On star-K-Menger spaces

Yan-Kui Song *

Received 01:09:2012: Accepted 26:09:2013

Abstract

A space X is star-K-Menger if for each sequence $(U_n : n \in \mathbb{N})$ of open covers of X there exists a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X such that $\{St(K_n, U_n) : n \in \mathbb{N}\}$ is an open cover of X. In this paper, we investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

2000 AMS Classification: 54D20, 54C10

Keywords: Selection principles, star-Menger, strongly star-Menger, star-K-Menger, starcompact, star Lindelöf, strongly starcompact, strongly star Lindelöf, star-L-Lindelöf

1. Introduction

By a space, we mean a topological space. We give definitions of terms which are used in this paper. Let $\mathbb N$ denote the set of positive integers. Let X be a space and $\mathbb U$ a collection of subsets of X. For $A\subseteq X$, let $St(A,\mathbb U)=\bigcup\{U\in\mathbb U:U\cap A\neq\emptyset\}$. As usual, we write $St(x,\mathbb U)$ instead of $St(\{x\},\mathbb U)$.

Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X. Then the symbol $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(U_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $U_n \in \mathcal{U}_n$ and $\{U_n : n \in \}$ is an element of \mathcal{B} . The symbol $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an element of \mathcal{B} (see [3,8]).

Kočinac [4,5] introduced star selection hypothesis similar to the previous ones. Let \mathcal{A} and \mathcal{B} be collections of open covers of a space X. Then:

(A) The symbol $S_{fin}^*(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $\bigcup_{n \in \mathbb{N}} \{St(\mathcal{V}, \mathcal{U}_n) : \mathcal{V} \in \mathcal{V}_n\}$ is an element of \mathcal{B} .

Email: songyankui@njnu.edu.cn

^{*}Institute of Mathematics, School of Mathematical Science, Nanjing Normal University Nanjing 210023, P.R. China

The author acknowledges the support from National Natural Science Foundation (grant 11271036) of China. A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

(B) The symbol $SS_{comp}^*(\mathcal{A}, \mathcal{B})$ $(SS_{fin}^*(\mathcal{A}, \mathcal{B}))$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(K_n : n \in \mathbb{N})$ of compact (resp., finite) subsets of X such that $\{St(K_n, \mathcal{U}_n) : n \in \mathbb{N}\} \in \mathcal{B}$.

Let \mathcal{O} denote the collection of all open covers of X.

- **1. Definition.** ([4,5]) A space X is said to be *star-Menger* if it satisfies the selection hypothesis $S_{fin}^*(\mathcal{O}, \mathcal{O})$.
- **2. Definition.** ([4,5]) A space X is said to be star-K-Menger ($strongly\ star$ -Menger) if it satisfies the selection hypothesis $SS^*_{comp}(\mathcal{O},\mathcal{O})$ (resp., $SS^*_{fin}(\mathcal{O},\mathcal{O})$).
- **3. Definition.** ([1,7]) A space X is said to be starcompact ($star-Lindel\"{o}f$) if for every open cover \mathcal{U} of X there exists a finite (resp., countable, respectively) $\mathcal{V} \subseteq \mathcal{U}$ such that $St(\cup \mathcal{V}, \mathcal{U}) = X$.
- **4. Definition.** ([1,6,9]) A space X is said to be K-starcompact (strongly starcompact, strongly star-Lindelöf, star-L-Lindelöf) if for every open cover \mathcal{U} of X there exists a compact (resp., finite, countable, Lindelöf) subset F of X such that $St(F,\mathcal{U}) = X$.

From the definitions, it is clear that every K-star compact space is star-K-Menger, every strongly star-Menger space is star-K-Menger and every star-K-Menger space is star-Menger. Since every σ -sompact subset is Lindelöf, thus every star-K-Menger space is star-L-Lindelöf. But the converses do not hold (see Examples 2.1, 2.2, 2.3 and 2.4 below).

