Second Cohomology of the Modular Lie Superalgebra Ω^{\dagger}

Xiaoning Xu^{*} and Xiaojun Li^{\dagger}

Received 15:02:2013 : Accepted 19:07:2013

Abstract

We consider the finite-dimensional simple modular Lie superalgebra Ω which was defined by Zhang and Zhang (2009), over an algebraically closed fields of characteristic $p>3$. In this paper, we determine the second cohomology group of the modular Lie superalgebra Ω by computing the first cohomology group $H^{1}\left(\Omega, \Omega^{*}\right)$, where Ω^{*} denotes the dual space of Ω.

2000 AMS Classification: 17B50, 17B40.
Keywords: Modular Lie superalgebra, skew derivation, cohomology group.

1. Introduction

Many important results of modular Lie superalgebras have been obtained (see, for example, $[1,5,8])$. But the classification problem is still open for the finite-dimensional simple modular Lie superalgebras. Since cohomology theory is closely related to the structures of modular Lie algebras and play an important role in the classification of modular Lie algebras(see [2, 3, 4]), it is significant to study the cohomology groups of modular Lie superalgebras. The dimensions of the second cohomology groups of simple modular Lie algebras of Cartan type were computed in [2, 3, 4]. The second cohomology groups of simple modular Lie superalgebras of Cartan type W, S, H and K were determined in $[9,11]$. The second cohomologies of Lie Superalgebras $H O$ and $K O$ were studied in[6]. The second cohomologies of two classes of special odd modular Lie superalgebras were investigated in [7].

The finite-dimensional simple modular Lie superalgebra Ω was defined in [13]. Its derivation superalgebra and filtration structure were investigated in [12, 13]. The second cohomology group of modular Lie superalgebra Ω for $2 n+4-q \not \equiv 0(\bmod p)$, which possesses a nondegenerate associative form, can be easily obtained according to [9]. In

[^0]paper [9], it was also verified that if a modular Lie superalgebra L was simple and did not possess any nondegenerate associative form, then its second cohomology group $H^{2}(L, \mathbb{F})$ was isomorphic to the first cohomology group $H^{1}\left(L, L^{*}\right)$. Thus we shall determine the second cohomology group of the modular Lie superalgebra Ω for $2 n+4-q \equiv 0(\bmod p)$, which does not have a nondegenerate associative form, by computing $H^{1}\left(\Omega, \Omega^{*}\right)$.

2. Preliminaries

Let \mathbb{F} be an algebraically closed field of characteristic $p>3$ and not equal to its prime field Π. For $m>0$, let $E=\left\{z_{1}, \cdots, z_{m}\right\} \in \mathbb{F}$ be linearly independent over prime field Π and the additive subgroup H generated by E doesn't contain 1 . If $\lambda \in H$, then we let $\lambda=\sum_{i=1}^{m} \lambda_{i} z_{i}$ and $y^{\lambda}=y_{1}^{\lambda_{1}} \cdots y_{m}^{\lambda_{m}}$, where $0 \leq \lambda_{i}<p$. We use the notation \mathbb{N} for the set of positive integers and \mathbb{N}_{0} for the set of non-negative integers. Let $\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$ be the ring of integers modulo 2 .

Given $n \in \mathbb{N}$ and $r=2 n+2$, we put $M=\{1, \cdots, r-1\}$. Suppose that μ_{1}, \cdots, $\mu_{r-1} \in \mathbb{F}$ such that $\mu_{1}=0, \mu_{j}+\mu_{n+j}=1, j=2, \cdots, n+1$. Let $k_{i} \in \mathbb{N}_{0}$ for $i \in M$, then k_{i} can be uniquely expressed in p-adic form $k_{i}=\sum_{v=0}^{s_{i}} \varepsilon_{v}\left(k_{i}\right) p^{v}$, where $0 \leq \varepsilon_{v}\left(k_{i}\right)<p$. We define truncated polynomial algebra

$$
A=\mathbb{F}\left[x_{10}, x_{11}, \cdots, x_{1 s_{1}}, \cdots, x_{r-10}, x_{r-11}, \cdots, x_{r-1 s_{r-1}}, y_{1}, \cdots, y_{m}\right]
$$

such that

$$
x_{i j}^{p}=0, \forall i \in M, j=0,1, \cdots, s_{i} ; y_{i}^{p}=1, i=1, \cdots, m .
$$

Let $Q=\left\{\left(k_{1}, \cdots, k_{r-1}\right) \mid 0 \leq k_{i} \leq \pi_{i}, \pi_{i}=p^{s_{i}+1}-1, i \in M\right\}$. If $k=\left(k_{1}, \cdots, k_{r}\right) \in Q$, we write $x^{k}=x_{1}^{k_{1}} \cdots x_{r-1}^{k_{r-1}}$, where $x_{i}{ }^{k_{i}}=\prod_{v=0}^{s_{i}} x_{i v}^{\varepsilon_{v}\left(k_{i}\right)}$ for $i \in M$. For $0 \leq k_{i}, k_{i}^{\prime} \leq \pi_{i}$, it is easy to see that

$$
\begin{equation*}
x_{i}{ }^{k_{i}} x_{i}{ }^{k_{i}^{\prime}}=x_{i}{ }^{k_{i}+k_{i}^{\prime}} \neq 0 \Leftrightarrow \varepsilon_{v}\left(k_{i}\right)+\varepsilon_{v}\left(k_{i}^{\prime}\right)<p, v=0,1, \cdots, s_{i} . \tag{2.1}
\end{equation*}
$$

