
Hacettepe Journal of Mathematics and Statistics
Volume 43 (5) (2014), 787 – 799

Second Cohomology of the Modular Lie
Superalgebra Ω†

Xiaoning Xu∗ and Xiaojun Li†

Received 15 : 02 : 2013 : Accepted 19 : 07 : 2013

Abstract
We consider the finite-dimensional simple modular Lie superalgebra Ω
which was defined by Zhang and Zhang (2009), over an algebraically
closed fields of characteristic p > 3. In this paper, we determine the
second cohomology group of the modular Lie superalgebra Ω by com-
puting the first cohomology group H1(Ω,Ω∗), where Ω∗ denotes the
dual space of Ω.
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1. Introduction
Many important results of modular Lie superalgebras have been obtained (see, for

example, [1, 5, 8]). But the classification problem is still open for the finite-dimensional
simple modular Lie superalgebras. Since cohomology theory is closely related to the
structures of modular Lie algebras and play an important role in the classification of
modular Lie algebras(see [2, 3, 4]), it is significant to study the cohomology groups of
modular Lie superalgebras. The dimensions of the second cohomology groups of simple
modular Lie algebras of Cartan type were computed in [2, 3, 4]. The second cohomology
groups of simple modular Lie superalgebras of Cartan type W, S, H and K were deter-
mined in [9, 11]. The second cohomologies of Lie SuperalgebrasHO andKO were studied
in[6]. The second cohomologies of two classes of special odd modular Lie superalgebras
were investigated in [7].

The finite-dimensional simple modular Lie superalgebra Ω was defined in [13]. Its
derivation superalgebra and filtration structure were investigated in [12, 13]. The second
cohomology group of modular Lie superalgebra Ω for 2n + 4 − q 6≡ 0 (modp), which
possesses a nondegenerate associative form, can be easily obtained according to [9]. In
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paper [9], it was also verified that if a modular Lie superalgebra L was simple and did not
possess any nondegenerate associative form, then its second cohomology group H2(L,F)
was isomorphic to the first cohomology group H1(L,L∗). Thus we shall determine the
second cohomology group of the modular Lie superalgebra Ω for 2n+ 4− q ≡ 0 (modp),
which does not have a nondegenerate associative form, by computing H1(Ω,Ω∗).

2. Preliminaries
Let F be an algebraically closed field of characteristic p > 3 and not equal to its prime

field Π. For m > 0, let E = {z1, · · · , zm} ∈ F be linearly independent over prime field Π
and the additive subgroup H generated by E doesn’t contain 1. If λ ∈ H, then we let
λ =

∑m
i=1 λizi and y

λ = yλ1
1 · · · yλmm , where 0 ≤ λi < p. We use the notation N for the

set of positive integers and N0 for the set of non-negative integers. Let Z2 = {0̄, 1̄} be
the ring of integers modulo 2.

Given n ∈ N and r = 2n + 2, we put M = {1, · · · , r − 1}. Suppose that µ1, · · · ,
µr−1 ∈ F such that µ1 = 0, µj + µn+j = 1, j = 2, · · · , n+ 1. Let ki ∈ N0 for i ∈M , then
ki can be uniquely expressed in p-adic form ki =

∑si
v=0 εv(ki)p

v, where 0 ≤ εv(ki) < p.
We define truncated polynomial algebra

A = F[x10, x11, · · · , x1s1 , · · · , xr−10, xr−11, · · · , xr−1sr−1 , y1, · · · , ym]

such that

xpij = 0, ∀ i ∈M, j = 0, 1, · · · , si; ypi = 1, i = 1, · · · ,m.

Let Q = {(k1, · · · , kr−1) | 0 ≤ ki ≤ πi, πi = psi+1 − 1, i ∈ M}. If k = (k1, · · · , kr) ∈ Q,
we write xk = xk11 · · ·x

kr−1
r−1 , where xiki =

∏si
v=0 x

εv(ki)
iv for i ∈M . For 0 ≤ ki, k′i ≤ πi, it

is easy to see that

xi
kixi

k′i = xi
ki+k

′
i 6= 0⇔ εv(ki) + εv(k′i) < p, v = 0, 1, · · · , si.(2.1)

Let Λ(q) be the Grassmann superalgebra over F in q variables ξr+1, · · · , ξr+q with
q ∈ N and q > 1. Denote the tensor product by Ω̃ := A ⊗F Λ(q). Obviously, Ω̃ is an
associative superalgebra with a Z2-gradation induced by the trivial Z2-gradation of A
and the natural Z2-gradation of Λ(q):

Ω̃0̄ = A⊗F Λ(q)0̄, Ω̃1̄ = A⊗F Λ(q)1̄.

For f ∈ A and g ∈ Λ(q), we abbreviate f ⊗ g to fg. For k ∈ {1, · · · , q}, we set

Bk = {〈i1, i2, · · · , ik〉 | r + 1 ≤ i1 < i2 < · · · < ik ≤ r + q}

and B(q) =
⋃q
k=0 Bk, where B0 = ∅. If u = 〈i1, · · · , ik〉 ∈ Bk, we let |u| = k, {u} =

{i1, · · · , ik} and ξu = ξi1 · · · ξik . Put |∅| = 0 and ξ∅ = 1. Then {xkyλξu | k ∈ Q,λ ∈
H,u ∈ B(q)} is an F-basis of Ω̃.

If L is a Lie superalgebra, then h(L) denotes the set of all Z2-homogeneous elements
of L, i.e., h(L) = L0̄ ∪ L1̄. If |x| appears in some expression in this paper, we always
regard x as a Z2-homogeneous element and |x| as its Z2-degree.

Set s = r + q, T = {r + 1, · · · , s} and R = M ∪ T. Put M1 = {2, · · · , r − 1}. Define
ĩ = 0̄, if i ∈M1, and ĩ = 1̄, if i ∈ T . Let

i′ =


i+ n, 2 ≤ i ≤ n+ 1,

i− n, n+ 2 ≤ i ≤ r − 1,

i, r + 1 ≤ i ≤ s,
[i] =


1, 2 ≤ i ≤ n+ 1,

−1, n+ 2 ≤ i ≤ r − 1,

1, r + 1 ≤ i ≤ s.