Kočinac [4,5] studied the star-Menger and related spaces. In this paper, our purpose is to investigate the relationship between star-K-Menger spaces and related spaces, and study topological properties of star-K-Menger spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ , let κ^+ be the smallest cardinal greater than κ . For each pair of ordinals α , β with $\alpha < \beta$, we write $[\alpha, \beta) = \{\gamma : \alpha \leq \gamma < \beta\}$, $(\alpha, \beta] = \{\gamma : \alpha < \gamma \leq \beta\}$, $(\alpha, \beta) = \{\gamma : \alpha < \gamma < \beta\}$ and $[\alpha, \beta] = \{\gamma : \alpha \leq \gamma \leq \beta\}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [2].

2. Star-K-Menger spaces and related spaces

In this section, we give some examples showing that the relationship between star-K-Menger spaces and other related spaces.

2.1. Example. There exists a Tychonoff star-K-Menger space X which is not K-star-compact.

Proof. Let $X = \omega$ be the countably infinite discrete space. Clearly, X is not K-starcompact. Since X is countable, the singleton sets can serve as the compact sets which witness that X is star-K-Menger, which completes the proof.

2.2. Example. There exists a Tychonoff star-K-Menger space which is not strongly star-Menger.

Proof. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $aD = D \cup \{d^*\}$ be one-point comactification of D. Let

$$X = (aD \times [0, \mathfrak{c}^+)) \cup (D \times \{\mathfrak{c}^+\})$$

be the subspace of the product space $aD \times [0, \mathfrak{c}^+]$. Clearly, X is a Tychonoff space.

First we show that X is star-K-Menger; we only show that X is K-starcompact, since every K-starcompact space is star-K-Menger. To this end, let \mathcal{U} be an open cover of X. For each $\alpha < \mathfrak{c}$, there exists $U_{\alpha} \in \mathcal{U}$ such that $\langle d_{\alpha}, \mathfrak{c}^{+} \rangle \in U_{\alpha}$. For each $\alpha < \mathfrak{c}$, we can find $\beta_{\alpha} < \mathfrak{c}^{+}$ such that $\{d_{\alpha}\} \times (\beta_{\alpha}, \mathfrak{c}^{+}] \subseteq U_{\alpha}$. Let $\beta = \sup\{\beta_{\alpha} : \alpha < \mathfrak{c}\}$. Then $\beta < \mathfrak{c}^{+}$. Let $K_{1} = aD \times \{\beta\}$. Then K_{1} is compact and $U_{\alpha} \cap K_{1} \neq \emptyset$ for each $\alpha < \mathfrak{c}$. Hence

$$D \times \{\mathfrak{c}^+\} \subseteq St(K_1, \mathfrak{U}).$$

On the other hand, since $aD \times [0, \mathfrak{c}^+)$ is countably compact and consequently $aD \times [0, \mathfrak{c}^+)$ is strongly starcompact (see [1,6]), hence there exists a finite subset K_2 of $aD \times [0, \mathfrak{c}^+)$ such that

$$aD \times [0, \mathfrak{c}^+) \subseteq St(K_2, \mathfrak{U}).$$

If we put $K = K_1 \cup K_2$. Then K is a compact subset of X such that $X = St(K, \mathcal{U})$, which shows that X is K-starcompact.

Next we show that X is not strongly star-Menger. We only show that X is not strongly star-Lindelöf, since every strongly star-Menger space is strongly star-Lindelöf. Let us consider the open cover

$$\mathcal{U} = \{ \{d_{\alpha}\} \times [0, \mathfrak{c}^+] : \alpha < \mathfrak{c} \} \cup \{aD \times [0, \mathfrak{c}^+) \}$$

of X. It remains to show that $St(F, \mathcal{U}) \neq X$ for any countable subset F of X. To show this, let F any countable subset of X. Then there exists $\alpha_0 < \mathfrak{c}$ such that $F \cap (\{d_{\alpha_0}\} \times [0, \mathfrak{c}^+]) = \emptyset$. Hence $\langle d_{\alpha_0}, \mathfrak{c}^+ \rangle \notin St(F, \mathcal{U})$, since $\{d_{\alpha_0}\} \times [0, \mathfrak{c}^+]$ is the only element of \mathcal{U} containing the point $\langle d_{\alpha_0}, \mathfrak{c}^+ \rangle$, which shows that X is not strongly star-Lindelöf.