Let $\Lambda(q)$ be the Grassmann superalgebra over $\underset{\sim}{\mathbb{F}}$ in q variables $\xi_{r+1}, \cdots, \xi_{r+q}$ with $q \in \mathbb{N}$ and $q>1$. Denote the tensor product by $\widetilde{\Omega}:=A \otimes_{\mathbb{F}} \Lambda(q)$. Obviously, $\widetilde{\Omega}$ is an associative superalgebra with a \mathbb{Z}_{2}-gradation induced by the trivial \mathbb{Z}_{2}-gradation of A and the natural \mathbb{Z}_{2}-gradation of $\Lambda(q)$:

$$
\widetilde{\Omega}_{\overline{0}}=A \otimes_{\mathbb{F}} \Lambda(q)_{\bar{o}}, \quad \widetilde{\Omega}_{\overline{1}}=A \otimes_{\mathbb{F}} \Lambda(q)_{\overline{1}}
$$

For $f \in A$ and $g \in \Lambda(q)$, we abbreviate $f \otimes g$ to $f g$. For $k \in\{1, \cdots, q\}$, we set

$$
\mathbb{B}_{k}=\left\{\left\langle i_{1}, i_{2}, \cdots, i_{k}\right\rangle \mid r+1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r+q\right\}
$$

and $\mathbb{B}(q)=\bigcup_{k=0}^{q} \mathbb{B}_{k}$, where $\mathbb{B}_{0}=\varnothing$. If $u=\left\langle i_{1}, \cdots, i_{k}\right\rangle \in \mathbb{B}_{k}$, we let $|u|=k,\{u\}=$ $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\xi^{u}=\xi_{i_{1}} \cdots \xi_{i_{k}}$. Put $|\varnothing|=0$ and $\xi^{\varnothing}=1$. Then $\left\{x^{k} y^{\lambda} \xi^{u} \mid k \in Q, \lambda \in\right.$ $H, u \in \mathbb{B}(q)\}$ is an \mathbb{F}-basis of $\widetilde{\Omega}$.

If L is a Lie superalgebra, then $h(L)$ denotes the set of all \mathbb{Z}_{2}-homogeneous elements of L, i.e., $h(L)=L_{\overline{0}} \cup L_{\overline{1}}$. If $|x|$ appears in some expression in this paper, we always regard x as a \mathbb{Z}_{2}-homogeneous element and $|x|$ as its \mathbb{Z}_{2}-degree.

Set $s=r+q, T=\{r+1, \cdots, s\}$ and $R=M \cup T$. Put $M_{1}=\{2, \cdots, r-1\}$. Define $\tilde{i}=\overline{0}$, if $i \in M_{1}$, and $\tilde{i}=\overline{1}$, if $i \in T$. Let

$$
i^{\prime}=\left\{\begin{array}{ll}
i+n, & 2 \leq i \leq n+1, \\
i-n, & n+2 \leq i \leq r-1, \\
i, & r+1 \leq i \leq s,
\end{array} \quad[i]=\left\{\begin{aligned}
1, & 2 \leq i \leq n+1 \\
-1, & n+2 \leq i \leq r-1 \\
1, & r+1 \leq i \leq s
\end{aligned}\right.\right.
$$

For $e_{i}=\left(\delta_{i 0}, \cdots, \delta_{i r}\right), i \in M$, we abbreviate $x^{e_{i}}$ to x_{i}. Let $D_{i}, i \in R$, be the linear transformation of $\widetilde{\Omega}$ such that

$$
D_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)= \begin{cases}k_{i}^{*} x^{k-e_{i}} y^{\lambda} \xi^{u}, & i \in M \\ x^{k} y^{\lambda} \cdot \partial \xi^{u} / \partial \xi_{i}, & i \in T\end{cases}
$$

where k_{i}^{*} is the first nonzero number of $\varepsilon_{0}\left(k_{i}\right), \varepsilon_{1}\left(k_{i}\right), \cdots, \varepsilon_{s_{i}}\left(k_{i}\right)$. Then $D_{i} \in \operatorname{Der} \widetilde{\Omega}$. Set

$$
\bar{\partial}=I-\sum_{j \in M_{1}} \mu_{j} x_{j 0} \frac{\partial}{\partial x_{j 0}}-\sum_{j=1}^{m} z_{j} y_{j} \frac{\partial}{\partial y_{j}}-2^{-1} \sum_{j \in T} \xi_{j} \frac{\partial}{\partial \xi_{j}},
$$

where I is the identity mapping of $\widetilde{\Omega}$. For $f \in h(\widetilde{\Omega})$ and $g \in \widetilde{\Omega}$, we define a bilinear operation [,] in $\widetilde{\Omega}$ such that

$$
\begin{equation*}
[f, g]=D_{1}(f) \bar{\partial}(g)-\bar{\partial}(f) D_{1}(g)+\sum_{i \in M_{1} \cup T}[i](-1)^{\tilde{i}|f|} D_{i}(f) D_{i^{\prime}}(g) . \tag{2.2}
\end{equation*}
$$

Then $\widetilde{\Omega}$ becomes a Lie superalgebra for the operation [,] defined above.
Define $\Omega:=[\widetilde{\Omega}, \widetilde{\Omega}]$. It can be proved that $\Omega=\operatorname{span}_{\mathbb{F}}\left\{x^{k} y^{\lambda} \xi^{u} \mid(k, \lambda, u) \neq(\pi, 0, \omega)\right\}$ for $2 n+4-q \equiv 0(\bmod p), \pi=\left(\pi_{1}, \cdots, \pi_{r-1}\right)$ and $\omega=\langle r+1, \cdots, s\rangle$, and Ω is a simple Lie superalgebra. In the sequel, we always assume that $2 n+4-q \equiv 0(\bmod p)$.