For ei = (δi0, · · · , δir), i ∈ M , we abbreviate xei to xi. Let Di, i ∈ R, be the linear
transformation of Ω̃ such that

Di(x
kyλξu) =

{
k∗i x

k−eiyλξu, i ∈M,

xkyλ · ∂ξu/∂ξi, i ∈ T,

where k∗i is the first nonzero number of ε0(ki), ε1(ki), · · · , εsi(ki). Then Di ∈ Der Ω̃. Set

∂̄ = I −
∑
j∈M1

µjxj 0
∂

∂xj 0
−

m∑
j=1

zjyj
∂

∂yj
− 2−1

∑
j∈T

ξj
∂

∂ξj
,

where I is the identity mapping of Ω̃. For f ∈ h(Ω̃) and g ∈ Ω̃, we define a bilinear
operation [ , ] in Ω̃ such that

[f, g] = D1(f)∂̄(g)− ∂̄(f)D1(g) +
∑

i∈M1∪T

[i](−1)ĩ|f |Di(f)Di′(g).(2.2)

Then Ω̃ becomes a Lie superalgebra for the operation [ , ] defined above.
Define Ω : = [Ω̃, Ω̃]. It can be proved that Ω = spanF{xkyλξu|(k, λ, u) 6= (π, 0, ω) } for

2n+ 4− q ≡ 0 (modp), π = (π1, · · · , πr−1) and ω = 〈r + 1, · · · , s〉, and Ω is a simple Lie
superalgebra. In the sequel, we always assume that 2n+ 4− q ≡ 0 (modp).

Now we give a Z-gradation of Ω: Ω = ⊕j∈XΩj , where

Ωj = spanF{x
kyλξu |

∑
i∈M1

ki + 2k1 + |u| − 2 = j},(2.3)

and X = {−2,−1, · · · , τ}, τ =
∑
i∈M1

πi + 2π1 + q − 2. If f ∈ Ωj , then f is called a
Z-homogeneous element and j is the Z-degree of f which is denoted by zd(f).

Assume that L = L0̄ ⊕ L1̄ is a finite-dimensional modular Lie superalgebra and L
possesses a Z-gradation L = ⊕δi=−ςLi. Then L∗ := HomF(L,F) = ⊕ςi=−δ(L

∗)i is a Z-
gradation L-module by virtue of (x · f)(y) = −(−1)|x||f |f

(
[x, y]

)
for x, y ∈ L, f ∈ L∗.

Let H̄ ⊂ L0 ∩ L0̄ be a nilpotent subalgebra of L0̄. Let

L = ⊕α∈∆L(α) and L∗ = ⊕β∈Θ(L∗)(β)

be the weight space decompositions of L and L∗ with respect to H̄, respectively. Since
H̄ ⊂ L0 ∩ L0̄, there exist subsets ∆i ⊂ ∆ and Θj ⊂ Θ such that

Li = ⊕α∈∆iLi ∩ L(α) and (L∗)j = ⊕β∈Θj (L
∗)j ∩ (L∗)(β).

Thus L has a structure of (Z× Map(H̄,F))-gradation, where Map(H̄,F) is the group
consisting of the mappings from H̄ into F. The L-module L∗ is (Z×Map(H̄,F))-graded
by

(L∗)(i,α) = {f ∈ L∗ | f(Lj ∩ L(β)) = 0, (j, β) 6= −(i, α)}.
Then we have (L∗)(i,α) = (L∗)i ∩ (L∗)(α).

By equation (2.2), H̄ := Fx1 is an Abelian subalgebra of Ω. Furthermore, H̄ is an
Abelian subalgebra of Ω0 ∩ Ω0 with the weight space decomposition Ω = ⊕α∈∆Ω(α). It
is easy to see that ∆i ∩∆j 6= ∅ if and only if i ≡ j (modp).

2.1. Lemma. [11] Let L∗ = ⊕β∈Θ(L∗)(β) be the weight space decomposition relative to
H̄. Then the following statements hold:
(1) Θ = −∆ and there is an isomorphism (L∗)(β)

∼= (L(−β))
∗ of H̄-modules for all β ∈ Θ.

(2) Θi = −∆−i for −δ ≤ i ≤ ς.

2.2. Definition. A linear mapping ψ : L→ L∗ is called a derivation if

ψ([x, y]) = (−1)|ψ||x|x · ψ(y)− (−1)|ψ(x)||y|y · ψ(x) for all x, y ∈ L.



Let DerF(L,L∗) denote the space of derivations from L into L∗ and InnF(L,L∗) be
the subspace of inner derivations. Recall that a derivation ψ from L into L∗ is called
inner if there is some f ∈ L such that

ψ(x) = −(−1)|f ||x|x · f for all x ∈ L.
DerF(L,L∗) inherits the (Z×Map(H̄,F))-gradation from L and L∗. A derivation ψ ∈
DerF(L,L∗) is referred to as homogeneous of degree (i0, α0) provided that

ψ(Li ∩ L(α)) ⊂ (L∗)i+i0 ∩ (L∗)(α+α0) for all (i, α) ∈ Z×Map(H̄,F).

Let {f1, · · · , fm} be an F-basis of L0̄ and {g1, · · · , gn} be an F-basis of L1̄. Let U(L)

denote the universal enveloping algebra of L and L− =
∑−1
i=−ς Li. As the U(L)-module

structure of L is induced by the L-module structure of L, we see that

(fs11 · · · f
sm
m gi1 · · · git) · z = (adf1)s1 · · · (adfm)smadgi1 · · · adgit(z),(2.4)

where {fs11 · · · fsmm gi1 · · · git |si ≥ 0, i = 1, · · · ,m; 1 ≤ i1 ≤ · · · ≤ it ≤ n} is an F-basis of
U(L).

2.3. Lemma. [11] Suppose that L = U(L−) ·Lδ and ψ : L→ L∗ is a homogeneous linear
mapping of degree l > 2ς − δ. Assume that L− is generated by a subset J of L. If

ψ([x, y]) = (−1)|ψ||x|x · ψ(y)− (−1)|ψ(x)||y|y · ψ(x) for all x ∈ J and y ∈ L,
then ψ is a derivation.

2.4. Definition. A derivation ψ : L→ L∗ is said to be skew if

ψ(x)(y) = −(−1)|x||y|ψ(y)(x) for all x, y ∈ L.

Let U(L)+ denote the two-sided ideal generated by L. Clearly, for every derivation
ψ : L → L∗, there exists a homomorphism ϕ : U(L)+ → L∗ of U(L)-modules such that
ϕ(x) = ψ(x) for all x ∈ L.

2.5. Lemma. [11] Let ψ : L→ L∗ be a derivation. Assume e ∈ L such that (ade)p
t

= 0

for t ∈ N. Then ep
t−1 · ψ(e) ∈ (L∗)L, where

(L∗)L = {f ∈ L∗ | L · f = 0} = {f ∈ L∗ | f([L,L]) = 0}.