2.3. Example. There exists a Tychonoff star-L-Lindelöf space which is not star-K-Menger..

Proof. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $bD = D \cup \{d^*\}$, where $d^* \notin D$. We topologize bD as follows: for each $\alpha < \mathfrak{c}$, $\{d_{\alpha}\}$ is isolated and a set U containing d^* is open if and only if $bD \setminus U$ is countable. Then bD is Lindelöf and every compact subset of bD is finite. Let

$$X = (bD \times [0, \omega]) \setminus \{\langle d^*, \omega \rangle\}$$

be the subspace of the product space $bD \times [0, \omega]$. Then X is star-L-Lindelöf, since $bD \times \omega$ is a Lindelöf dense subset of X.

Next we show that X is not star-K-Menger. For each $\alpha < \mathfrak{c}$, let $U_{\alpha} = \{d_{\alpha}\} \times [0, \omega]$. For each $n \in \omega$, let $V_n = bD \times \{n-1\}$. For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{ U_\alpha : \alpha < \mathfrak{c} \} \cup \{ V_n : n \in \mathbb{N} \}.$$

Then \mathcal{U}_n is an open cover of X. Let us consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X. It suffices to show that $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{U}_n) \neq X$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X. Let $(K_n : n \in \mathbb{N})$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, since K_n is compact and $\{\langle d_\alpha, \omega \rangle : \alpha < \mathfrak{c}\}$ is a discrete closed subset of X, the set $K_n \cap \{\langle d_\alpha, \omega \rangle : \alpha < \mathfrak{c}\}$ is finite. Then there exists $\alpha_n < \mathfrak{c}$ such that

$$K_n \cap \{\langle d_\alpha, \omega \rangle : \alpha > \alpha_n\} = \emptyset.$$

Let $\alpha' = \sup\{\alpha_n : n \in \mathbb{N}\}$. Then $\alpha' < \mathfrak{c}$ and

$$(\bigcup_{n\in\mathbb{N}} K_n) \cap \{\langle d_\alpha, \omega \rangle : \alpha > \alpha'\} = \emptyset.$$

For each $n \in \mathbb{N}$, since $K_n \cap V_m$ is finite for each $m \in \mathbb{N}$, there exists $\alpha_{nm} < \mathfrak{c}$ such that

$$K_n \cap \{\langle d_\alpha, n \rangle : \alpha > \alpha_{nm}\} = \emptyset.$$

Let $\alpha'_n = \sup\{\alpha_{nm} : m \in \mathbb{N}\}$. Then $\alpha'_n < \mathfrak{c}$ and

$$K_n \cap \{\langle d_\alpha, m \rangle : \alpha > \alpha'_n, m \in \mathbb{N}\} = \emptyset.$$

Let $\alpha'' = \sup\{\alpha'_n : n \in \mathbb{N}\}$. Then $\alpha' < \mathfrak{c}$ and

$$\left(\bigcup_{n\in\mathbb{N}}K_n\right)\cap\left\{\langle d_\alpha,m\rangle:\alpha>\alpha'',m\in\mathbb{N}\right\}=\emptyset.$$

If we pick $\beta > \max\{\alpha', \alpha''\}$. Then $U_{\beta} \cap K_n = \emptyset$ for each $n \in \mathbb{N}$. Hence $\langle d_{\beta}, \omega \rangle \notin St(K_n, \mathcal{U}_n)$ for each $n \in \mathbb{N}$, since U_{β} is the only element of \mathcal{U}_n containing the point $\langle d_{\beta}, \omega \rangle$ for each $n \in \mathbb{N}$, which shows that X is not star-K-Menger.