Now we give a \mathbb{Z}-gradation of $\Omega: \Omega=\oplus_{j \in X} \Omega_{j}$, where

$$
\begin{equation*}
\Omega_{j}=\operatorname{span}_{\mathbb{F}}\left\{x^{k} y^{\lambda} \xi^{u}\left|\sum_{i \in M_{1}} k_{i}+2 k_{1}+|u|-2=j\right\}\right. \tag{2.3}
\end{equation*}
$$

and $X=\{-2,-1, \cdots, \tau\}, \tau=\sum_{i \in M_{1}} \pi_{i}+2 \pi_{1}+q-2$. If $f \in \Omega_{j}$, then f is called a \mathbb{Z}-homogeneous element and j is the \mathbb{Z}-degree of f which is denoted by $\operatorname{zd}(f)$.

Assume that $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a finite-dimensional modular Lie superalgebra and L possesses a \mathbb{Z}-gradation $L=\oplus_{i=-\varsigma}^{\delta} L_{i}$. Then $L^{*}:=\operatorname{Hom}_{\mathbb{F}}(L, \mathbb{F})=\oplus_{i=-\delta}^{\varsigma}\left(L^{*}\right)_{i}$ is a \mathbb{Z} gradation L-module by virtue of $(x \cdot f)(y)=-(-1)^{|x||f|} f([x, y])$ for $x, y \in L, f \in L^{*}$.

Let $\bar{H} \subset L_{0} \cap L_{\overline{0}}$ be a nilpotent subalgebra of $L_{\overline{0}}$. Let

$$
L=\oplus_{\alpha \in \Delta} L_{(\alpha)} \text { and } L^{*}=\oplus_{\beta \in \Theta}\left(L^{*}\right)_{(\beta)}
$$

be the weight space decompositions of L and L^{*} with respect to \bar{H}, respectively. Since $\bar{H} \subset L_{0} \cap L_{\overline{0}}$, there exist subsets $\Delta_{i} \subset \Delta$ and $\Theta_{j} \subset \Theta$ such that

$$
L_{i}=\oplus_{\alpha \in \Delta_{i}} L_{i} \cap L_{(\alpha)} \text { and }\left(L^{*}\right)_{j}=\oplus_{\beta \in \Theta_{j}}\left(L^{*}\right)_{j} \cap\left(L^{*}\right)_{(\beta)} .
$$

Thus L has a structure of $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$-gradation, where $\operatorname{Map}(\bar{H}, \mathbb{F})$ is the group consisting of the mappings from \bar{H} into \mathbb{F}. The L-module L^{*} is $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$-graded by

$$
\left(L^{*}\right)_{(i, \alpha)}=\left\{f \in L^{*} \mid f\left(L_{j} \cap L_{(\beta)}\right)=0,(j, \beta) \neq-(i, \alpha)\right\} .
$$

Then we have $\left(L^{*}\right)_{(i, \alpha)}=\left(L^{*}\right)_{i} \cap\left(L^{*}\right)_{(\alpha)}$.
By equation (2.2), $\bar{H}:=\mathbb{F} x_{1}$ is an Abelian subalgebra of Ω. Furthermore, \bar{H} is an Abelian subalgebra of $\Omega_{0} \cap \Omega_{\overline{0}}$ with the weight space decomposition $\Omega=\oplus_{\alpha \in \Delta} \Omega_{(\alpha)}$. It is easy to see that $\Delta_{i} \cap \Delta_{j} \neq \emptyset$ if and only if $i \equiv j(\bmod p)$.
2.1. Lemma. [11] Let $L^{*}=\oplus_{\beta \in \Theta}\left(L^{*}\right)_{(\beta)}$ be the weight space decomposition relative to \bar{H}. Then the following statements hold:
(1) $\Theta=-\Delta$ and there is an isomorphism $\left(L^{*}\right)_{(\beta)} \cong\left(L_{(-\beta)}\right)^{*}$ of \bar{H}-modules for all $\beta \in \Theta$.
(2) $\Theta_{i}=-\Delta_{-i}$ for $-\delta \leq i \leq \varsigma$.
2.2. Definition. A linear mapping $\psi: L \rightarrow L^{*}$ is called a derivation if

$$
\psi([x, y])=(-1)^{|\psi||x|} x \cdot \psi(y)-(-1)^{|\psi(x)||y|} y \cdot \psi(x) \text { for all } x, y \in L
$$

Let $\operatorname{Der}_{\mathbb{F}}\left(L, L^{*}\right)$ denote the space of derivations from L into L^{*} and $\operatorname{Inn}_{\mathbb{F}}\left(L, L^{*}\right)$ be the subspace of inner derivations. Recall that a derivation ψ from L into L^{*} is called inner if there is some $f \in L$ such that

$$
\psi(x)=-(-1)^{|f||x|} x \cdot f \text { for all } x \in L
$$

$\operatorname{Der}_{\mathbb{F}}\left(L, L^{*}\right)$ inherits the $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$-gradation from L and L^{*}. A derivation $\psi \in$ $\operatorname{Der}_{\mathbb{F}}\left(L, L^{*}\right)$ is referred to as homogeneous of degree $\left(i_{0}, \alpha_{0}\right)$ provided that

$$
\psi\left(L_{i} \cap L_{(\alpha)}\right) \subset\left(L^{*}\right)_{i+i_{0}} \cap\left(L^{*}\right)_{\left(\alpha+\alpha_{0}\right)} \text { for all }(i, \alpha) \in \mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F})
$$