2.6. Lemma. [11] Let V ⊂ L be a Z2-graded subspace such that

L = U(L−)+ · V ⊕ V.
Let W ⊂ Nn0 and {e1, e2, · · ··, en} be a basis of L− such that
(a) annU(L−)+(L) = spanF{eb | b 6∈W}, where b = (b1, b2, · · ·, bn) and eb := eb11 e

b2
2 · · ·ebnn ,

and annU(L−)+ := {u ∈ U(L−)+ | u · L = 0};
(b) there is a basis {v1, v2, · · ·, vm} of V such that {ea · vj | a ∈W, 1 ≤ j ≤ m} is a basis
of L over F.
Then the following statements hold:
(1) If µi = pki − 1 for 1 ≤ i ≤ n and L = [L,L], then the canonical mapping Φ1 :
H1(L,L∗)→ H1(L−, L∗) is trivial.
(2) If ψ : L → L∗ is a derivation satisfying ker(adei) ⊂ kerψ(ei) for 1 ≤ i ≤ n, then ψ
defines an element of kerΦ1.
(3) If there is a µ ∈ Nn0 such that W = {b ∈ Nn0 | b ≤ µ}, then ker(adei) ⊂ kerψ(ei) if
and only if eµii · ψ(ei) = 0.

2.7. Lemma. [11] Suppose L = ⊕δi=−ςLi. Let ψ : L −→ L∗ be a homogeneous derivation
of degree l.
(1) If l > ς − δ and ψ defines an element of kerΦ1, then ψ is an inner derivation.
(2) If l = ς−δ, ψ is skew and defines an element of kerΦ1, then ψ is an inner derivation.



2.8. Lemma. [11] Suppose L = ⊕δi=−ςLi. Let ψ : L −→ L∗ be a homogeneous derivation
of degree l with −2δ ≤ l ≤ −δ − 1. If −∆δ 6⊂ φ−(δ+l), then ψ = 0, where φd ⊂ ∆d for
d > 1.

3. Second cohomology group H2(Ω,F)

3.1. Proposition. Suppose that ψ : Ω → Ω∗ is a skew derivation of degree l ≥ 5 − τ .
Then there exists a homogeneous skew derivation ψ̃ : Ω̃ → Ω̃∗ of degree l which extends
ψ.

Proof. We define a linear mapping ψ̃ : Ω̃→ Ω̃∗ such that

ψ̃(xkyλξu)(xlyηξv) :=

{
ψ(xkyλξu)(xlyηξv) xkyλξu, xlyηξv ∈ Ω,

0 other cases.

As Ω̃ = Ω⊕ Fxπξω, ψ̃ is a skew linear mapping of degree l. Then we will show that

ψ̃([f, g]) = (−1)|ψ̃||f |f · ψ̃(g)− (−1)|ψ̃(f)||g|g · ψ̃(f), ∀f, g ∈ Ω̃.(3.1)

We shall prove it in two cases:
(i) Consider the case f, g ∈ Ω. We need only to prove that

ψ̃([f, g])(xπξω) = (−1)|ψ̃||f |(f · ψ̃(g))(xπξω)− (−1)|ψ̃(f)||g|(g · ψ̃(f))(xπξω).(3.2)

By virtue of the definition of ψ̃, the left-hand side of the equation (3.2) equals 0. Setting
f ∈ Ωi and g ∈ Ωj , we see that the right-hand side of (3.1) is contained in (Ω̃∗)i+j+l.
Thereby, the right-hand side of (3.2) coincides with 0 unless i+j+ l = −τ , which implies
that −τ = i+ j + l ≥ i+ j + 5− τ ≥ 1− τ for i, j ≥ −2, a contradiction.
(ii) Consider the case f = xπξω. By Ω̃ = ⊕τi=−2Ω̃i and Ω = [Ω̃, Ω̃], we have [xπξω, Ω̃] ⊂
Ωτ ⊕ Ωτ−1⊕ Ωτ−2. Note that zd(ψ̃([xπξω, Ω̃])) ≥ l + τ − 2 ≥ (5 − τ) + τ − 2 = 3 and
ψ̃([xπξω, Ω̃]) ⊆ Ω̃∗ = ⊕2

i=−τ (Ω̃∗)i. Then we obtain ψ̃([xπξω, g]) ∈
∑
i≥3(Ω̃∗)i = 0 for

g ∈ ψ̃. It is easy to see that xπξω · ψ̃(g) ⊆ Ω̃∗ and g · ψ̃(xπξω) ⊆ Ω̃∗. Thus we have
g · ψ̃(xπξω)(xkyλξu) = αψ̃(xπξω)([g, xkyλξu]) = 0 for all xkyλξu ∈ Ω̃, where α = ±1 and
xπξω · ψ̃(g) ∈

∑
i≥3(Ω̃∗)i = 0. The proof is complete. �

For i ∈M , we define a linear mapping σi : Ω̃→ F by∑
k≤π,λ∈H,u∈B(q)

γ(k, λ, u)xkyλξu → γ(π − πi′ei′ , 0, ω),

where 1′ = 1.
For i ∈ T , we define a linear mapping σi : Ω̃→ F by∑

k≤π,λ∈H,u∈B(q)

γ(k, λ, u)xkyλξu → γ(π − π1e1, 0, ω \ {i}).

We define a linear mapping στ : Ω̃→ F by∑
k≤π,λ∈H,u∈B(q)

γ(k, λ, u)xkyλξu → γ(π, 0, ω).

3.2. Proposition. The following statements hold.
(1) The mapping ψi : Ω̃ −→ Ω̃∗ given by ψi(xkyλξu)(xlyηξv) = σi(k

∗
i x

k−eiyλξuxlyηξv)
is a skew derivation of degree derivation l = psi′+1 − τ for i ∈M1.

(2) The mapping ψi : Ω̃ −→ Ω̃∗ given by ψi(xkyλξu)(xlyηξv) = σi(∂̄(xkyλξu)∂i(x
kyλξuxlyηξv))

is a skew derivation of degree derivation l = 2ps1+1 − τ for i ∈ T.
(3) The mapping ψ1 : Ω̃ −→ Ω̃∗ given by ψ1(xkyλξu)(xlyηξv) = σ1(∂̄(xkyλξu)xkyλξuxlyηξv)



is a skew derivation of degree derivation l = 2ps1+1 − τ .
(4) The mapping ψs+1 : Ω̃ −→ Ω̃∗ given by ψs+1(xkyλξu)(xlyηξv) = στ (k∗1x

k−e1yλξuxlyηξv)
is a skew derivation of degree derivation l = −τ .