2.4. Example. There exists a T_1 star-Menger space which is not star-K-Menger.

Proof. Let $X = [0, \omega_1) \cup D$, where $D = \{d_\alpha : \alpha < \omega_1\}$ is a set of cardinality ω_1 . We topologize X as follows: $[0, \omega_1)$ has the usual order topology and is an open subspace of X; a basic neighborhood of a point $d_\alpha \in D$ takes the form

$$O_{\beta}(d_{\alpha}) = \{d_{\alpha}\} \cup (\beta, \omega_1), \text{ where } \beta < \omega_1.$$

Then X is a T_1 space.

First we show that X is star-Menger. We only show that X is starcompact, since every starcompact space is star-Menger. To this end, let $\mathcal U$ be an open cover of X. Without loss of generality, we can assume that $\mathcal U$ consists of basic open subsets of X. Thus it is sufficient to show that there exists a finite subset $\mathcal V$ of $\mathcal U$ such that $St(\bigcup \mathcal V, \mathcal U) = X$. Since $[0,\omega_1)$ is countably compact, it is strongly starcompact (see [1,6]), then we can find a finite subset $\mathcal V_1$ of $\mathcal U$ such that $[0,\omega_1)\subseteq St\bigcup \mathcal V_1,\mathcal U$). On the other hand, if we pick $\alpha_0<\omega_1$, then there exists $U_{\alpha_0}\in \mathcal U$ such that $d_{\alpha_0}\in U_{\alpha_0}$. For each $\alpha<\omega_1$, there is $U_{\alpha}\in \mathcal U$ such that $d_{\alpha}\in U_{\alpha}$. Hence we have $U_{\alpha_0}\cap U_{\alpha}\neq \emptyset$ by the construction of the topology of X. Therefore $D\subseteq St(U_{\alpha_0},\mathcal U)$. If we put $\mathcal V=\mathcal V_1\cup \{U_{\alpha_0}\}$, then $\mathcal V$ is a finite subset of $\mathcal U$ and $X=St(\bigcup \mathcal V,\mathcal U)$, which shows that X is starcompact.

Next we show that X is not star-K-Menger. For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{O_\alpha(d_\alpha) : \alpha < \omega_1\} \cup \{[0, \omega_1)\}.$$

Then \mathcal{U}_n is an open cover of X. Let us consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X. It suffices to show that $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{U}_n) \neq X$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X. Let $(K_n : n \in \mathbb{N})$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, the set $K_n \cap \{d_\alpha : \alpha < \omega_1\}$ is finite, since K_n is compact and $\{d_\alpha : \alpha < \omega_1\}$ is a discrete closed subset of X. Then there exists $\alpha_n < \omega_1$ such that

$$K_n \cap \{d_\alpha : \alpha > \alpha_n\} = \emptyset.$$

Let $\alpha' = \sup\{\alpha_n : n \in \mathbb{N}\}\$. Then $\alpha' < \omega_1$ and

$$(\bigcup_{n\in\mathbb{N}}K_n)\cap\{d_\alpha:\alpha>\alpha'\}=\emptyset.$$

For each $n \in \mathbb{N}$, the set K_n is compact and $[0, \omega_1)$ is countably compact. Hence $K_n \cap [0, \omega_1)$ is bounded in $[0, \omega_1)$. Thus there exists $\alpha'_n < \omega_1$ such that

$$K_n \cap (\alpha'_n, \omega_1) = \emptyset.$$

Let $\alpha'' = \sup\{\alpha'_n : n \in \mathbb{N}\}$. Then $\alpha'' < \omega_1$ and

$$(\bigcup_{n\in\mathbb{N}}K_n)\cap(\alpha'',\omega_1)=\emptyset.$$

If we pick $\beta > \max\{\alpha', \alpha''\}$. Then $O_{\beta}(d_{\beta}) \cap K_n = \emptyset$ for each $n \in \mathbb{N}$. Hence $d_{\beta} \notin St(K_n, \mathcal{U}_n)$ for each $n \in \mathbb{N}$, since $O_{\beta}(d_{\beta})$ is the only element of \mathcal{U}_n containing the point d_{β} for each $n \in \mathbb{N}$, which shows that X is not star-K-Menger.

