathcal{U}\right)
$$

Since $\varphi(a D \times[0, \mathfrak{c}))$ is homeomorphic to $a D \times[0, \mathfrak{c})$, the set $\varphi(a D \times[0, \mathfrak{c}))$ is countably compact, hence it is strongly starcompact (see [1,6]). Thus we can find a finite subset K_{2} of $\varphi(a D \times[0, \mathfrak{c}))$ such that

$$
\varphi(a D \times[0, \mathfrak{c})) \subseteq S t\left(K_{2}, \mathfrak{U}\right)
$$

If we put $K=K_{1} \cup K_{2}$. Then K is a compact subset of X such that $X=\operatorname{St}(K, \mathcal{U})$, which shows that X is K-starcompact.

Since a continuous image of a K-starcompact space is K-starcompact, it is not difficult to show the following result.

3.2. Theorem. A continuous image of a star-K-Menger space is star-K-Menger.

Next we turn to consider preimages. To show that the preimage of a star-K-Menger space under a closed 2 -to- 1 continuous map need not be star-K-Menger, we use the the Alexandorff duplicate $A(X)$ of a space X. The underlying set $A(X)$ is $X \times\{0,1\}$; each point of $X \times\{1\}$ is isolated and a basic neighborhood of $\langle x, 0\rangle \in X \times\{0\}$ is a set of the form $(U \times\{0\}) \cup((U \times\{1\}) \backslash\{\langle x, 0\rangle\})$, where U is a neighborhood of x in X.
3.3. Example. There exists a closed 2-to-1 continuous map $f: X \rightarrow Y$ such that Y is a star-K-Menger space, but X is not star-K-Menger.

Proof. Let Y be the same space X in the proof of Example 2.2. As we proved in Example 2.2 above, Y is star-K-Menger. Let X be the Alexandorff duplicate $A(Y)$. Then X is not star-K-Menger. In fact, let $A=\left\{\left\langle\left\langle d_{\alpha}, \mathfrak{c}^{+}\right\rangle, 1\right\rangle: \alpha<\mathfrak{c}\right\}$. Then A is an open and closed subset of X with $|A|=\mathfrak{c}$, and each point $\left\langle\left\langle d_{\alpha}, \mathfrak{c}^{+}\right\rangle, 1\right\rangle$ is isolated. Hence $A(X)$ is not star-K-Menger, since every open and closed subset of a star-K-Menger space is star-K-Menger and A is not star-K-Menger. Let $f: X \rightarrow Y$ be the projection. Then f is a closed 2 -to-1 continuous map, which completes the proof.

Now, we give a positive result:
3.4. Theorem. Let f be an open perfect map from a space X to a star-K-Menger space Y. Then X is star-K-Menger.

Proof. Since $f(X)$ is open and closed in Y, we may assume that $f(X)=Y$. Let $\left(\mathcal{U}_{n}\right.$: $n \in \mathbb{N}$) be a sequence of open covers of X and let $y \in Y$. For each $n \in \mathbb{N}$, since $f^{-1}(y)$ is compact, there exists a finite subcollection $\mathcal{U}_{n_{y}}$ of \mathcal{U}_{n} such that $f^{-1}(y) \subseteq \cup \mathcal{U}_{n_{y}}$ and $U \cap f^{-1}(y) \neq \emptyset$ for each $U \in \mathcal{U}_{n_{y}}$. Pick an open neighborhood $V_{n_{y}}$ of y in Y such that $f^{-1}\left(V_{n_{y}}\right) \subseteq \bigcup\left\{U: U \in \mathcal{U}_{n_{y}}\right\}$, then we can assume that

$$
\begin{equation*}
V_{n_{y}} \subseteq \bigcap\left\{f(U): U \in U_{n_{y}}\right\} \tag{3.1}
\end{equation*}
$$

because f is open. For each $n \in \mathbb{N}$, taking such open set $V_{n_{y}}$ for each $y \in Y$, we have an open cover $\mathcal{V}_{n}=\left\{V_{n_{y}}: y \in Y\right\}$ of Y. Thus ($\left.\mathcal{V}_{n}: n \in \mathbb{N}\right)$ is a sequence of open covers of Y, there exists a sequence ($K_{n}: n \in \mathbb{N}$) of compact subsets of Y such that $\left(S t\left(K_{n}, \mathcal{V}_{n}\right): n \in \mathbb{N}\right)$ is an open cover of Y, since Y is star-K-Menger. Since f is perfect, the sequence $\left(f^{-1}\left(K_{n}\right): n \in N\right)$ is the sequence of compact subsets of X. To show that $\left\{\operatorname{St}\left(f^{-1}\left(K_{n}\right), \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X. Let $x \in X$. Then there exists a $n \in \mathbb{N}$ and $y \in Y$ such that $f(x) \in V_{n_{y}}$ and $V_{n_{y}} \cap K_{n} \neq \emptyset$. Since

$$
x \in f^{-1}\left(V_{n_{y}}\right) \subseteq \bigcup\left\{U: U \in U_{n_{y}}\right\},
$$

we can choose $U \in \mathcal{U}_{n_{y}}$ with $x \in U$. Then $V_{n_{y}} \subseteq f(U)$ by (3.1), and hence $U \cap f^{-1}\left(K_{n}\right) \neq$ \emptyset. Therefore $x \in S t\left(f^{-1}\left(K_{n}\right), \mathcal{U}_{n}\right)$. Consequently, we have $\left\{\operatorname{St}\left(f^{-1}\left(K_{n}\right), \mathcal{U}_{n}\right): n \in \mathbb{N}\right\}$ is an open cover of X, which shows that X is star-K-Menger.