Proof. Noting that Ω̃− is generated by Ω̃−1 =
∑r−1
i=2 Fxiyθ+

∑s
i=r+1 Fy

θξi and psi′+1 > 4,
by Lemma 2.3, it is sufficient to show that for i ∈M ∪ T and j ∈M1 ∪ T , the equalities
below hold:

ψi([xjy
θ, xkyλξu])(xlyηξv)

= (−1)|ψi||xj |(xjy
θ · ψi(xkyλξu))(xlyηξv)− (−1)|ξ

u||ψi(xjyθ)|(xkyλξu · ψi(xjyθ))(xlyηξv),(3.3)

ψi([ξjy
θ, xkyλξu])(xlyηξv)

= (−1)|ψi||ξj |(ξjy
θ · ψi(xkyλξu))(xlyηξv)− (−1)|ξ

u||ψi(ξjyθ)|(xkyλξu · ψi(ξjyθ))(xlyηξv).(3.4)

In case (1)-(3), we only prove (3.3), and (3.4) is treated similarly.
(1) The linear mapping ψi is said to be skew if

ψi(x
kyλξu)(xlyηξv) = −(−1)|u||v|ψi(x

lyηξv)(xkyλξu), ∀ xkyλξu, xlyηξv ∈ Ω̃, 2 ≤ i ≤ r − 1.(3.5)

By computing directly, we see that the left-hand side of (3.5) equals σi(k∗i xk−eixlyλ+ηξuξv)
and the right-hand side of (3.5) coincides with −σi(l∗i xkxl−eiyλ+ηξuξv). If k + l − ei =
π − πi′ei′ , then ki + li − 1 = πi ≡ −1 (modp); that is, k∗i + l∗i ≡ 0 (modp) for all i ∈M1.
Hence both sides of (3.5) equal k∗i . Otherwise, both sides coincide with 0. Therefore, the
mapping ψi is skew, as desired. Moreover, the linear mapping ψi is of degree l = psi′+1−τ
by a direct computation. For j ∈M1, the left-hand side of (3.3) coincides with

ψi(−k∗1(1− µj − θ))xjxk−e1yλ+θξu)(xlyηξv) + ψi([j]k
∗
j′x

k−ej′ yλ+θξu)(xlyηξv),

while the right-hand side of (3.3) equals

−ψi(xkyλξu)(−l∗1(1−µj−θ)xjxl−e1yλ+θξv)−ψi(xkyλξu)([j]l∗j′x
l−ej′ yη+θξv

)
+ψi(xjy

θ)([xkyλξu, xlyηξv]).

We distinguish two cases:
Case 1. i 6= j.
1.1. k + l − ei − ej′ = π − πi′ei′ , ξuξv = ξω and λ+ η + θ = 0.
1.2. k + l + ej − ei − e1 = π − πi′ei′ , ξuξv = ξω and λ+ η + θ = 0.
Case 2. i = j.
2.1. k + l − ei − ei′ = π − πi′ei′ , ξuξv = ξω and λ+ η + θ = 0.
2.2. k + l − e1 = π − πi′ei′ , ξuξv = ξω and λ+ η + θ = 0.

Firstly, we deal with the case 1.1. We see that the left-hand side of (3.3) equals
−[j]k∗j′ l

∗
i , while the right-hand side of (3.3) coincides with −[j]k∗i l

∗
j′ . As k+ l− ei− ej′ =

π− πi′ei′ , we get ki + li − 1 = πi ≡ −1 (modp) and kj′ + lj′ − 1 = πj′ ≡ −1 (modp), i.e.,
k∗i + l∗i ≡ 0 (modp) and kj′ + lj′ ≡ 0 (modp). Thus −[j]k∗j′ l

∗
i = −[j]k∗i l

∗
j′ and the equality

(3.3) holds.
For the case 1.2, we know that the left-hand side of (3.3) coincides with k∗1 l∗i (1−µj−θ).

But the right-hand side of (3.3) equals l∗1k∗i (1 − µj − θ). By the assumptions, we also
have k∗i + l∗i ≡ 0 (modp) and k∗1 + l∗1 ≡ 0 (modp). Consequently, the right-hand side of
(3.3) coincides with k∗1 l∗i (1− µj − θ), as desired.

The proof of the case 2.1 is similar to the case 1.2.
For the case 2.2, it is easy to see that the left-hand side of the equation (3.3) coincides

with (1−µj−θ)k∗1 l∗i . And the right-hand side equals (1−µj−θ)k∗i l∗1 +(1−
∑
i∈M1

µili−
η − 2−1|v|)k∗1 − (1−

∑
i∈M1

µiki − λ− 2−1|u|)l∗1 . By means of our assumptions, we have
k∗1 + l∗1 ≡ 0 (modp), ki + li ≡ −1 (modp) and ki′ + li′ = 0. Hence, the right-hand side of
the equation (3.3) equals l∗1(1− µj − θ)(k∗i + 1) = (1− µj − θ)k∗1 l∗i , as desired.



(2) In analogy with (1), it is easily seen that the mapping ψi is skew and of degree
2ps1+1 − τ . For j ∈M1, the left-hand side of (3.3) equals

σi(−k∗1(1− µj − θ)(1−
∑
i∈M1

µiki − µj − (λ+ θ)− 2−1|u|)xjxk−e1xlyλ+θ+η∂i(ξ
uξv))

+σi([j]k
∗
j′(1−

∑
i∈M1

µiki + µj′ − (λ+ θ)− 2−1|u|)xk−ej′xlyλ+η+θ∂i(ξ
uξv)),(3.6)

while the right-hand side coincides with

σi(l
∗
1(1− µj − θ)(1−

∑
i∈M1

µiki − λ− 2−1|u|)xjxkxl−e1yλ+θ+η∂i(ξ
uξv))

−σi([j]l∗j′(1−
∑
i∈M1

µiki − λ− 2−1|u|)xkxl−ej′ yλ+θ+η∂i(ξ
uξv))

+σi(k
∗
1(1−

∑
i∈M1

µili − η − 2−1|v|)(1− µj − θ)xjxk−e1xlyλ+η+θ∂i(ξ
uξv))

−σi(l∗1(1−
∑
i∈M1

µiki − λ− 2−1|u|)(1− µj − θ)xjxkxl−e1yλ+η+θ∂i(ξ
uξv))

+σi(
∑
i∈M1

[i]k∗i l
∗
i′(1− µj − θ)xjxk−eixl−ei′ yλ+η+θ∂i(ξ

uξv))

+σi(
∑
i∈T

(−1)|ξ
u|(1− µj − θ)xjxkxlyλ+η+θ∂i(Di(ξ

u)Di′(ξ
v))).(3.7)

We consider the following cases:
Case 1. k + l + ej − e1 = π − π1e1, λ+ η + θ = 0 and ∂i(ξuξv) = ξω−〈i〉.