Let $\left\{f_{1}, \cdots, f_{m}\right\}$ be an \mathbb{F}-basis of $L_{\overline{0}}$ and $\left\{g_{1}, \cdots, g_{n}\right\}$ be an \mathbb{F}-basis of $L_{\overline{1}}$. Let $U(L)$ denote the universal enveloping algebra of L and $L^{-}=\sum_{i=-\varsigma}^{-1} L_{i}$. As the $U(L)$-module structure of L is induced by the L-module structure of L, we see that

$$
\begin{equation*}
\left(f_{1}^{s_{1}} \cdots f_{m}^{s_{m}} g_{i_{1}} \cdots g_{i_{t}}\right) \cdot z=\left(\operatorname{ad} f_{1}\right)^{s_{1}} \cdots\left(\operatorname{ad} f_{m}\right)^{s_{m}} \operatorname{ad} g_{i_{1}} \cdots \operatorname{ad} g_{i_{t}}(z) \tag{2.4}
\end{equation*}
$$

where $\left\{f_{1}^{s_{1}} \cdots f_{m}^{s_{m}} g_{i_{1}} \cdots g_{i_{t}} \mid s_{i} \geq 0, i=1, \cdots, m ; 1 \leq i_{1} \leq \cdots \leq i_{t} \leq n\right\}$ is an \mathbb{F}-basis of $U(L)$.
2.3. Lemma. [11] Suppose that $L=U\left(L^{-}\right) \cdot L_{\delta}$ and $\psi: L \rightarrow L^{*}$ is a homogeneous linear mapping of degree $l>2 \varsigma-\delta$. Assume that L^{-}is generated by a subset J of L. If

$$
\psi([x, y])=(-1)^{|\psi||x|} x \cdot \psi(y)-(-1)^{|\psi(x)||y|} y \cdot \psi(x) \quad \text { for all } x \in J \text { and } y \in L
$$

then ψ is a derivation.
2.4. Definition. A derivation $\psi: L \rightarrow L^{*}$ is said to be skew if

$$
\psi(x)(y)=-(-1)^{|x||y|} \psi(y)(x) \text { for all } x, y \in L
$$

Let $U(L)^{+}$denote the two-sided ideal generated by L. Clearly, for every derivation $\psi: L \rightarrow L^{*}$, there exists a homomorphism $\varphi: U(L)^{+} \rightarrow L^{*}$ of $U(L)$-modules such that $\varphi(x)=\psi(x)$ for all $x \in L$.
2.5. Lemma. [11] Let $\psi: L \rightarrow L^{*}$ be a derivation. Assume $e \in L$ such that $(\operatorname{ad} e)^{p^{t}}=0$ for $t \in \mathbb{N}$. Then $e^{p^{t}-1} \cdot \psi(e) \in\left(L^{*}\right)^{L}$, where

$$
\left(L^{*}\right)^{L}=\left\{f \in L^{*} \mid L \cdot f=0\right\}=\left\{f \in L^{*} \mid f([L, L])=0\right\}
$$

2.6. Lemma. [11] Let $V \subset L$ be a \mathbb{Z}_{2}-graded subspace such that

$$
L=U\left(L^{-}\right)^{+} \cdot V \oplus V
$$

Let $W \subset \mathbb{N}_{0}^{n}$ and $\left\{e_{1}, e_{2}, \cdots \cdot, e_{n}\right\}$ be a basis of L^{-}such that
(a) $\operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)=\operatorname{span}_{\mathbb{F}}\left\{e^{b} \mid b \notin W\right\}$, where $b=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ and $e^{b}:=e_{1}^{b_{1}} e_{2}^{b_{2}} \cdots e_{n}^{b_{n}}$, and $\operatorname{ann}_{U\left(L^{-}\right)^{+}}:=\left\{u \in U\left(L^{-}\right)^{+} \mid u \cdot L=0\right\}$;
(b) there is a basis $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ of V such that $\left\{e^{a} \cdot v_{j} \mid a \in W, 1 \leq j \leq m\right\}$ is a basis of L over \mathbb{F}.
Then the following statements hold:
(1) If $\mu_{i}=p^{k_{i}}-1$ for $1 \leq i \leq n$ and $L=[L, L]$, then the canonical mapping Φ_{1} : $H^{1}\left(L, L^{*}\right) \rightarrow H^{1}\left(L^{-}, L^{*}\right)$ is trivial.
(2) If $\psi: L \rightarrow L^{*}$ is a derivation satisfying $\operatorname{ker}\left(\operatorname{ad} e_{i}\right) \subset \operatorname{ker} \psi\left(e_{i}\right)$ for $1 \leq i \leq n$, then ψ defines an element of $\operatorname{ker} \Phi_{1}$.
(3) If there is a $\mu \in \mathbb{N}_{0}^{n}$ such that $W=\left\{b \in \mathbb{N}_{0}^{n} \mid b \leq \mu\right\}$, then $\operatorname{ker}\left(\operatorname{ade} e_{i}\right) \subset \operatorname{ker} \psi\left(e_{i}\right)$ if and only if $e_{i}^{\mu_{i}} \cdot \psi\left(e_{i}\right)=0$.
2.7. Lemma. [11] Suppose $L=\oplus_{i=-\varsigma}^{\delta} L_{i}$. Let $\psi: L \longrightarrow L^{*}$ be a homogeneous derivation of degree l.
(1) If $l>\varsigma-\delta$ and ψ defines an element of $\operatorname{ker} \Phi_{1}$, then ψ is an inner derivation.
(2) If $l=\varsigma-\delta, \psi$ is skew and defines an element of $\operatorname{ker} \Phi_{1}$, then ψ is an inner derivation.
2.8. Lemma. [11] Suppose $L=\oplus_{i=-\varsigma}^{\delta} L_{i}$. Let $\psi: L \longrightarrow L^{*}$ be a homogeneous derivation of degree l with $-2 \delta \leq l \leq-\delta-1$. If $-\Delta_{\delta} \not \subset \phi_{-(\delta+l)}$, then $\psi=0$, where $\phi_{d} \subset \Delta_{d}$ for $d>1$.