By Theorem 3.4 we have the following corollary.
3.5. Corollary. Let X be a star-K-Menger space and Y a compact space. Then $X \times Y$ is star-K-Menger.

However, the product of two star-K-Menger spaces need not be star-K-Menger. In fact, the following well-known example showing that the product of two countably compact (and hence star-K-Menger) spaces need not be star-K-Menger. Here we give a rough proof for the sake of completeness. For a Tychonoff space X, let βX denote the \breve{C} ech-Stone compactification of X.
3.6. Example. There exists two countably compact spaces X and Y such that $X \times Y$ is not star-K-Menger.
Proof. Let D be a discrete space of cardinality \mathfrak{c}. We can define $X=\bigcup_{\alpha<\omega_{1}} E_{\alpha}$ and $Y=\bigcup_{\alpha<\omega_{1}} F_{\alpha}$, where E_{α} and F_{α} are the subsets of βD which are defined inductively so as to satisfy the following conditions (1), (2) and (3):
(1) $E_{\alpha} \cap F_{\beta}=D$ if $\alpha \neq \beta$;
(2) $\left|E_{\alpha}\right| \leq \mathfrak{c}$ and $\left|F_{\beta}\right| \leq \mathfrak{c}$;
(3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp., $F_{\alpha+1}$).

These sets E_{α} and F_{α} are well-defined since every infinite closed set in βD has cardinality at least 2^{c} (see [7]). Then $X \times Y$ is not star-K-Menger, because the diagonal $\{\langle d, d\rangle: d \in D\}$ is a discrete open and closed subset of $X \times Y$ with cardinality \mathfrak{c} and the open and closed subsets of star-K-Menger spaces are star-K-Menger.

In [1, Example 3.3.3], van Douwen-Reed-Roscoe-Tree gave an example showing that there exist a countably compact space X and a Lindelöf space Y such that $X \times Y$ is not strongly star-Lindelöf. Now, we shall show that the product space $X \times Y$ is not star-K-Menger.
3.7. Example. There exist a countably compact (and hence star-K-Menger) space X and a Lindelöf space Y such that $X \times Y$ is not star-K-Menger.

Proof. Let $X=\left[0, \omega_{1}\right)$ with the usual order topology and $Y=\omega_{1}+1$ with the following topology: each point α with $\alpha<\omega_{1}$ is isolated and a set U containing ω_{1} is open if and only if $Y \backslash U$ is countable. Then X is countably compact and Y is Lindelöf. Now, we show that $X \times Y$ is not star-K-Menger. For each $\alpha<\omega_{1}$, let

$$
U_{\alpha}=[0, \alpha] \times\left[\alpha, \omega_{1}\right] \text { and } V_{\alpha}=\left(\alpha, \omega_{1}\right) \times\{\alpha\} .
$$

For each $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}=\left\{U_{\alpha}: \alpha<\omega_{1}\right\} \cup\left\{V_{\alpha}: \alpha<\omega_{1}\right\} .
$$

Then \mathcal{U}_{n} is an open cover of $X \times Y$. Let us consider the sequence $\left(\mathcal{U}_{n}: n \in \mathbb{N}\right)$ of the open covers of $X \times Y$. It suffices to show that $\bigcup_{n \in \mathbb{N}} S t\left(K_{n}, \mathcal{U}_{n}\right) \neq X \times Y$ for any sequence ($K_{n}: n \in \mathbb{N}$) of compact subsets of $X \times Y$. Let ($K_{n}: n \in \mathbb{N}$) be any sequence of compact subsets of $X \times Y$. For each $n \in \mathbb{N}$, since K_{n} is compact, then $\pi\left(K_{n}\right)$ is a compact subset of X, where $\pi: X \times Y \rightarrow X$ is the projection. Thus there exists $\alpha_{n}<\omega_{1}$ such that

$$
K_{n} \cap\left(\left(\alpha_{n}, \omega_{1}\right) \times Y\right)=\emptyset .
$$

Let $\beta=\sup \left\{\alpha_{n}: n \in \mathbb{N}\right\}$. Then $\beta<\omega_{1}$ and

$$
\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \cap\left(\left(\beta, \omega_{1}\right) \times Y\right)=\emptyset .
$$

If we pick $\alpha>\beta$. Then $\langle\alpha+1, \alpha\rangle \notin S t\left(K_{n}, \mathcal{U}_{n}\right)$ for each $n \in \mathbb{N}$, since V_{α} is the only element of \mathcal{U}_{n} containing the point $\langle\alpha+1, \alpha\rangle$ for each $n \in \mathbb{N}$, which shows that $X \times Y$ is not star-K-Menger.

4. Acknowledgments

The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions which led to improvements on several places. The present form of Example 2.1 are due to his/her suggestions.

References

[1] E.K. van Douwen, G.K. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103.
[2] E. Engelking, General Topology, Revised and completed edition Heldermann Verlag, Berlin, 1989.
[3] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers(II), Topology Appl. 158 (2011), 1732-1737.
[4] Lj.D.R. Koc̆inac, Star-Menger and related spaces, Publ. Math. Debrecen, 55 (1999), 421-431.
[5] Lj.D.R. Koc̆inac, Star-Menger and related spaces II, Filomat (Nis̆), 13 (1999) 129-140.
[6] M.V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No 3301998.
[7] R.C. Walker, The Stone-Čech compactification, Springer, Berlin 1974.
[8] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.
[9] Y.-K. Song, On \mathcal{K}-starcompact spaces, Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64.

[^0]: *Institute of Mathematics, School of Mathematical Science, Nanjing Normal University Nanjing 210023, P.R. China
 The author acknowledges the support from National Natural Science Foundation (grant 11271036) of China. A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
 Email: songyankui@njnu.edu.cn