2.5. Remark. The author does not know if there exists a Hausdorff (or Tychonoff) star-Menger space which is not star-K-Menger.

3. Properties of star-K-menger spaces

In this section, we study topological properties of star-K-Menger spaces. The space X of the proof of Example 2.2 shows that a closed subset of a Tychonoff star-K-Menger space X need not be star-K-Menger, since $D \times \{\mathfrak{c}^+\}$ is a discrete closed subset of cardinality \mathfrak{c} . Now we give an example showing that a regular-closed subset of a Tychonoff star-K-Menger space X need not be star-K-Menger. Here a subset A of a space X is said to be regular-closed in X if $cl_Xint_XA = A$.

3.1. Example. There exists a Tychonoff star-K-Menger space having a regular-closed subspace which is not star-K-Menger.

Proof. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be a discrete space of cardinality \mathfrak{c} and let $aD = D \cup \{d^*\}$ be one-point comactification of D.

Let S_1 be the same space X in the proof of Example 2.2. Then S_1 is a Tychonoff star-K-Menger space.

Let

$$S_2 = (aD \times [0, \mathfrak{c})) \cup (D \times \{\mathfrak{c}\})$$

be the subspace of the product space $aD \times [0, \mathfrak{c}]$. To show that S_2 is not star-K-Menger. For each $\alpha < \mathfrak{c}$, let

$$U_{\alpha} = \{d_{\alpha}\} \times (\alpha, \mathfrak{c}] \text{ and } V_{\alpha} = aD \times [0, \alpha).$$

For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{U_\alpha : \alpha < \mathfrak{c}\} \cup \{V_\alpha : \alpha < \mathfrak{c}\}.$$

Then \mathcal{U}_n is an open cover of S_2 . Let us consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of S_2 . It suffices to show that $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{U}_n) \neq X$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X. Let $(K_n : n \in \mathbb{N})$ be any sequence of compact subsets of X. For each $n \in \mathbb{N}$, since K_n is compact and $\{\langle d_\alpha, \mathfrak{c} \rangle : \alpha < \mathfrak{c} \}$ is a discrete closed subset of S_2 , the set $A_n = \{\alpha : \langle d_\alpha, \mathfrak{c} \rangle \in K_n\}$ is finite. Let

$$K'_n = K_n \setminus \bigcup \{U_\alpha : \alpha \in A_n\}.$$

If $K'_n = \emptyset$. Then there exists $\alpha'_n < \mathfrak{c}$ such that

$$K_n \cap U_\alpha = \emptyset$$
 for each $\alpha > \alpha'_n$.

If $K'_n \neq \emptyset$. Since K'_n is closed in K_n , K'_n is compact and $K'_n \subseteq aD \times [0,\mathfrak{c})$. Then $\pi(K'_n)$ is a compact subset of a countable compact space $[0,\mathfrak{c})$, where $\pi:aD \times [0,\mathfrak{c}) \to [0,\mathfrak{c})$ is the projection. Hence $\pi(K'_n)$ is bounded in $[0,\mathfrak{c})$, Thus there exists $\beta_n < \mathfrak{c}$ such that $\pi(K'_n) \cap (\beta_n,\mathfrak{c}) = \emptyset$. Choose $\alpha''_n > \max\{\alpha: \alpha \in A_n\} \cup \{\beta_n\}$. Then

$$U_{\alpha} \cap K_n = \emptyset$$
 for each $\alpha > \alpha''_n$.

Hence, for each $n \in \mathbb{N}$ either $K'_n = \emptyset$ or $K'_n \neq \emptyset$, there exists $\alpha_n < \mathfrak{c}$ such that

$$U_{\alpha} \cap K_n = \emptyset$$
 for each $\alpha > \alpha_n$.