3. Second cohomology group $H^{2}(\Omega, \mathbb{F})$

3.1. Proposition. Suppose that $\psi: \Omega \rightarrow \Omega^{*}$ is a skew derivation of degree $l \geq 5-\tau$. Then there exists a homogeneous skew derivation $\widetilde{\psi}: \widetilde{\Omega} \rightarrow \widetilde{\Omega}^{*}$ of degree l which extends ψ.

Proof. We define a linear mapping $\widetilde{\psi}: \widetilde{\Omega} \rightarrow \widetilde{\Omega}^{*}$ such that

$$
\widetilde{\psi}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right):= \begin{cases}\psi\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right) & x^{k} y^{\lambda} \xi^{u}, x^{l} y^{\eta} \xi^{v} \in \Omega \\ 0 & \text { other cases }\end{cases}
$$

As $\widetilde{\Omega}=\Omega \oplus \mathbb{F} x^{\pi} \xi^{\omega}, \widetilde{\psi}$ is a skew linear mapping of degree l. Then we will show that

$$
\begin{equation*}
\widetilde{\psi}([f, g])=(-1)^{|\widetilde{\psi}||f|} f \cdot \widetilde{\psi}(g)-(-1)^{|\widetilde{\psi}(f)||g|} g \cdot \widetilde{\psi}(f), \quad \forall f, g \in \widetilde{\Omega} . \tag{3.1}
\end{equation*}
$$

We shall prove it in two cases:
(i) Consider the case $f, g \in \Omega$. We need only to prove that

$$
\begin{equation*}
\widetilde{\psi}([f, g])\left(x^{\pi} \xi^{\omega}\right)=(-1)^{|\widetilde{\psi}||f|}(f \cdot \widetilde{\psi}(g))\left(x^{\pi} \xi^{\omega}\right)-(-1)^{|\widetilde{\psi}(f)||g|}(g \cdot \widetilde{\psi}(f))\left(x^{\pi} \xi^{\omega}\right) \tag{3.2}
\end{equation*}
$$

By virtue of the definition of $\widetilde{\psi}$, the left-hand side of the equation (3.2) equals 0 . Setting $f \in \Omega_{i}$ and $g \in \Omega_{j}$, we see that the right-hand side of (3.1) is contained in $\left(\widetilde{\Omega}^{*}\right)_{i+j+l}$. Thereby, the right-hand side of (3.2) coincides with 0 unless $i+j+l=-\tau$, which implies that $-\tau=i+j+l \geq i+j+5-\tau \geq 1-\tau$ for $i, j \geq-2$, a contradiction.
(ii) Consider the case $f=x^{\pi} \xi^{\omega}$. By $\widetilde{\Omega}=\oplus_{i=-2}^{\tau} \widetilde{\Omega}_{i}$ and $\Omega=[\widetilde{\Omega}, \widetilde{\Omega}]$, we have $\left[x^{\pi} \xi^{\omega}, \widetilde{\Omega}\right] \subset$ $\Omega_{\tau} \oplus \Omega_{\tau-1} \oplus \Omega_{\tau-2}$. Note that $\operatorname{zd}\left(\widetilde{\psi}\left(\left[x^{\pi} \xi^{\omega}, \widetilde{\Omega}\right]\right)\right) \geq l+\tau-2 \geq(5-\tau)+\tau-2=3$ and $\widetilde{\psi}\left(\left[x^{\pi} \xi^{\omega}, \widetilde{\Omega}\right]\right) \subseteq \widetilde{\Omega}^{*}=\oplus_{i=-\tau}^{2}\left(\widetilde{\Omega}^{*}\right)_{i}$. Then we obtain $\widetilde{\psi}\left(\left[x^{\pi} \xi^{\omega}, g\right]\right) \in{\underset{\sim}{\sim}}_{i \geq 3}\left(\widetilde{\Omega}^{*}\right)_{i}=0$ for $g \in \widetilde{\psi}$. It is easy to see that $x^{\pi} \xi^{\omega} \cdot \widetilde{\psi}(g) \subseteq \widetilde{\Omega}^{*}$ and $g \cdot \widetilde{\psi}\left(x^{\pi} \xi^{\omega}\right) \subseteq \widetilde{\Omega}^{*}$. Thus we have $g \cdot \widetilde{\psi}\left(x^{\pi} \xi^{\omega}\right)\left(x^{k} y^{\lambda} \xi^{u}\right)=\alpha \widetilde{\psi}\left(x^{\pi} \xi^{\omega}\right)\left(\left[g, x^{k} y^{\lambda} \xi^{u}\right]\right)=0$ for all $x^{k} y^{\lambda} \xi^{u} \in \widetilde{\widetilde{\Omega}}$, where $\alpha= \pm 1$ and $x^{\pi} \xi^{\omega} \cdot \widetilde{\psi}(g) \in \sum_{i \geq 3}\left(\widetilde{\Omega}^{*}\right)_{i}=0$. The proof is complete.

