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Abstract

We consider the finite-dimensional simple modular Lie superalgebra Q2
which was defined by Zhang and Zhang (2009), over an algebraically
closed fields of characteristic p > 3. In this paper, we determine the
second cohomology group of the modular Lie superalgebra Q by com-
puting the first cohomology group H*(£,Q*), where Q* denotes the
dual space of Q.
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1. Introduction

Many important results of modular Lie superalgebras have been obtained (see, for
example, [1, 5, 8]). But the classification problem is still open for the finite-dimensional
simple modular Lie superalgebras. Since cohomology theory is closely related to the
structures of modular Lie algebras and play an important role in the classification of
modular Lie algebras(see [2, 3, 4]), it is significant to study the cohomology groups of
modular Lie superalgebras. The dimensions of the second cohomology groups of simple
modular Lie algebras of Cartan type were computed in [2, 3, 4]. The second cohomology
groups of simple modular Lie superalgebras of Cartan type W, S, H and K were deter-
mined in [9, 11]. The second cohomologies of Lie Superalgebras HO and KO were studied
in[6]. The second cohomologies of two classes of special odd modular Lie superalgebras
were investigated in [7].

The finite-dimensional simple modular Lie superalgebra © was defined in [13]. Its
derivation superalgebra and filtration structure were investigated in [12, 13]. The second
cohomology group of modular Lie superalgebra Q for 2n + 4 — ¢ # 0 (modp), which
possesses a nondegenerate associative form, can be easily obtained according to [9]. In
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paper [9], it was also verified that if a modular Lie superalgebra L was simple and did not
possess any nondegenerate associative form, then its second cohomology group H> (L,F)
was isomorphic to the first cohomology group H' (L, L*). Thus we shall determine the
second cohomology group of the modular Lie superalgebra Q for 2n 4+ 4 — ¢ = 0 (modp),
which does not have a nondegenerate associative form, by computing H* (€, Q).

2. Preliminaries

Let F be an algebraically closed field of characteristic p > 3 and not equal to its prime
field II. For m > 0, let E = {z1,--- ,zm} € I be linearly independent over prime field II
and the additive subgroup H generated by E doesn’t contain 1. If A € H, then we let
A=3" Nz and y* = Yt yhm, where 0 < A; < p. We use the notation N for the
set of positive integers and Ny for the set of non-negative integers. Let Zo = {0,1} be
the ring of integers modulo 2.

Given n € Nand r = 2n+ 2, we put M = {1,---,r — 1}. Suppose that pi, ---,
pr—1 € Fsuch that 1 =0, pj + piny; =1,5=2,--- ,n+ 1. Let k; € Ny for ¢ € M, then
k; can be uniquely expressed in p-adic form k; = 7" e, (ki)p”, where 0 < e,(k:) < p.
We define truncated polynomial algebra

A =F[z10,Z11,  * ,T1sys " s Tr—10,Tr—11," " , Tr—ls,_ 1YL, " > Ym)
such that
x; =0,Vie M, j=0,1,---,s; y; =1, i=1,--- ,m.

Let @ = {(k1, -+ ykr—1) |0 < ki <7y, m =p* ' —1, i€ M} Ifk = (ki, - ,ky) € Q,
we write ¥ = 2% --~xfi’11, where z;* =[5 252 ®) for i € M. For 0 < ki, k} < my, it

is easy to see that
(2.1) xikixiké = Jzik”k'li #0 & ey(ki) + av(ké) <p,v=0,1,---,8s;.

Let A(g) be the Grassmann superalgebra over F in ¢ variables &41,- -+ ,&4q With
g € N and g > 1. Denote the tensor product by 2 := A ®r A(g). Obviously, 2 is an
associative superalgebra with a Zs-gradation induced by the trivial Zs-gradation of A

and the natural Zs-gradation of A(q):

Qo =A@ A(g)o, Q1= AcrAg):.
For f € A and g € A(q), we abbreviate f ® g to fg. For k € {1,--- ,q}, we set

Br = {(i1, 2, ,in) [T+ 1 <i1 <ip < -+ <ip <7 +q}
and B(q) = Ui_,Bk, where Bo = @. If u = (i1,--- ,ix) € By, we let |u| = k,{u} =
{ir,-+ yir} and € = &, -+-&,. Put || = 0 and €7 = 1. Then {z"y*¢" |k € Q,\ €
H,u € B(q)} is an F-basis of (2.

If L is a Lie superalgebra, then h(L) denotes the set of all Zz-homogeneous elements
of L, i.e., h(L) = Lg U L;. If |z| appears in some expression in this paper, we always
regard x as a Zz-homogeneous element and |z| as its Za-degree.

_ Sets=r+gq,T= {r+1,---,s}and R=MUT. Put My ={2,--- ,r — 1}. Define
i=0,ifi€ My, andi=1,ifi € T. Let
it+n, 2<i<n+l, 1, 2<i<n+1,
i'=<i—-n, n+2<i<r-—1, []=¢—-1, n+2<i<r—1,
7, r+1<i<s, 1, r+1<1<s.