Case 2. k + l − ej′ = π − π1e1, λ+ η + θ = 0 and ∂i(ξuξv) = ξω−〈i〉.
Now we only prove the Case 2. Then the equation (3.6) equals [j]k∗j′(1−

∑
i∈M1

µiki−
(λ+ θ) + µj′ − 2−1|u|), while the equation (3.7) coincides with

−[j]l∗j′(1−
∑
i∈M1

µiki − λ− 2−1|u|) + [j](1− µj − θ)k∗j l∗j′ + [j′](1− µj − θ)k∗j′ l∗j .(3.8)

As k + l − ej′ = π − π1e1, kj′ + lj′ − 1 = πj′ ≡ −1 (modp). Hence the equation (3.8)
coincides with [j]k∗j′(1−

∑
i∈M1

µiki − (λ+ θ) + µj′ − 2−1|u|) and (3.3) is valid.
(3) The linear mapping ψ1 is clearly skew and of degree 2ps1+1− τ . For the left-hand

side of (3.3), we obtain

σ1(−k∗1(1− µj − θ)(1−
∑
i∈M1

µiki − (λ+ θ)− 2−1|u|)xjxk−e1xlyλ+θ+ηξuξv)

+σ1([j]k∗j′(1−
∑
i∈M1

µiki + µj′ − (λ+ θ)− 2−1|u|)xk−ej′xlyλ+θ+ηξuξv),(3.9)



and the right-hand side coincides with

σ1(l∗1(1− µj − θ)(1−
∑
i∈M1

µiki − λ− 2−1|u|)xkxjxl−e1yλ+θ+ηξuξv)

+σ1(−[j]l∗j′(1−
∑
i∈M1

µiki − λ− 2−1|u|)xkxl−ej′ yη+θ+λξuξv)

+σ1(k∗1(1− µj − θ)(1−
∑
i∈M1

µili − η − 2−1|v|)xjxk−e1xlyλ+η+θξuξv)

+σ1(−l∗1(1− µj − θ)(1−
∑
i∈M1

µiki − λ− 2−1|u|)xjxkxl−e1yλ+η+θξuξv)

+σ1((1− µj − θ)
∑
i∈M1

[i]k∗i l
∗
i′xjx

k−eixl−ei′ yλ+η+θξuξv)

+σ1((1− µj − θ)
∑
i∈T

(−1)|ξ
u|xjx

kxlyλ+η+θDi(ξ
u)Di′(ξ

v)).(3.10)

We treat two cases separately:
(a) k + l − e1 + ej = π − π1e1, λ+ η + θ = 0 and ξuξv = ξω.
(b) k + l − ej′ = π − π1e1, λ+ η + θ = 0 and ξuξv = ξω.

Now we only prove the case (a). By a direct computation, we see that the equation
(3.9) coincides with

−k∗1(1− µj − θ)(1−
∑
i∈M1

µiki − (λ+ θ)− 2−1|u|).(3.11)

and the equation (3.10) equals

k∗1(1− µj − θ)(1−
∑
i∈M1

µili − η − 2−1|v|).(3.12)

Note that ki + li = πi ≡ −1 (modp), kj + lj + 1 = πj ≡ −1 (modp) and k1 + l1 −
1 = 0. Then we may assume k1 = 1 and l1 = 0, which implies that (3.11) equals
−(1− µj − θ)(1−

∑
i∈M1

µiki − (λ+ θ)− 2−1|u|) and the equation (3.12) coincides with
(1 − µj − θ)(1 −

∑
i∈M1

µili − η − 2−1|v|). Since 2n + 4 − q ≡ 0 (modp), (3.3) is valid.
Suppose k1 = 0 and l1 = 1. Obviously, both sides of (3.3) equal 0.

(4) One may easily see that ψs+1 is skew and of degree −τ . For j ∈ T, the left-hand
side of (3.4) coincides with

στ ((2−1 − θ)k∗1 l∗1xk−e1xl−e1yλ+η+θξjξ
uξv) + στ ((−1)|u|k∗1x

k−e1xlyλ+η+θξu∂j(ξ
v)),

while the right-hand side of (3.4) equals

στ ((2−1 − θ)k∗1 l∗1xk−e1xl−e1yλ+η+θξjξ
uξv) + στ ((−1)|u|k∗1x

k−e1xlyλ+η+θξu∂j(ξ
v)).

Then two cases arise:
(a) k + l − 2e1 = π, λ+ η + θ = 0 and ξjξuξv = ξω.
(b) k + l − e1 = π, λ+ η + θ = 0 and ∂j(ξu)ξv = ξω.

We only deal with the case (a). By a direct computation, both sides coincide with
k∗1 l
∗
1(2−1 − θ). Then the equation of (3.4) is valid. Similarly, (3.3) is true in case of

j ∈M1. �

3.3. Lemma. The following statements hold.

(xiy
η)πi′ · ψi(xiyη) = ϑiστ , i ∈M1, ϑi ∈ F, η ∈ H,(3.13)

(yη)π1 · ψ1(yη) = ϑ1στ , ϑ1 ∈ F, η ∈ H,(3.14)

(adyηξj)
2π1+1 · ψj(yηξj) = ϑjστ , j ∈ T, ϑj ∈ F, η ∈ H,(3.15)



where the mapping ψi is defined in Proposition 3.2 for i ∈M ∪ T .

Proof. we see that (Ω̃∗)Ω̃ = Fστ according to Lemma 2.5. In order to prove (3.13), we
only need to show that (adxiy

η)p
s
i′+1

(xkyλξu) = 0 by Lemma 2.5 for all xkyλξu ∈ Ω̃.

Since adxiy
η = [i]yηDi′ + (η − µi′)yηxiD1, we have (adxiy

η)p
s
i′+1

= [i](yηDi′)
p
s
i′+1

+

(η − µi′)p
s
i′+1

(yηxiD1)p
s
i′+1

. By computing step by step, we obtain

(yηDi′)(x
kyλξu) = yηDi′(x

kyλξu) = k∗i′y
ηxk−ei′ yη+λξu,

(yηDi′)
2(xkyλξu) = yηDi′(k

∗
i′y

ηxk−ei′ yη+λξu) = k∗i′(ki′ − 1)∗xk−2ei′ y2η+λξu,

......... ......... ..........

(yηDi′)
p
s
i′+1−1(xkyλξu) = k∗i′(ki′ − 1)∗ · · · (ki′ − πi′ + 1)∗xk−πi′ei′ yπi′η+λξu.

Then (yηDi′)
p
s
i′+1

(xkyλξu) = 0. Moreover,

(yηxiD1)(xkyλξu) = k∗1xix
k−e1yλ+ηξu,

(yηxiD1)2(xkyλξu) = k∗1(k1 − 1)∗xixix
k−2e1yλ+2ηξu,

......... ......... ..........