For $i \in M$, we define a linear mapping $\sigma_{i}: \widetilde{\Omega} \rightarrow \mathbb{F}$ by

$$
\sum_{k \leq \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^{k} y^{\lambda} \xi^{u} \rightarrow \gamma\left(\pi-\pi_{i^{\prime}} e_{i^{\prime}}, 0, \omega\right)
$$

where $1^{\prime}=1$.
For $i \in T$, we define a linear mapping $\sigma_{i}: \widetilde{\Omega} \rightarrow \mathbb{F}$ by

$$
\sum_{k \leq \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^{k} y^{\lambda} \xi^{u} \rightarrow \gamma\left(\pi-\pi_{1} e_{1}, 0, \omega \backslash\{i\}\right) .
$$

We define a linear mapping $\sigma_{\tau}: \widetilde{\Omega} \rightarrow \mathbb{F}$ by

$$
\sum_{k \leq \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^{k} y^{\lambda} \xi^{u} \rightarrow \gamma(\pi, 0, \omega) .
$$

3.2. Proposition. The following statements hold.
(1) The mapping $\psi_{i}: \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^{*}$ given by $\psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)=\sigma_{i}\left(k_{i}^{*} x^{k-e_{i}} y^{\lambda} \xi^{u} x^{l} y^{\eta} \xi^{v}\right)$ is a skew derivation of degree derivation $l=p^{s_{i^{\prime}}+1}-\tau$ for $i \in M_{1}$.
(2) The mapping $\psi_{i}: \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^{*}$ given by $\psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)=\sigma_{i}\left(\bar{\partial}\left(x^{k} y^{\lambda} \xi^{u}\right) \partial_{i}\left(x^{k} y^{\lambda} \xi^{u} x^{l} y^{\eta} \xi^{v}\right)\right)$ is a skew derivation of degree derivation $l=2 p^{s_{1}+1}-\tau$ for $i \in T$.
(3) The mapping $\psi_{1}: \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^{*}$ given by $\psi_{1}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)=\sigma_{1}\left(\bar{\partial}\left(x^{k} y^{\lambda} \xi^{u}\right) x^{k} y^{\lambda} \xi^{u} x^{l} y^{\eta} \xi^{v}\right)$
is a skew derivation of degree derivation $l=2 p^{s_{1}+1}-\tau$.
(4) The mapping $\psi_{s+1}: \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^{*}$ given by $\psi_{s+1}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)=\sigma_{\tau}\left(k_{1}^{*} x^{k-e_{1}} y^{\lambda} \xi^{u} x^{l} y^{\eta} \xi^{v}\right)$ is a skew derivation of degree derivation $l=-\tau$.

Proof. Noting that $\widetilde{\Omega}^{-}$is generated by $\widetilde{\Omega}_{-1}=\sum_{i=2}^{r-1} \mathbb{F} x_{i} y^{\theta}+\sum_{i=r+1}^{s} \mathbb{F} y^{\theta} \xi_{i}$ and $p^{s_{i^{\prime}+1}}>4$, by Lemma 2.3, it is sufficient to show that for $i \in M \cup T$ and $j \in M_{1} \cup T$, the equalities below hold:

$$
\begin{aligned}
& \psi_{i}\left(\left[x_{j} y^{\theta}, x^{k} y^{\lambda} \xi^{u}\right]\right)\left(x^{l} y^{\eta} \xi^{v}\right) \\
& \neq 3(3) 1)^{\left|\psi_{i}\right|\left|x_{j}\right|}\left(x_{j} y^{\theta} \cdot \psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\right)\left(x^{l} y^{\eta} \xi^{v}\right)-(-1)^{\left|\xi^{u}\right|\left|\psi_{i}\left(x_{j} y^{\theta}\right)\right|}\left(x^{k} y^{\lambda} \xi^{u} \cdot \psi_{i}\left(x_{j} y^{\theta}\right)\right)\left(x^{l} y^{\eta} \xi^{v}\right) \\
& \psi_{i}\left(\left[\xi_{j} y^{\theta}, x^{k} y^{\lambda} \xi^{u}\right]\right)\left(x^{l} y^{\eta} \xi^{v}\right) \\
& (\text { (४. (4)-1) })^{\left|\psi_{i}\right|\left|\xi_{j}\right|}\left(\xi_{j} y^{\theta} \cdot \psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\right)\left(x^{l} y^{\eta} \xi^{v}\right)-(-1)^{\left|\xi^{u}\right|\left|\psi_{i}\left(\xi_{j} y^{\theta}\right)\right|}\left(x^{k} y^{\lambda} \xi^{u} \cdot \psi_{i}\left(\xi_{j} y^{\theta}\right)\right)\left(x^{l} y^{\eta} \xi^{v}\right)
\end{aligned}
$$