For e; = (00, ,dir), ¢ € M, we abbreviate z° to x;. Let D;, i € R, be the linear
transformation of €2 such that

u k:xk_eiy)\éu7 i€ M7
Di(a*y*e") = k, A u .
Ty a§ /8517 Z€T7

where k is the first nonzero number of eo(k;),e1(ki), - - - s, (ki). Then D; € Der Q. Set
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where I is the identity mapping of Q. For f € k() and g € §, we define a bilinear
operation [, ] in £ such that

(2.2)  [f.g] = Di(f)d(g) — O(f )+ > [A-1)MDi(f)Dy(g).

i€ M UT

Then 2 becomes a Lie superalgebra for the operation [, ] defined above.

Define Q : = [©2, Q). It can be proved that = spanF{xkyA§“|(k A u) # (m,0,w) } for
2n+4 — ¢ =0(modp), 7 = (w1, -+ ,mr—1) and w = (r+1,--- ,s), and Q is a simple Lie
superalgebra. In the sequel, we always assume that 2n + 4 — q = 0 (modp).

Now we give a Z-gradation of Q: Q = @,;cx;, where
(2.3)  Q; = spang{z"y " | Z ki +2k1 + |u| — 2 = j},

ieM;
and X = {-2,-1,---,7}, 7 = ZiEMl m +2m +q—2. If f € Qj, then f is called a
Z-homogeneous element and j is the Z-degree of f which is denoted by zd(f).

Assume that L = Lg & L is a finite-dimensional modular Lie superalgebra and L
possesses a Z-gradation L = ®?___L;. Then L* := Homg(L,F) = @;__4(L*); is a Z-
gradation L-module by virtue of (z - f)(y) = —(—l)lz”f‘f([x,y]) forx,y € L, f € L".

Let H C Lo N Lg be a nilpotent subalgebra of Lg. Let

L=®acala and L* =®gco(L") )

be the weight space decompositions of L and L* with respect to H, respectively. Since
H C Lo N Lg, there exist subsets A; C A and ©; C © such that

Li = ®aea,LiN Ly and (L"); = ®peo, (L); N (L") ps)-
Thus L has a structure of (Zx Map(H IF))-gradation, where Map(H,F) is the group
consisting of the mappings from H into F. The L-module L* is (Z x Map(H,F))-graded
by
(L)) ={f € L™ | f(L; N Lg)) =0, (4, B) # (3, 0) }.
Then we have (L™);,0) = (L) N (L") (a)-
By equation (2.2), H := Fz; is an Abelian subalgebra of . Furthermore, H is an

Abelian subalgebra of Q¢ N Qg with the weight space decomposition 2 = @aeAQ(a). It
is easy to see that A; NA; # (Z) if and only if ¢ = j (modp).

2.1. Lemma. [11] Let L™ = ®geo(L")(s) be the weight space decomposition relative to
H. Then the following statements hold:

(1) © = —A and there is an isomorphism (L*)g) = (L(—p))* of H-modules for all B € ©.
(2) @ =—-A_; for =6 <i<g.

2.2. Definition. A linear mapping ¢ : L — L* is called a derivation if
W((z,y) = (D) g(y) — ()M p(@) forall vy € L.



Let Derp(L, L*) denote the space of derivations from L into L* and Inng(L, L") be
the subspace of inner derivations. Recall that a derivation ¢ from L into L* is called
inner if there is some f € L such that

(@) = —(=)H¥"lz . ¢ forall z € L.
Derp(L, L*) inherits the (ZxMap(H,F))-gradation from L and L*. A derivation 1 €
Derr(L, L*) is referred to as homogeneous of degree (ig, o) provided that
’d}(Ll n L(a)) C (L*)i+i0 n (L*)(OH_QO) for all (’L, Oé) € Z x Map(ﬁ,F)

Let {f1,---, fm} be an F-basis of Ly and {g1,- - ,gn} be an F-basis of Ly. Let U(L)
denote the universal enveloping algebra of L and L™ = Z;:lfg L;. As the U(L)-module
structure of L is induced by the L-module structure of L, we see that

(24) (7 gy -0 9i) - 2= (adf1)™ - - (adfm) ™ adgi, - - - adgi, (2),
where {fi' o iy Gir]si > 0,8 =1,--- ;m; 1 <43 <--- <4y <n}is an F-basis of
U(L).

2.3. Lemma. [11] Suppose that L =U(L™)-Ls and 1 : L — L is a homogeneous linear
mapping of degree | > 2¢ — 6. Assume that L™ is generated by a subset J of L. If

W([w,y) = (=12 g(y) = ()WY y(@) forallz e T and y € L,
then v 1s a derivation.

2.4. Definition. A derivation ¢ : L — L* is said to be skew if

b(@)(y) = = (=1 (y)(z) for all 2,y € L.

Let U(L)* denote the two-sided ideal generated by L. Clearly, for every derivation
¥ : L — L*, there exists a homomorphism ¢ : U(L)" — L* of U(L)-modules such that
o(z) = ¢Y(x) for all x € L.