(yηxiD1)p
s
i′+1−1(xkyλξu) = k∗1(k1−1)∗···(k1−πi′+1)∗xixi···xixk−πi′e1yπi′η+λξu.

Consequently,

(yηxiD1)p
s
i′+1

(xkyλξu) = k∗1(k1−1)∗···(k1−πi′)∗xixi···xixk−(πi′+1)e1y(πi′+1)η+λξu = 0.

This shows that (adxiy
η)p

s
i′+1

= 0, as desired.
Similarly, by a direct computation, we get

(adyη)(xkyλξu) = −k∗1(1− η)xk−e1yλ+ηξu,

(adyη)2(xkyλξu) = −k∗1(k1 − 1)∗(1− η)2xk−2e1yη+2λξu,

......... ......... ..........

(adyη)p
s1+1−1(xkyλξu) = k∗1(k1 − 1)∗ · · · (k1 − π1 + 1)∗(1− η)π1xk−π1e1yη+π1λξu.

Then (adyη)p
s1+1

(xkyλξu) = 0. (3.14) can be proved.
Since (adyηξj)

2(xkyλξu) ∈ Fxk−e1yλ+2ηξu, we obtain (adyηξj)
2ps1+1

= 0. Then (3.15)
is true according to Lemma 2.5. �

Applying (3.13), (3.14) and (3.15) to xπξω , we see that

ϑi = κ 6= 0, κ ∈ F, i ∈M1; ϑ1 = % 6= 0, % ∈ F; ϑj = ν 6= 0, ν ∈ F, j ∈ T.

3.4. Lemma. Let ψ : Ω̃→ Ω̃∗ be a derivation. Then there are elements ϑ1, ϑ2, ···, ϑs ∈ F
such that (ψ −

∑s
i=1 ϑiψi) |Ω̃− is an inner derivation.

Proof. Set L := Ω̃ and V := Fxπξω. Put ei := xiy
η(i) , i ∈ M1; ei := yη

(i)

ξi, i ∈ T ;
e1 := yθ, 1′ = 1
and χ := (π1′ , π2′ , · · ·, π(r−1)′ , 1, · · ·, 1) ∈ Ns−1. Now we show that W := {b | b ≤ χ}
fulfills the conditions of Lemma 2.6.

First we verify the equation annU(L−)+(L) = SpanF{eb | b 6∈ W} holds. Let eb ∈
U(L−)+ and b 6∈ W . Noting that er+1, er+2, · · ·, es ∈ L1̄, there is an i ∈ M such that
bi > πi′ . If i = 1, then we have eb · (xkyλξu) = 0 by (adyθ)p

s1+1

= 0. For i ∈ M1,

the proof of Lemma 3.3 and equality (2.4) ensure that ep
s
i′+1

i · (xkyλξu) = 0, where
0 ≤ k ≤ π, λ ∈ H,u ∈ B(q). Thus the inclusion SpanF{eb | b 6∈ W} ⊆ annU(L−)+(L)
holds.



Let v =
∑

0<b β(b)eb be an element of annU(L−)+(L). Then
∑
b>χ β(b)eb ∈ annU(L−)+(L)

follows from the result above. As v =
∑

0<b β(b)eb =
∑

0<b≤χ β(b)eb +
∑
b>χ β(b)eb ∈

annU(L−)+(L),
∑

0<b≤χ β(b)eb ∈ annU(L−)+(L). Let 0 6= u :=
∑

0<b≤χ β(b)eb. Put
 := min{b1 | β(b) 6= 0}. Then

0 = u · xπ+(−π1)e1ξω

=
∑

0<b≤χ,b1=

β(b)eb · xπ+(−π1)e1ξω

=
∑

0<b≤χ,b1=

β(b)α(b)(1− θ)∗(− 1)∗ · · · 1 ·

r−1∏
i=2

π∗i′(πi′ − 1)∗ · · · (πi′ − bi + 1)∗ · xπ−π1e1−b′e
br+1
r+1 · · · e

bs
s y

θ+η′ξω,

where α(b) = ±1, b′ = {0, b2e2′ , · · ·, br−1e(r−1)′} and η′ = b2η2 + b3η3 + · · · + br−1ηr−1.

We see that xπ−π1e1−b′e
br+1
r+1 · · · ebss yθ+η

′
ξω 6= 0, ∗( − 1)∗ · · · 1 ·

∏r−1
i=2 π

∗
i′(πi′ − 1)∗ ·

· · (πi′ − bi + 1)∗ 6= 0, and (1 − θ) 6= 0 for θ ∈ H. Hence β(b) = 0 whenever b1 = , a
contradiction. Thus v ∈ spanF{eb | b 6∈ W} and the converse inclusion holds. Hence the
condition (a) in Lemma 2.6 is satisfied.

Our previous results ensure that {eb · xπξω | 0 ≤ b ≤ χ} generates Ω̃. Then condition
(b) in Lemma 2.6 holds according to dimFΩ̃ = 2|q| · pl, where l =

∑
i∈M (si + 1) +m.

Recall that the mapping ψ is defined in Proposition 3.1. Noting that Ω = [Ω̃, Ω̃] =

〈xkyλξu|(k, λ, u) 6= (π, 0, ω) 〉 for 2n+ 4− q ≡ 0 (modp), we obtain στ ([Ω̃, Ω̃]) = 0. Then
by Lemma 2.5, there exist ϑ1, ϑ2, · · · , ϑs ∈ F such that

(xiy
η(i))πi′ · ψ(xiy

η(i)) = ϑ2
iστ , i ∈M1,

(yθ)π1 · ψ(yθ) = ϑ2
1στ ,

(yη
(j)

ξj)
2π1+1 · ψ(yη

(j)

ξj) = ϑ2
jστ , j ∈ T.

Put φ := ψ−
∑s
j=1 ϑjψj . Then by computing and Lemma 3.3, we have (ei)

2π1+1·φ(ei) = 0

for i ∈ T and (ei)
πi′ · φ(ei) = 0 for i ∈ M1. The assertion now follows by applying (2)

and (3) of Proposition 2.6. �

3.5. Lemma. Let d ≥ 3. Then B(Ω̃)d = Ω̃d for d 6≡ 0,−2 (modp).

Proof. Put B := B(Ω̃) = [Ω̃+, Ω̃+], where Ω̃+ =
∑τ
i=1(Ω̃)i is the subalgebra of Ω̃. The

inclusion ”⊆” of our assertion is obvious. The converse inclusion will be proved by
considering the following cases. Let xkyλξu ∈ Ω̃d.