In case (1)-(3), we only prove (3.3), and (3.4) is treated similarly.
(1) The linear mapping ψ_{i} is said to be skew if

$$
\psi_{i}\left(x^{k} y^{\lambda}(\xi(3))(x)^{l} y^{\eta} \xi^{v}\right)=-(-1)^{|u||v|} \psi_{i}\left(x^{l} y^{\eta} \xi^{v}\right)\left(x^{k} y^{\lambda} \xi^{u}\right), \forall x^{k} y^{\lambda} \xi^{u}, x^{l} y^{\eta} \xi^{v} \in \widetilde{\Omega}, 2 \leq i \leq r-1
$$

By computing directly, we see that the left-hand side of (3.5) equals $\sigma_{i}\left(k_{i}^{*} x^{k-e_{i}} x^{l} y^{\lambda+\eta} \xi^{u} \xi^{v}\right)$ and the right-hand side of (3.5) coincides with $-\sigma_{i}\left(l_{i}^{*} x^{k} x^{l-e_{i}} y^{\lambda+\eta} \xi^{u} \xi^{v}\right)$. If $k+l-e_{i}=$ $\pi-\pi_{i^{\prime}} e_{i^{\prime}}$, then $k_{i}+l_{i}-1=\pi_{i} \equiv-1(\bmod p)$; that is, $k_{i}^{*}+l_{i}^{*} \equiv 0(\bmod p)$ for all $i \in M_{1}$. Hence both sides of (3.5) equal k_{i}^{*}. Otherwise, both sides coincide with 0 . Therefore, the mapping ψ_{i} is skew, as desired. Moreover, the linear mapping ψ_{i} is of degree $l=p^{s_{i}{ }^{\prime}+1}-\tau$ by a direct computation. For $j \in M_{1}$, the left-hand side of (3.3) coincides with

$$
\left.\psi_{i}\left(-k_{1}^{*}\left(1-\mu_{j}-\theta\right)\right) x_{j} x^{k-e_{1}} y^{\lambda+\theta} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)+\psi_{i}\left([j] k_{j^{\prime}}^{*} x^{k-e_{j^{\prime}}} y^{\lambda+\theta} \xi^{u}\right)\left(x^{l} y^{\eta} \xi^{v}\right)
$$

while the right-hand side of (3.3) equals

$$
-\psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\left(-l_{1}^{*}\left(1-\mu_{j}-\theta\right) x_{j} x^{l-e_{1}} y^{\lambda+\theta} \xi^{v}\right)-\psi_{i}\left(x^{k} y^{\lambda} \xi^{u}\right)\left([j] l_{j^{\prime}}^{*} x^{l-e_{j^{\prime}}} y^{\eta+\theta} \xi^{v}\right)+\psi_{i}\left(x_{j} y^{\theta}\right)\left(\left[x^{k} y^{\lambda} \xi^{u}, x^{l} y^{\eta} \xi^{v}\right]\right) .
$$

We distinguish two cases:
Case 1. $i \neq j$.
1.1. $k+l-e_{i}-e_{j^{\prime}}=\pi-\pi_{i^{\prime}} e_{i^{\prime}}, \xi^{u} \xi^{v}=\xi^{\omega}$ and $\lambda+\eta+\theta=0$.
1.2. $k+l+e_{j}-e_{i}-e_{1}=\pi-\pi_{i^{\prime}} e_{i^{\prime}}, \xi^{u} \xi^{v}=\xi^{\omega}$ and $\lambda+\eta+\theta=0$.

Case 2. $i=j$.
2.1. $k+l-e_{i}-e_{i^{\prime}}=\pi-\pi_{i^{\prime}} e_{i^{\prime}}, \xi^{u} \xi^{v}=\xi^{\omega}$ and $\lambda+\eta+\theta=0$.
2.2. $k+l-e_{1}=\pi-\pi_{i^{\prime}} e_{i^{\prime}}, \xi^{u} \xi^{v}=\xi^{\omega}$ and $\lambda+\eta+\theta=0$.

Firstly, we deal with the case 1.1. We see that the left-hand side of (3.3) equals $-[j] k_{j^{*}}^{*} l_{i}^{*}$, while the right-hand side of (3.3) coincides with $-[j] k_{i}^{*} l_{j^{\prime}}^{*}$. As $k+l-e_{i}-e_{j^{\prime}}=$ $\pi-\pi_{i^{\prime}} e_{i^{\prime}}$, we get $k_{i}+l_{i}-1=\pi_{i} \equiv-1(\bmod p)$ and $k_{j^{\prime}}+l_{j^{\prime}}-1=\pi_{j^{\prime}} \equiv-1(\bmod p)$, i.e., $k_{i}^{*}+l_{i}^{*} \equiv 0(\bmod p)$ and $k_{j^{\prime}}+l_{j^{\prime}} \equiv 0(\bmod p)$. Thus $-[j] k_{j^{*}}^{*} l_{i}^{*}=-[j] k_{i}^{*} l_{j^{\prime}}^{*}$ and the equality (3.3) holds.

For the case 1.2 , we know that the left-hand side of (3.3) coincides with $k_{1}^{*} l_{i}^{*}\left(1-\mu_{j}-\theta\right)$. But the right-hand side of (3.3) equals $l_{1}^{*} k_{i}^{*}\left(1-\mu_{j}-\theta\right)$. By the assumptions, we also have $k_{i}^{*}+l_{i}^{*} \equiv 0(\bmod p)$ and $k_{1}^{*}+l_{1}^{*} \equiv 0(\bmod p)$. Consequently, the right-hand side of (3.3) coincides with $k_{1}^{*} l_{i}^{*}\left(1-\mu_{j}-\theta\right)$, as desired.