2.5. Lemma. [11] Let ¢ : L — L™ be a derivation. Assume e € L such that (ade)pt =0
fort €N. Then e?' ! ~tp(e) € (L*)E, where

(L) ={fel”|L-f=0}={feL"|f(L L]) =0}
2.6. Lemma. [11] Let V C L be a Zz-graded subspace such that

L=UL )" -veV

Let W C N§ and {e1,e2, - -, en} be a basis of L™ such that
(@) anng -+ (L) = spang{e’ | b & W}, where b = (b, by, -+, b,) and e := 2152 ... ebn
and anng -+ :={u € U(L™)" |u- L =0}
(b) there is a basis {v1,v2, -, vm} of V such that {e® -v; | a € W,1 < j < m} is a basis
of L over F.
Then the following statements hold:
(1) If ps = p* — 1 for 1 < i < n and L = [L, L], then the canonical mapping ®1 :
HY(L,L*) - H'(L™,L") is trivial.
(2) If ¢ : L — L* is a derivation satisfying ker(ade;) C kery(e;) for 1 < i < n, then ¢
defines an element of ker®;.
(3) If there is a p € Ny such that W = {b € Ng | b < u}, then ker(ade;) C kery(es) if
and only if ef't - (e;) = 0.

2.7. Lemma. [11] Suppose L = &5_
of degree .

(1) If Il > ¢ — & and ¢ defines an element of ker®1, then v is an inner derivation.

(2) If l = ¢ =4, ¢ is skew and defines an element of ker®1, then 1) is an inner derivation.

_L;. Let : L — L™ be a homogeneous derivation



2.8. Lemma. [11] Suppose L = @f:,gLi. Let : L — L™ be a homogeneous derivation
of degree | with —20 <1 < =0 — 1. If —As ¢ ¢_(541), then ¢ = 0, where ¢pa C Aq for
d>1.

3. Second cohomology group H?(Q,F)

3.1. Proposition. Suppose that ¥ : Q@ — Q is a skew derivation of degree l > 5 — 7.
Then there exists a homogeneous skew derivation 1/} Q- QF of degree | which extends

.
Proof. We define a linear mapping 1;: Q — Q* such that

J(xkykgu)(wlyngv) = {w(xky)\é-u)(xlyngv) wkykgu7mlyn£v € Q:

0 other cases.

AsQ=Q Fa™&, {/; is a skew linear mapping of degree . Then we will show that
(81)  B(1fg) = ()W G(g) = (1) Olg - G(p), vi,g €D

We shall prove it in two cases:
(i) Consider the case f, g € Q. We need only to prove that

(32) (L") = (—)PW(F P e) = (=1)PON (g G(f) (7€),

By virtue of the definition of 1;, the left-hand side of the equation (3.2) equals 0. Setting
f € Q; and g € ;, we see that the right-hand side of (3.1) is contained in (ﬁ*)¢+j+l.
Thereby, the right-hand side of (3.2) coincides with 0 unless 7+ j +1 = —7, which implies
that -7 =i¢4+j+10>i+j+5—72>1— 7 fori,j > —2, a contradiction.

(ii) Consider the case f = z™¢%. By Q=60 ,Q and Q = [527(2], we have [x"f“’,ﬁ] C
Q, &Q, 16 Q5. Note that zd(¢([z7¢%,Q))) > Il+7—-2> (5 —7)+7—2 =3 and
("¢, Q)) C O = @& _(Q*);. Then we obtain ([z"¢¥, g]) € 3i25(Q%)i = 0 for
g € {/? It is easy to see that z7&“ - {/;( ) C Q" and g - {Z;(x &) C Q*. Thus we have
g-V(a7E) (2P e") = anp(27€) (g, 2y €4]) = 0 for all ¥y ¢* € Q, where a = +1 and

7€ - P(g) € 32,55(Q7)i = 0. The proof is complete. O

For i € M, we define a linear mapping o; : Q—F by
Z V(ka)‘>u)wky>\£u — ’Y(ﬂ- - 771"61"707("))’
k<m,A€H,u€B(q)

where 1/ = 1. B
For i € T, we define a linear mapping o; : 2 — F by

Z vk, A, w)zFy €Y = y(m — mier, 0,w \ {i}).

k<m,A€H,u€B(q)
We define a linear mapping o, : Q—F by
S kAWt = (r,0,w).

k<mw,\€H,u€B(q)
3.2. Proposition. The following statements hold
(1) The mapping i : @ — Q* given by ¢z( Af“)(ﬂc’ y'€") = oi(kfat iy ealy"eY)
is a skew derivation of degree derivation | = 1 forie M.
(2) The mapping s : Q — Q" given by wz(a: f )(@'y"€") = oi(D(a"yreM)Oi(aFy e atyeY))
is a skew derivation of degree derivation | = 2p51+1 —7 forieT.
(3) The mapping 1 : @ — Q° given by ¥1 (z*y") (2'y"¢") = 01((z*y )2 y € a'y"€")



is a skew derivation of degree derivation | = 2p*1T1 — 1.
(4) The mapping thetr : Q@ — QO given by o (29 €") (@'y"€") = o, (kizk 1y v alyeY)
is a skew derivation of degree derivation | = —T.