Let $\beta_0 = \sup \{ \alpha_n : n \in \mathbb{N} \}$. Then $\beta_0 < \mathfrak{c}$ and

$$U_{\alpha} \cap K_n = \emptyset$$
 for each $\alpha > \beta_0$ and each $n \in \mathbb{N}$.

If we pick $\alpha' > \beta_0$. Then

$$U_{\alpha'} \cap K_n = \emptyset$$
 for each $n \in \mathbb{N}$.

Hence

$$\langle d_{\alpha'}, \mathfrak{c} \rangle \notin St(K_n, \mathfrak{U}_n)$$
 for each $n \in \mathbb{N}$,

since $U_{\alpha'}$ is the only element of \mathcal{U}_n containing the point $\langle d_{\alpha'}, \mathfrak{c} \rangle$ for each $n \in \mathbb{N}$, which shows that S_2 is not star-K-Menger.

We assume $S_1 \cap S_2 = \emptyset$. Let $\pi: D \times \{\mathfrak{c}^+\} \to D \times \{\mathfrak{c}\}$ be a bijection and let X be the quotient image of the disjoint sum $S_1 \oplus S_2$ by identifying $\langle d_{\alpha}, \mathfrak{c}^+ \rangle$ of S_1 with $\pi(\langle d_{\alpha}, \mathfrak{c}^+ \rangle)$ of S_2 for every $\alpha < \mathfrak{c}$. Let $\varphi: S_1 \oplus S_2 \to X$ be the quotient map. It is clear that $\varphi(S_2)$ is a regular-closed subspace of X which is not star-K-Menger, since it is homeomorphic to S_2 .

Finally we show that X is star-K-Menger; we only show that X is K-starcompact, since every K-starcompact space is star-K-Menger. To this end, let $\mathcal U$ be an open cover of X. Since $\varphi(S_1)$ is homeomorphic to S_1 and consequently $\varphi(S_1)$ is K-starcompact. Thus there exists a compact subset K_1 of $\varphi(S_1)$ such that

$$\varphi(S_1) \subseteq St(K_1, \mathcal{U}).$$

Since $\varphi(aD \times [0,\mathfrak{c}))$ is homeomorphic to $aD \times [0,\mathfrak{c})$, the set $\varphi(aD \times [0,\mathfrak{c}))$ is countably compact, hence it is strongly starcompact (see [1,6]). Thus we can find a finite subset K_2 of $\varphi(aD \times [0,\mathfrak{c}))$ such that

$$\varphi(aD \times [0,\mathfrak{c})) \subseteq St(K_2,\mathfrak{U}).$$

If we put $K = K_1 \cup K_2$. Then K is a compact subset of X such that $X = St(K, \mathcal{U})$, which shows that X is K-starcompact.

Since a continuous image of a K-star compact space is K-starcompact, it is not difficult to show the following result.

3.2. Theorem. A continuous image of a star-K-Menger space is star-K-Menger.

Next we turn to consider preimages. To show that the preimage of a star-K-Menger space under a closed 2-to-1 continuous map need not be star-K-Menger, we use the the Alexandorff duplicate A(X) of a space X. The underlying set A(X) is $X \times \{0,1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of $\langle x,0 \rangle \in X \times \{0\}$ is a set of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x,0 \rangle\})$, where U is a neighborhood of x in X.

3.3. Example. There exists a closed 2-to-1 continuous map $f: X \to Y$ such that Y is a star-K-Menger space, but X is not star-K-Menger.

Proof. Let Y be the same space X in the proof of Example 2.2. As we proved in Example 2.2 above, Y is star-K-Menger. Let X be the Alexandorff duplicate A(Y). Then X is not star-K-Menger. In fact, let $A = \{\langle \langle d_{\alpha}, \mathfrak{c}^{+} \rangle, 1 \rangle : \alpha < \mathfrak{c} \}$. Then A is an open and closed subset of X with $|A| = \mathfrak{c}$, and each point $\langle \langle d_{\alpha}, \mathfrak{c}^{+} \rangle, 1 \rangle$ is isolated. Hence A(X) is not star-K-Menger, since every open and closed subset of a star-K-Menger space is star-K-Menger and A is not star-K-Menger. Let $f: X \to Y$ be the projection. Then f is a closed 2-to-1 continuous map, which completes the proof.