(i) k1 = 1.
(1) i 6∈ {u} and {u} 6= {ω}. We have [x1ξi, x

k−e1yλξiξ
u] = −xkyλξu. Since [x1ξi, x

k−e1yλξiξ
u] ⊆

[Ω̃+, Ω̃+]d = Bd, xkyλξu ∈ Bd.
(2) {u} ∪ {v} ∪ {i} = {ω}. suppose |ω| ≥ 4. If 1 − λ − 2−1|v| 6≡ 0 (modp), then by
[x2

1x
k−e1ξiξ

u, yλξv] = 2(1− λ− 2−1|v|)xkyλξω, we get xkyλξω ∈ Bd. If 1− λ− 2−1|v| ≡
0 (modp), then 1−λ−2−1(|v|+1) = −2−1 6≡ 0 (modp). Since [x2

1x
k−e1ξiξ

u−〈j〉, yλξjξ
v] =

2α(1− λ− 2−1(|v|+ 1))xkyλξω with α = ±1, xkyλξω ∈ Bd, as desired.
Let |ω| = 3. Then by [x2

1x
k−e1yλ, ξω] = −xkyλξω, we obtain xkyλξω ∈ Bd.

Let |ω| = 2. If 1 −
∑
j∈M1

µjkj − λ 6≡ 0 (modp), then by means of [xkyλ, x1ξ
ω] =

−(1−
∑
j∈M1

µjkj−λ)xkyλξω, one gets xkyλξω ∈ Bd. If 1−
∑
j∈M1

µjkj−λ ≡ 0 (modp),
then 1−(1−

∑
j∈M1

µjkj−λ) = 1 6≡ 0 (modp). As [xkyλξ1, x1ξ2] = (1−(1−
∑
j∈M1

µjkj−
λ))xkyλξ1ξ2, x

kyλξ1ξ2 ∈ Bd is valid.



(ii) k1 ≥ 2.
(1) ε0(k1 − 1) 6= p − 1. If {u} 6= {ω} and i 6∈ {u}, then [x1ξi, x

k−e1yλξiξ
u] = −xkyλξu

implies that xkyλξu ∈ Bd.
Let {u} = {ω} and |ω| ≥ 2. According to

[x2
1, x

k−e1yλξω] =
[
2(1−

∑
j∈M1

µjkj − λ− 2−1|ω|)− (k1 − 1)∗
]
xkyλξω,(3.16)

we obtain xkyλξω ∈ Bd whenever 2(1−
∑
j∈M1

µjkj−λ−2−1|ω|)−(k1−1)∗ 6≡ 0 (modp).

If 2(1−
∑
j∈M1

µjkj −λ− 2−1|ω|)− (k1− 1)∗ ≡ 0 (modp), then we consider the following
equation

[x2
1ξi1 , x

k−e1yλξω−〈i1〉] = 2−1((k1 − 1)∗ + 2)xkyλξω.

If (k1 − 1)∗ + 2 6≡ 0 (modp), then we have xkyλξω ∈ Bd.
If (k1 − 1)∗ + 2 ≡ 0 (modp), then (k1 − 1)∗ = p− 2, which means that two cases arise:

(a) ε0(k1 − 1) = 0, i.e., k∗1 = 1 = ε0(k1),
(b) ε0(k1 − 1) = p− 2, i.e., k∗1 = p− 1 = ε0(k1).

Consider the case (a). By[x1ξi1 , x
kyλξω−〈i1〉] = −xkyλξω, we obtain xkyλξω ∈ Bd.

Consider the case (b). Let |ω| ≥ 3.
If k1 6= π1, then by [xk+e1yλξu1 , ξu2 ] = −2−1(k1+1)∗xkyλξω and (k1+1)∗ 6≡ 0 (modp),

we have xkyλξω ∈ Bd, where |u2| = 3 and {u1} ∪ {u2} = {ω}.
If k1 = π1, then there exists an i such that ki 6= πi. Otherwise, we obtain

d =
∑
i∈M1

πi + 2π1 − 2 + |ω|

=
∑
i∈M1

(pti+1 − 1) + 2(pt1+1 − 1)− 2 + q

≡ −(2n+ 4− q) ≡ 0 (modp),

contradicting d 6≡ 0,−2 (modp). Hence we have

[xk+eiyλ, xi′ξ
ω] =

(
1− µi′ki′ − 2−1|ω|

)
k∗1x

k+ei+ei′−e1yλξω + [i](ki + 1)∗xkyλξω.

Set k + ei + ei′ − e1 = l. If (1 − µi′ki′ − 2−1|ω|) 6≡ 0 (modp), then ε0(l1) = p − 2 yields
2(1 −

∑
j∈M1

µjkj − λ − 2−1|ω|) − (k1 − 1)∗ 6≡ 0 (modp). According to (3.16), we get
xlyλξω ∈ Bd. Otherwise, the first term on the right-hand side of the equation above
coincides with 0. Since (ki + 1)∗ 6≡ 0 (modp), xkyλξω ∈ Bd is valid.

Let |ω| = 2. If ε0(ki) = p − 1 for all i, then d =
∑
i∈M1

ki + 2k1 − 2 + |ω| ≡
−(2n+ 4− q) ≡ 0 (modp), contradicting d 6≡ 0,−2 (modp). Consequently, we have

[xk+eiyλ, xi′ξ
ω] = −k∗1µi′ki′xk+ei+ei′−e1yλξω + [i](ki + 1)∗xkyλξω.

Put k+ ei + ei′ − e1 = l. Then xkyλξω ∈ Bd, which is completely analogous to the proof
above.
(2) ε0(k1−1) = p−1. Let {u} = {ω}. If 1−

∑
j∈M1

µjkj−λ−2−1(|ω|−1) 6≡ 0 (modp), then
by [x1ξi1 , x

kyλξω−〈i1〉] = (1−
∑
j∈M1

µjkj−λ−2−1(|ω|−1))xkyλξω, we get xkyλξω ∈ Bd.
If 1−

∑
j∈M1

µjkj−λ−2−1(|ω|−1) ≡ 0 (modp), then 1−
∑
j∈M1

µjkj−λ−2−1(|ω|−2) 6≡
0 (modp). Since [x1ξi1ξi2 , x

kyλξω−〈i1〉−〈i2〉] = (1−
∑
j∈M1

µjkj−λ−2−1(|ω|−2))xkyλξω,

xkyλξω ∈ Bd, as desired.
Let {u} 6= {ω}. If there exists an i ∈M1 such that ε0(ki) 6= 0, then by [x2

i ξi, x
k−2eiyλξiξ

u] =
−xkyλξu, we obtain xkyλξu ∈ Bd. Let ε0(ki) = 0 for all i ∈ M1. If

∑
i∈M1

ki + 2k1 −
2 ≥ 1, it is easily seen that xkyλξu ∈ Bd by [x1y

λξu, xk] = xkyλξu. Let
∑
i∈M1

ki +

2k1 − 2 ≤ 0. The assumption d ≥ 3 in this proposition implies that |u| ≥ 3. Then
by [x1ξi1 , x

kyλξu−〈i1〉] = (1 − λ − 2−1|u| + 2−1)xkyλξu, we obtain xkyλξu ∈ Bd if



1 − λ − 2−1|u| + 2−1 6≡ 0 (modp). Since 1 − λ − 2−1|u| + 2−1 ≡ 0 (modp) implies
1− λ− 2−1|u|+ 1 6≡ 0 (modp), we obtain xkyλξu ∈ Bd by [x1ξi1ξi2 , x

kyλξu−〈i1〉−〈i2〉] =
(1− λ− 2−1|u|+ 1)xkyλξu.