Proof. Noting that Q s generated by Q= Z:;Ql Fmiye—‘,—Zf:TH Fy°¢; and p*'+1 > 4,
by Lemma 2.3, it is sufficient to show that for : € M UT and j € M; UT, the equalities
below hold:

Yi([z5y°, 2"y €] (' y"€Y)
)il 25y - (P ) (aly€?) — (—1)E IOl @R A e (2%)) (2lyTEY),

Gi([&y’, 2"y e ('y"e)
1) IS (€0 (P ) (@) — (— 1) IS (@R e (650 (aly€7).
In case (1)-(3), we only prove (3.3), and (3.4) is treated similarly.
(1) The linear mapping v; is said to be skew if

Ui P gY@ E") = ()i (aly€") (2t ), W aty et alyTE € Q2 <i<r - L
By computing directly, we see that the left-hand side of (3.5) equals o; (kj 2"~ zly  T1£4£v)
and the right-hand side of (3.5) coincides with —o;(Ifz"2!~eiy M Teve). I k+1 —e; =
m—myey, then k; +1; — 1 = m = —1 (modp); that is, kj 4+ ;7 = 0 (modp) for all i € M.
Hence both sides of (3.5) equal k. Otherwise, both sides coincide with 0. Therefore, the

mapping 1); is skew, as desired. Moreover, the linear mapping 1); is of degree | = p*¥+1 —7

by a direct computation. For j € My, the left-hand side of (3.3) coincides with
Gi(=ki (1= py — )z Ty ) (@y€") + i ([l a9y T (YY),

while the right-hand side of (3.3) equals

—i(@y ) (A (Lmpy =)z’ ™y ")~ (e y ) (L' y O iy ([ e 2y ")),

We distinguish two cases:

Case 1. i # j.

11 k+l—e—ep=m—mpey, £ =& and A +n+60=0.

1.2 k+l4+e—ei—er=mm—mpey, "6 =Y and A+n+60=0.

Case 2. i =1.

21. k+l—ei—ey =7 —mpey, 46" =& and A+ n+60=0.

22. k+l—eir=m—mpey, 6" =Y and A+n+0=0.

Firstly, we deal with the case 1.1. We see that the left-hand side of (3.3) equals
—[4]k}:1}, while the right-hand side of (3.3) coincides with —[j]k;1},. As k+1—e; —e; =
T — ey, we get ki +1; —1 =m; = —1(modp) and ks +1;y — 1 =my = —1 (modp), i.e.,
ki +17 = 0(modp) and kj +I;; = 0 (modp). Thus —[j]k}1; = —[j]k; 1}, and the equality
(3.3) holds.

For the case 1.2, we know that the left-hand side of (3.3) coincides with k71 (1—p;—6).
But the right-hand side of (3.3) equals I7k; (1 — pu; — 6). By the assumptions, we also
have ki + I = 0(modp) and ki + {7 = 0 (modp). Consequently, the right-hand side of
(3.3) coincides with k717 (1 — p; — 0), as desired.

The proof of the case 2.1 is similar to the case 1.2.

For the case 2.2, it is easy to see that the left-hand side of the equation (3.3) coincides
with (1—p; —0)k7l;. And the right-hand side equals (1 —p; —O)ki 1T + (1= 32,5y, pili —
n—2" vk — (1 — D ien, Miki — A — 27! u|)l;. By means of our assumptions, we have
ki + 17 = 0(modp), k; + I; = —1 (modp) and k;» + l;; = 0. Hence, the right-hand side of
the equation (3.3) equals I7(1 — p; — 0)(ki +1) = (1 — pu; — 0)kil], as desired.



(2) In analogy with (1), it is easily seen that the mapping v; is skew and of degree
2p"tT1 — 7. For j € My, the left-hand side of (3.3) equals

oi(—ki(1 =y = 0) (1= > ks — gy — (A +0) — 27 ul)a;z™ taly 00, (64¢Y))

ieM

B.6)oi(lilk; (1= D piki+ g — (A +6) = 27 ul)a" ™" 2"y 00, (€€")),

i€ My

while the right-hand side coincides with

oi(li(1—py —0) (1= Y paki = A =27 u)zaba! 1y 00, (£1¢7))

i€ M,y
—ai ([l (1= D7 paks — A =27 ul)aba! A, (64E"))
i€ M,
ok (1= D pali = =27 o) (1 — py — O)aya™ aly™ T 1H00;(£1¢"))
i€M;y
—oi (151 = Y paki = A =27 ul) (1 — gy — O)zjaa’ =1y M09, (£1¢Y))
i€ My

o ( > [k (1= py — 0)aat !~y M09, (£e))
i€ My

37 +o O (=D = gy — )zt 0, (Di(€) D (€7))).

i€T

We consider the following cases:
Case 1. k4+1+e; —es =7 —mer, A\+n+6=0and 9;(6"€°) = ¢~ ¥,
Case 2. k+1—ey =7 —mier, A+ 1 +60=0and 9;(€"¢") = €27,
Now we only prove the Case 2. Then the equation (3.6) equals [j]&}, (1=, ), piki—
(A +0) + pjr — 27 |u]), while the equation (3.7) coincides with

(B8YIL (L — S puaks = A =27 ul) + G101 = s — Ok + 111 = s — Ok

i€ M

Ask+1—ey =m—mei, kjy +1y —1 = 7 = —1(modp). Hence the equation (3.8)
coincides with [j]k} (1 = Y2,c y, piks — (A +60) + pjr — 27 [u]) and (3.3) is valid.