Now, we give a positive result:

3.4. Theorem. Let f be an open perfect map from a space X to a star-K-Menger space Y. Then X is star-K-Menger.

Proof. Since f(X) is open and closed in Y, we may assume that f(X) = Y. Let $(\mathfrak{U}_n : n \in \mathbb{N})$ be a sequence of open covers of X and let $y \in Y$. For each $n \in \mathbb{N}$, since $f^{-1}(y)$ is compact, there exists a finite subcollection \mathfrak{U}_{n_y} of \mathfrak{U}_n such that $f^{-1}(y) \subseteq \bigcup \mathfrak{U}_{n_y}$ and $U \cap f^{-1}(y) \neq \emptyset$ for each $U \in \mathfrak{U}_{n_y}$. Pick an open neighborhood V_{n_y} of Y in Y such that $f^{-1}(V_{n_y}) \subseteq \bigcup \{U : U \in \mathfrak{U}_{n_y}\}$, then we can assume that

$$(3.1) V_{n_y} \subseteq \bigcap \{ f(U) : U \in \mathfrak{U}_{n_y} \},$$

because f is open. For each $n \in \mathbb{N}$, taking such open set V_{n_y} for each $y \in Y$, we have an open cover $\mathcal{V}_n = \{V_{n_y} : y \in Y\}$ of Y. Thus $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of open covers of Y, there exists a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of Y such that $(St(K_n, \mathcal{V}_n) : n \in \mathbb{N})$ is an open cover of Y, since Y is star-K-Menger. Since f is perfect, the sequence $(f^{-1}(K_n) : n \in \mathbb{N})$ is the sequence of compact subsets of X. To show that $\{St(f^{-1}(K_n), \mathcal{U}_n) : n \in \mathbb{N}\}$ is an open cover of X. Let $x \in X$. Then there exists a $n \in \mathbb{N}$ and $y \in Y$ such that $f(x) \in V_{n_y}$ and $V_{n_y} \cap K_n \neq \emptyset$. Since

$$x \in f^{-1}(V_{n_y}) \subseteq \bigcup \{U : U \in \mathcal{U}_{n_y}\},\$$

we can choose $U \in \mathcal{U}_{n_y}$ with $x \in U$. Then $V_{n_y} \subseteq f(U)$ by (3.1), and hence $U \cap f^{-1}(K_n) \neq \emptyset$. Therefore $x \in St(f^{-1}(K_n), \mathcal{U}_n)$. Consequently, we have $\{St(f^{-1}(K_n), \mathcal{U}_n) : n \in \mathbb{N}\}$ is an open cover of X, which shows that X is star-K-Menger.

By Theorem 3.4 we have the following corollary.

3.5. Corollary. Let X be a star-K-Menger space and Y a compact space. Then $X \times Y$ is star-K-Menger.

However, the product of two star-K-Menger spaces need not be star-K-Menger. In fact, the following well-known example showing that the product of two countably compact (and hence star-K-Menger) spaces need not be star-K-Menger. Here we give a rough proof for the sake of completeness. For a Tychonoff space X, let βX denote the Čech-Stone compactification of X.

3.6. Example. There exists two countably compact spaces X and Y such that $X \times Y$ is not star-K-Menger.

Proof. Let D be a discrete space of cardinality \mathfrak{c} . We can define $X = \bigcup_{\alpha < \omega_1} E_{\alpha}$ and $Y = \bigcup_{\alpha < \omega_1} F_{\alpha}$, where E_{α} and F_{α} are the subsets of βD which are defined inductively so as to satisfy the following conditions (1), (2) and (3):

- (1) $E_{\alpha} \cap F_{\beta} = D$ if $\alpha \neq \beta$;
- (2) $|E_{\alpha}| \leq \mathfrak{c}$ and $|F_{\beta}| \leq \mathfrak{c}$;
- (3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp., $F_{\alpha+1}$).