(iii) k1 = 0.
For |u| ≥ 1, if 1 −

∑
j∈M1

µjkj − λ − 2−1(|u| − 1) 6≡ 0 (modp), then by means of
[x1ξi1 , x

kyλξu−〈i1〉] = (1−
∑
j∈M1

µjkj−λ−2−1(|u|−1))xkyλξu, we see that xkyλξu ∈ Bd.
For |u| ≥ 2, if 1−

∑
j∈M1

µjkj − λ− 2−1(|u| − 1) ≡ 0 (modp), then 1−
∑
j∈M1

µjkj −
λ − 2−1(|u| − 2) = 2−1 6≡ 0 (modp). According to [x1ξi1ξi2 , x

kyλξu−〈i1〉−〈i2〉] = (1 −∑
j∈M1

µjkj − λ− 2−1(|u| − 2))xkyλξu, we have xkyλξu ∈ Bd.
For |u| = 0, the assumption d ≥ 3 in this proposition implies that

∑
i∈M1

ki + 2k1 −
2 ≥ 3. If xixk−ei = 0 for all i, then ε0(ki) = 0. Hence d =

∑
i∈M1

ki + 2k1 − 2 =∑
i∈M1

ki−2 ≡ −2 (modp), contradicting d 6≡ 0,−2 (modp). Thus there exists an i ∈M1

such that xixk−ei 6= 0, which implies x2
ix
k−2ei 6= 0. Then we get xkyλ ∈ Bd by virtue of

[x3
i , x

k−2ei+ei′ yλ] = 3α(ki′ + 1)∗xkyλ, where α = ±1. �

3.6. Proposition. The algebra Ω dose not possess a nondegenerate associative for 2n+
4− q ≡ 0 (modp).

Proof. We know that Ω =
⊕τ

i=−2 Ωi, where Ωτ = spanF
{
xπyηξω | η ∈ H\{0}

}
. Clearly

dim Ωτ = pm − 1 and dim Ω−2 = pm. Thus dim Ωτ 6= dim Ω−2. Then our assertion is
true by Proposition 2.1 in [10]. �

3.7. Theorem. The second cohomology group H2(Ω,F) is (s+ 1)-dimensional.

Proof. It was proved in [9] that H2(L,F) is isomorphic to the vector space of skew outer
derivations from L into L∗ if the modular Lie superalgebra L is simple and does not
admit any nondegenerate associative form. We see that Ω is simple (see [13]) and has no
nondegenerate associative form according to Proposition 3.6. We propose to show that
the vector space V of skew derivations from Ω to Ω∗ decomposes as

V = ⊕s+1
i=1Fψi ⊕ InnF(Ω,Ω∗),

where ψi defined in Proposition 3.2 is regarded as a skew derivation from Ω to Ω∗ for
i ∈M ∪ T .

Let ψ ∈ V of degree l. Then −2τ ≤ l ≤ 4. For −(τ − 1) ≤ l ≤ 4, by corresponding
ψ to the root space decomposition, we obtain ψ = 0 or l ≡ 0 (modp). As τ ≡ 0 (modp),
we have ψ = 0 for l = −τ + 1,−τ + 2,−τ + 3,−τ + 4. Let 5 − τ ≤ l ≤ 4. According to
Proposition 3.1, ψ can be extended to a skew derivation ψ̃ : Ω̃→ Ω̃∗. By Lemma 3.4, it
follows that there are ϑ1, ϑ2, · · ·, ϑs ∈ F and f ∈ Ω̃∗ such that

ψ̃(z) =

s∑
i=1

ϑiψi(z) + (−1)|z||f |z · f, ∀ z ∈ Ω̃−.

Put g := f |Ω. Then ψ(z) =
∑s
i=1 ϑiψi(z) + (−1)|z||g|z · g for all z ∈ Ω−. Hence,

ψ − Σsi=1ϑiψi ∈ Inn(Ω,Ω∗) by virtue of Lemma 2.7.
For −2τ ≤ l ≤ −τ. According to the proof above, we see that ψ = 0 or l ≡ 0 (modp).

Then ψ = 0 for l = −τ − 1 6≡ 0 (modp). Thus −2τ ≤ l ≤ −τ − 2 and l = −τ. We first
consider the case −2τ ≤ l ≤ −τ − 2. Note that −(τ − 1 + l) ≥ 3 and −(τ − 1 + l) 6≡
0,−2 (modp). Then Lemmas 2.8 and 3.5 ensure that ψ = 0. For the case l = −τ, we
define a bilinear symmetric form ζ : Ω× Ω→ F given by

ζ(xkyλξu, xlyηξv) = στ (xkxlyλ+ηξuξv).



It is easily seen that rad(ζ) = {x ∈ Ω | ζ(x, y) = 0, ∀ y ∈ Ω} = F1. Let $ : Ω → Ṽ ,

Ṽ := Ω/F1, be the canonical projection. We denote by ρ the bilinear form on Ṽ which
is induced by ζ. One may easily verify that the results of Theorems 3.3 and 3.7 in paper
[3] are also true for Lie superalgebras. It follows that there is a unique skew p-module
homomorphism D : Ṽ → Ṽ of degree −2 such that

ψ(x)(y) = ρ(D($(x)), $(y)), ∀ x, y ∈ Ω,

where

P := Ω− ⊕ spanF{xixj | 2 ≤ i, j ≤ r − 1} ⊕ spanF{xiξj | 2 ≤ i ≤ r − 1, r + 1 ≤ j ≤ s}
⊕spanF{ξiξj | r + 1 ≤ i < j ≤ s}.

Clearly, the mapping D is uniquely determined by D($(xπ−e2ξω)). A direct computation
entails the existence of β ∈ F with D($(xπ−e2ξω)) = β$(xπ−e1−e2ξω) by the degree of
D. As a result, D(v) = 2−1β ·1·v for v ∈ Ṽ , and ψ = βψs+1. Consequently, the dimension
of the vector space of skew outer derivations of Ω is s+ 1 and our assertion is true. �
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