(3) The linear mapping v is clearly skew and of degree 2p** ™" — 7. For the left-hand
side of (3.3), we obtain

or(=ki(1 =y = 0)(1 = Y ks — (A4 0) =27 ul)aya® =ty 1Y)

i€ M,

(3.9)  Fou([lkj (1 — Z piki + g — (A4 0) — 27 Hu|)z" 4 2ty MO e ey,

ie M



and the right-hand side coincides with
or(li(1 =y = 0)(1 = Y ks = A= 27 u)a" a1y HOTIEEY)

i€ My
o (<[l (1= > paki — A =27 Hul)aa! Ty O EY)
ieM;
tor (ki (1 —py — 0)(1 = > pals = — 27 o aa™ taly )
i€ M,
tor(—l (L =y —0)(1 = D piks — A — 27 ul)ayatal M)
i€My

tor((1—py —0) Y [ilkilimat il ey MrHogue?)

i€ My

(310)  +or((L—py —0) > (-1 a2y Dy (") Dy (€7)).
€T

We treat two cases separately:
(a) k+l—e1+ej=m—mei, \+n+60=0and £“&" =¢£~.
(b)) k+l—ey =m—me, \+n+0=0and £“&" =¢£~.
Now we only prove the case (a). By a direct computation, we see that the equation
(3.9) coincides with

(3.11) ki (1= = 01— 3 k= (A +0) =27 ul).

and the equation (3.10) equals

(312) K== 01— Y il —n— 27 o).
i€ M,
Note that k; +1; = m; = —1(modp), k; +1; +1 = m; = —1(modp) and k1 + 1 —

1 = 0. Then we may assume ki = 1 and I3 = 0, which implies that (3.11) equals
(L= = 0)(1 =32 cpy, ik — (A +0) — 27! u|) and the equation (3.12) coincides with
(L= py = O)(L = > cny, ili =1 — 271 v]). Since 2n + 4 — ¢ = 0 (modp), (3.3) is valid.
Suppose k1 = 0 and I; = 1. Obviously, both sides of (3.3) equal 0.

(4) One may easily see that 941 is skew and of degree —7. For j € T, the left-hand
side of (3.4) coincides with

o (27 = Ok Ty TG EEY) o (1) MR Ty T 9 (€),
while the right-hand side of (3.4) equals

o (271 = O)kilia" a2l MG + o (1) M kT2l T 9;(€7)).
Then two cases arise:
(a) k+1—2e1 =7, A+n+0=0and "’ =&~.
b)) k+l—er=m A+n+0=0and 9;(*)§" =¢&~.

We only deal with the case (a). By a direct computation, both sides coincide with
k3l5(27' — 6). Then the equation of (3.4) is valid. Similarly, (3.3) is true in case of

j € M. O
3.3. Lemma. The following statements hold.

(3.13) (ziy™)™ i (ziy") = 9i0-, i€ M1,9; €F, ne H,

(3.14) (y")™ - Y1(y") = V10r, 91 €F, n € H,

(3.15) (ady”&;)*™ " - ;(y"€;) = Vj0,, jET,9; €F, neH,



where the mapping ; is defined in Proposition 3.2 fori € M UT.

Proof. we see that (ﬁ*)ﬁ = Fo, according to Lemma 2.5. In order to prove (3.13), we

only need to show that (adxiy”)psilﬂ(;rky)‘ﬁ“) = 0 by Lemma 2.5 for all z¥y*¢" € Q.

Since adxiy’il: [t]y" Dy +£717 — pir)y"z; D1, we have (adasiy”)pb'/+1 = [z’](y"Di,)psilJrl +
— Ly ! z: D). computing step step, we obtain

n—pi)" " (y'wD1)? By g by b

(y" D) (a"y ") = y" Do (ay ") = ki a5y E",
(y"Dy ) (2" y ") = y" Dy (kjy 2"~ YY) = ki (ke — 1)7 220 PR

WD) TG ) = K (e — 1) - (ki — 1) e T
Then (ynDi’)pSi,H (z*y*¢*) = 0. Moreover,

(y"a:D1) (2 6") = ke ey,

(y"ziD1)? (a"y e") = kS (ky — 1) aixga® 21y 20e,

si’+1— u * * * —T. € T u
("D T (@ YY) = R (k=) (B L) gty T,
Consequently,
s +1 * * * — (7 Tyl
("2 D) (@F ) = K (ki —1)" (=) gy (T FDE (ot DA e

This shows that (audxiy")psil+1 =0, as desired.