These sets E_{α} and F_{α} are well-defined since every infinite closed set in βD has cardinality at least $2^{\mathfrak{c}}$ (see [7]). Then $X \times Y$ is not star-K-Menger, because the diagonal $\{\langle d, d \rangle : d \in D\}$ is a discrete open and closed subset of $X \times Y$ with cardinality \mathfrak{c} and the open and closed subsets of star-K-Menger spaces are star-K-Menger.

In [1, Example 3.3.3], van Douwen-Reed-Roscoe-Tree gave an example showing that there exist a countably compact space X and a Lindelöf space Y such that $X \times Y$ is not strongly star-Lindelöf. Now, we shall show that the product space $X \times Y$ is not star-K-Menger.

3.7. Example. There exist a countably compact (and hence star-K-Menger) space X and a Lindelöf space Y such that $X \times Y$ is not star-K-Menger.

Proof. Let $X = [0, \omega_1)$ with the usual order topology and $Y = \omega_1 + 1$ with the following topology: each point α with $\alpha < \omega_1$ is isolated and a set U containing ω_1 is open if and only if $Y \setminus U$ is countable. Then X is countably compact and Y is Lindelöf. Now, we show that $X \times Y$ is not star-K-Menger. For each $\alpha < \omega_1$, let

$$U_{\alpha} = [0, \alpha] \times [\alpha, \omega_1]$$
 and $V_{\alpha} = (\alpha, \omega_1) \times {\alpha}.$

For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{U_\alpha : \alpha < \omega_1\} \cup \{V_\alpha : \alpha < \omega_1\}.$$

Then \mathcal{U}_n is an open cover of $X \times Y$. Let us consider the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of the open covers of $X \times Y$. It suffices to show that $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{U}_n) \neq X \times Y$ for any sequence $(K_n : n \in \mathbb{N})$ of compact subsets of $X \times Y$. Let $(K_n : n \in \mathbb{N})$ be any sequence of compact subsets of $X \times Y$. For each $n \in \mathbb{N}$, since K_n is compact, then $\pi(K_n)$ is a compact subset of X, where $\pi : X \times Y \to X$ is the projection. Thus there exists $\alpha_n < \omega_1$ such that

$$K_n \cap ((\alpha_n, \omega_1) \times Y) = \emptyset.$$

Let $\beta = \sup \{\alpha_n : n \in \mathbb{N}\}$. Then $\beta < \omega_1$ and

$$(\bigcup_{n\in\mathbb{N}}K_n)\cap((\beta,\omega_1)\times Y)=\emptyset.$$

If we pick $\alpha > \beta$. Then $\langle \alpha + 1, \alpha \rangle \notin St(K_n, \mathcal{U}_n)$ for each $n \in \mathbb{N}$, since V_α is the only element of \mathcal{U}_n containing the point $\langle \alpha + 1, \alpha \rangle$ for each $n \in \mathbb{N}$, which shows that $X \times Y$ is not star-K-Menger.

4. Acknowledgments

The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions which led to improvements on several places. The present form of Example 2.1 are due to his/her suggestions.

References

- E.K. van Douwen, G.K. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103.
- [2] E. Engelking, General Topology, Revised and completed edition Heldermann Verlag, Berlin,
- [3] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers(II), Topology Appl. 158 (2011), 1732-1737.
- [4] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55 (1999), 421-431.
- [5] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat (Niš), 13 (1999) 129-140.
- [6] M.V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No 330 1998.
- [7] R.C. Walker, The Stone-Čech compactification, Springer, Berlin 1974.
- [8] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.
- [9] Y.-K. Song, On K-starcompact spaces, Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64.