Similarly, by a direct computation, we get
(ady™) (z*y™e") = —ki (1 — p)a* ™1y e,
(ady™)* (™Y €") = —Ki (k1 — 1)7(1 — )" 721y,
(ady")"" T @Y ) = KO = 1) (= m )Tt Ty A
Then (audy")ps1+1 (zFy*¢") = 0. (3.14) can be proved.
Since (ady"&;)? (xFye®) € FaF 1y 21¢%  we obtain (audy”&j)2psl+1 = 0. Then (3.15)

is true according to Lemma 2.5. (]

Applying (3.13), (3.14) and (3.15) to z™€* , we see that
$i=k#0, keF, ieM; 9J1=0#0, 0€F;, 9, =v#0, velF, jeT.

3.4. Lemma. Let ) : Q — QF be a derivation. Then there are elements 1,02, -, 05 €F
such that (Y — >°7_, %) |- ts an inner derivation.

Proof. Set L := Qand V = Fx™¢“. Put e; := :ciy"(z), i € My; e = y"m&, i1e€T;
er =97 1"=1

and x := (my, 7o, -, W1y, 1, 1) € N*~!. Now we show that W := {b | b < x}
fulfills the conditions of Lemma 2.6.

First we verify the equation anny—y+(L) = Spang{e® | b ¢ W} holds. Let e’ €
U(Lf)+ and b € W. Noting that e;+1,€er42, - -, es € L1, there is an ¢ € M such that
b; > my. If i = 1, then we have e® - (zFy*¢*) = 0 by (adye)pslﬂ = 0. For ¢ € M,
the proof of Lemma 3.3 and equality (2.4) ensure that efsi/+1 - (z*yre") = 0, where
0<k<m\E H,u € B(g). Thus the inclusion Spang{e’ | b ¢ W} C anng -+ (L)
holds.



Let v =3",_, B(b)e” be an element of anny; -+ (L). Then 2 box B(b)e® € anny(f,—y+ (L)
follows from the result above. As v = 3" _, B(b)e” = 2 0<b<y B(b)e® + Dby B(b)e’ €
anng -+ (L), Zo<ngﬂ(b)eb € annyp—)+(L). Let 0 # u == 37, o B(b)e’. Put
7:=min{b; | A(b) # 0}. Then

0 = w-g"tUmagw
= Z B(b)e - g™ Fammer e
0<b<x,b1=3
- Z Bb)au(b)(1 —0)Y 5 (5 —1)* - 1-
0<b<X b=y
H my (i = 1) (i — b + 1) 'xwfmerb,el;ﬂl s
where a(b) = £1,b = {0, baear, - - br—1€(r_1y} and o = bams + bams -+ -+ b1

We see that 27~ 11~ eifll ceeebey®t e L0, (= 1) 1 | J /(m/ - 1"
~(my —bi +1)" #£ 0, and (1 —0)? # 0 for 6 € H. Hence B(b ) = 0 whenever by = 7, a
contradiction. Thus v € spang{e® | b & W} and the converse inclusion holds. Hence the

condition (a) in Lemma 2.6 is satisfied.

Our previous results ensure that {e’ - e | 0 <b< x} generates Q. Then condition
(b) in Lemma 2.6 holds according to dimgQ = 2!9! - p!, where | = Diem(si+1) +m.

Recall that the mapping ¢ is defined in Proposition 3.1. Noting that Q = [Q,Q] =
(2*y e |(k, N, u) # (m,0,w) ) for 2n +4 — ¢ = 0 (modp), we obtain o, ([Q,Q]) = 0. Then
by Lemma 2.5, there exist ¢1, 92, ,9¥s € F such that

(@) .
xly ) ’l[}( 1y ):19?0'7-7 ZeMl:
gy’ = o,
"y ") = vlon, jET.
Put ¢ :=¢—377_, ¥;9;. Then by computing and Lemma 3.3, we have (e D)1 p(e) =0

for i € T and (e;)™ - ¢(e;) = 0 for ¢ € My. The assertion now follows by applying (2)
and (3) of Proposition 2.6. O

(
(y

3.5. Lemma. Let d > 3. Then B(Q)q = Q4 for d 2 0,2 (modp).

Proof. Put B := B(Q) = [0, Q7], where Ot = i 1(S~2)1 is the subalgebra of Q. The
inclusion ”C” of our assertion is obvious. The converse inclusion will be proved by
considering the following cases. Let z*y*¢¥ Qa.

(i) k1 = 1.

(1) & {u} and {u} # {w}. We have [z1&, 2" °1y*&:€"] = —zFy?€¥. Since [z1&, 271y &:€Y] C
[§+, ﬁ+]d = Bd, J:kgff" € By.

(2) {u} U {v} U {i} = {w}. suppose |w| > 4. If 1 — X\ — 27 v| # 0(modp), then by
[£izherg ey ev] = 2(1 — A — 27 u|)zFyPe”, we get aFy ¥ € By If 1 — A — 271|v|

0 (modp), then 1—=A—27"(Ju|+1) = =27 # 0 (modp). Since [z3zF1£"~ ) yr¢;ev] =

20(1 = A =27 (Jo] +1))z"y*e” with a = 1, ¥y ¥ € By, as desired.

Let |w| = 3. Then by [zz*~ 61y €% = —2Fy €Y we obtain 2y e¥ € By.

Let |w| = 2. If 1 — ZJGM wik; — X # 0(modp), then by means of [zFy*, z,1£%] =
—(1=3 e, Hiks —AN)z*y €Y, one gets ¥y ¢¥ € Ba. I 1=3", ), pjk; — A = 0 (modp),
then 1— (1=, ki —A) = 1 # 0 (modp). As [z*y 1, m16] = (1— (1= 32y, iy —
N))zFy e &, afyrei s € By is valid.



(ii) k1 > 2.
(1) 2olks — 1) # p— 1. If {u} # {w} and i & {u}, then [226:, 2" 1 6,€"] = —ahy e
implies that z*y*¢* € By.

Let {u} = {w} and |w| > 2. According to
(3.16) [27,2" 1] = [2(1 = D pyky — A =27 w]) — (k1 — 1)"]a"y ¢,

JjeMy
we obtain z*y*¢“ € By whenever 2(1 — D e, Hiki—A— 27 w]) = (k1 —1)* # 0 (modp).
IE2(1 =3 e, biki —A— 27 w|) — (k1 —1)* = 0 (modp), then we consider the following
equation
[, 2"y e T = 27 (e - 1)+ 22ty e

If (k1 — 1)* 4+ 2 # 0 (modp), then we have z"y*¢* € By.

If (k1 —1)* + 2 = 0 (modp), then (k1 —1)* = p — 2, which means that two cases arise:
(a)eo(kr — 1) =0, e, k] =1 =c¢eq(k1),
(0)eo(kr —1) =p—2,ie, ki =p—1=co(k).

Consider the case (a). By[:vlfil,x’“ykg“k“”] = —zFy e¥ | we obtain zFy ¢ € By

Consider the case (b). Let |w| > 3.

If k1 # 71, then by [zFTe1yr¢¥ ¢¥2] = 271 (ky +1)* 2"y ¢* and (k14-1)* Z 0 (modp),
we have 2"y ¢“ € By, where |uz| = 3 and {u1} U {u2} = {w}.

If k1 = 71, then there exists an ¢ such that k; # ;. Otherwise, we obtain

d = Z T+ 2w — 2 4 |w|
ieM;
= ST D20 - 1) -2+
i€M;

= —(2n+4—q) =0 (modp),
contradicting d # 0, —2 (modp). Hence we have

[mk+5iy>‘, xilfw] _ (1 _ Ni’ki’ o 271|w|)k1<xk+ei+eizfe1y>\£w + [Z](kl + 1)*mky>\£w‘
Set k+e;+ey —er = 1. If (1 — pyky — 27 w|) Z 0 (modp), then go(l1) = p — 2 yields
201 = 3 cnr, Hiks — A — 27 w|) — (k1 — 1)* # 0(modp). According to (3.16), we get
zly* ¥ € By. Otherwise, the first term on the right-hand side of the equation above
coincides with 0. Since (k; + 1)* # 0 (modp), z*y*¢* € By is valid.

Let |w| = 2. If eo(ki) = p— 1 for all 4, then d = >,/ ki +2k1 — 2 + |w| =
—(2n+4 — q) = 0 (modp), contradicting d # 0, —2 (modp). Consequently, we have

[y €] = K kT T (1) (R 1)y e

Put k +e; + ey —er = 1. Then 2"y ¢* € By, which is completely analogous to the proof
above.

(2) eo(k1—1) = p—1. Let {u} = {w} If1-3", ,, piki—A—2""(Jw|—1) # 0 (modp), then
by [w1&iy, 2y ) = (1=3 0y, ik —A—27" (|lw|—1))2*y ¢¥, we get 2*y ¢ € Ba.
E1-3" pjkj—)\—Z*l(\w|—1).E 0 (modp), then 1—-3". /. piki —A—2"1(|lw|—2) #
0 (mOdp) Since [x1£i1£i27xkykgwihmiﬁﬁ] = (1_Zj€M1 /’ijj _>‘_271(|w| _2))wky>\€w7
zFy* ¥ € By, as desired.

Let {u} # {w}. If there exists an i € M; such that g0 (k;) # 0, then by [£7&;, 2% 2y ¢,€"] =
—zFyre", we obtain 2"y ¢" € Bg. Let eo(ki) = 0 for all i € My. If Y2, ki + 2k1 —
2 > 1, it is easily seen that z"y*¢* € Bg by [z197€", 2] = 2"y ™. Let ZieMl ki +
2k; — 2 < 0. The assumption d > 3 in this proposition implies that |u| > 3. Then
by [z1&,, 2"y e "] = (1 — A — 27 u| 4+ 27Y)zbyreY, we obtain zFy e* € By if



1—X—2"Yul +27 # 0(modp). Since 1 — A — 27 Hu| + 271 = 0(modp) implies
1—X—2""u| + 1 # 0(modp), we obtain zFy*e* € By by [x1&:, &y, aFytev— (0= 02)) =
(1 =X =27 u| + 1)aFyrev.

(iii) k1 = 0.

For |ul > 1, if 1 =37,/ piks — A — 27! (Ju] = 1) # 0(modp), then by means of
[€1&:,, xFyrev—(0)] = (A= e piki—A—=271(Ju|-1))z"y ¥, we see that ¥y € € By.

For [ul > 2,if 1 =37,y mikj — A — 27 (ju| — 1) = 0 (modp), then 1 — > jens, Hiki —
A =27 (Ju| = 2) = 271 # 0(modp). According to [z1&i, &y, xFyren— =020 = (1 —
2 jens ik — A — 27 (Ju| — 2))z*y ", we have ¥y e" € By

For |u| = 0, the assumption d > 3 in this proposition implies that >, ,, ki + 2k1 —
2 > 3. If 2,2 = 0 for all ¢, then eo(k;) = 0. Hence d = ZiEMl ki +2k1 — 2 =
> icar, ki —2 = —2(modp), contradicting d # 0, —2 (modp). Thus there exists an i € M
such that ;2" 7% # 0, which implies z72"~2% #£ 0. Then we get 2*y* € By by virtue of
[x3, xF2eiter M = 3a(ky + 1)*z*y?, where o = £1. O

3.6. Proposition. The algebra 2 dose not possess a nondegenerate associative for 2n +
4 — ¢ = 0(modp).

Proof. We know that Q = @]__, Qs, where Q, = spang{z"y"¢” | n € H\{0}}. Clearly
dimQ,; = p™ — 1 and dim Q_5 = p™. Thus dimQ; # dimQ_5. Then our assertion is
true by Proposition 2.1 in [10]. O

3.7. Theorem. The second cohomology group H*(Q,F) is (s + 1)-dimensional.

Proof. Tt was proved in [9] that H?(L,F) is isomorphic to the vector space of skew outer
derivations from L into L* if the modular Lie superalgebra L is simple and does not
admit any nondegenerate associative form. We see that 2 is simple (see [13]) and has no
nondegenerate associative form according to Proposition 3.6. We propose to show that
the vector space V of skew derivations from Q to Q" decomposes as

V = @ Fy; @ Innp(Q, ),

where 1); defined in Proposition 3.2 is regarded as a skew derivation from Q to Q* for
1€ MUT.

Let 1) € V of degree . Then —27 <[ < 4. For —(7 — 1) <1 < 4, by corresponding
1) to the root space decomposition, we obtain ¢ = 0 or [ = 0 (modp). As 7 = 0 (modp),
we have ¢y =0 for l = -7+ 1,—7 4+ 2,—7 + 3, —7 + 4. Let 5—7<I<4 According to
Proposition 3.1, ¢ can be extended to a skew derivation ";ZJ Q— Q. By Lemma 3.4, it
follows that there are 91,92, -+,9s € Fand f € Q* such that

Z'ﬂwz —nEl f v zeQ

Put g := f |o. Then 9(2) = 30 9i(z) + (=1)/F192 . g for all = € Q™. Hence,
Y — X191 € Inn(Q, Q%) by virtue of Lemma 2.7.

For —27 <1 < —7. According to the proof above, we see that ) = 0 or [ = 0 (modp).
Then ¢p =0 for | = —7 — 1 # 0(modp). Thus —27 <1 < —7 —2 and | = —7. We first
consider the case —27 <[ < —7 — 2. Note that —(7 —1+1) > 3 and —(1 —1+41) #
0, —2 (modp). Then Lemmas 2.8 and 3.5 ensure that ¢ = 0. For the case | = —7, we
define a bilinear symmetric form ¢ : 2 x 2 — F given by

((a"y e, d'yeY) = o (aaly e,



It is easily seen that rad(¢) = {z € Q | C(z,9) =0, Vy € Q} = FL. Let w: Q — V,
V= Q/F1, be the canonical projection. We denote by p the bilinear form on V which
is induced by {. One may easily verify that the results of Theorems 3.3 and 3.7 in paper
[3] are also true for Lie superalgebras. It follows that there is a unique skew p-module
homomorphism D : V =V of degree —2 such that

Y(z)(y) = p(D(w(2)),@(y)), Vaz,yec,
where
P .= Q" @spang{ziz; |2 <4,j <r—1}@spang{z;§; |2<i<r—-1,r+1<j<s}
Gspang (€€ | 7+ 1< < j < s).

Clearly, the mapping D is uniquely determined by D(ww (2™~ 2£)). A direct computation

entails the existence of § € F with D(w (2™ 2¢{¥)) = faw(z™ “17°2£) by the degree of

D. As aresult, D(v) = 27'3-1-v forv € V, and ¢ = $1)s41. Consequently, the dimension

of the vector space of skew outer derivations of €2 is s + 1 and our assertion is true. [
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