The proof of the case 2.1 is similar to the case 1.2 .
For the case 2.2 , it is easy to see that the left-hand side of the equation (3.3) coincides with $\left(1-\mu_{j}-\theta\right) k_{1}^{*} l_{i}^{*}$. And the right-hand side equals $\left(1-\mu_{j}-\theta\right) k_{i}^{*} l_{1}^{*}+\left(1-\sum_{i \in M_{1}} \mu_{i} l_{i}-\right.$ $\left.\eta-2^{-1}|v|\right) k_{1}^{*}-\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) l_{1}^{*}$. By means of our assumptions, we have $k_{1}^{*}+l_{1}^{*} \equiv 0(\bmod p), k_{i}+l_{i} \equiv-1(\bmod p)$ and $k_{i^{\prime}}+l_{i^{\prime}}=0$. Hence, the right-hand side of the equation (3.3) equals $l_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(k_{i}^{*}+1\right)=\left(1-\mu_{j}-\theta\right) k_{1}^{*} l_{i}^{*}$, as desired.
(2) In analogy with (1), it is easily seen that the mapping ψ_{i} is skew and of degree $2 p^{s_{1}+1}-\tau$. For $j \in M_{1}$, the left-hand side of (3.3) equals

$$
\begin{aligned}
& \quad \sigma_{i}\left(-k_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\mu_{j}-(\lambda+\theta)-2^{-1}|u|\right) x_{j} x^{k-e_{1}} x^{l} y^{\lambda+\theta+\eta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& \left(3.6++\sigma_{i}\left([j] k_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}+\mu_{j^{\prime}}-(\lambda+\theta)-2^{-1}|u|\right) x^{k-e_{j^{\prime}}} x^{l} y^{\lambda+\eta+\theta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right),\right.
\end{aligned}
$$

while the right-hand side coincides with

$$
\begin{align*}
& \sigma_{i}\left(l_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) x_{j} x^{k} x^{l-e_{1}} y^{\lambda+\theta+\eta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& -\sigma_{i}\left([j] l_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) x^{k} x^{l-e_{j^{\prime}}} y^{\lambda+\theta+\eta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& +\sigma_{i}\left(k_{1}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} l_{i}-\eta-2^{-1}|v|\right)\left(1-\mu_{j}-\theta\right) x_{j} x^{k-e_{1}} x^{l} y^{\lambda+\eta+\theta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& -\sigma_{i}\left(l_{1}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right)\left(1-\mu_{j}-\theta\right) x_{j} x^{k} x^{l-e_{1}} y^{\lambda+\eta+\theta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& +\sigma_{i}\left(\sum_{i \in M_{1}}[i] k_{i}^{*} l_{i^{\prime}}^{*}\left(1-\mu_{j}-\theta\right) x_{j} x^{k-e_{i}} x^{l-e_{i^{\prime}}} y^{\lambda+\eta+\theta} \partial_{i}\left(\xi^{u} \xi^{v}\right)\right) \\
& +\sigma_{i}\left(\sum_{i \in T}(-1)^{\left|\xi^{u}\right|}\left(1-\mu_{j}-\theta\right) x_{j} x^{k} x^{l} y^{\lambda+\eta+\theta} \partial_{i}\left(D_{i}\left(\xi^{u}\right) D_{i^{\prime}}\left(\xi^{v}\right)\right)\right) . \tag{3.7}
\end{align*}
$$

We consider the following cases:
Case 1. $k+l+e_{j}-e_{1}=\pi-\pi_{1} e_{1}, \lambda+\eta+\theta=0$ and $\partial_{i}\left(\xi^{u} \xi^{v}\right)=\xi^{\omega-\langle i\rangle}$.
Case 2. $k+l-e_{j^{\prime}}=\pi-\pi_{1} e_{1}, \lambda+\eta+\theta=0$ and $\partial_{i}\left(\xi^{u} \xi^{v}\right)=\xi^{\omega-\langle i\rangle}$.
Now we only prove the Case 2 . Then the equation (3.6) equals $[j] k_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\right.$ $\left.(\lambda+\theta)+\mu_{j^{\prime}}-2^{-1}|u|\right)$, while the equation (3.7) coincides with
$\left(3.8[j] l_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right)+[j]\left(1-\mu_{j}-\theta\right) k_{j}^{*} l_{j^{\prime}}^{*}+\left[j^{\prime}\right]\left(1-\mu_{j}-\theta\right) k_{j^{\prime}}^{*} l_{j}^{*}\right.$.

As $k+l-e_{j^{\prime}}=\pi-\pi_{1} e_{1}, k_{j^{\prime}}+l_{j^{\prime}}-1=\pi_{j^{\prime}} \equiv-1(\bmod p)$. Hence the equation (3.8) coincides with $[j] k_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-(\lambda+\theta)+\mu_{j^{\prime}}-2^{-1}|u|\right)$ and (3.3) is valid.
(3) The linear mapping ψ_{1} is clearly skew and of degree $2 p^{s_{1}+1}-\tau$. For the left-hand side of (3.3), we obtain

$$
\begin{align*}
& \sigma_{1}\left(-k_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-(\lambda+\theta)-2^{-1}|u|\right) x_{j} x^{k-e_{1}} x^{l} y^{\lambda+\theta+\eta} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left([j] k_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}+\mu_{j^{\prime}}-(\lambda+\theta)-2^{-1}|u|\right) x^{k-e_{j^{\prime}}} x^{l} y^{\lambda+\theta+\eta} \xi^{u} \xi^{v}\right) \tag{3.9}
\end{align*}
$$

and the right-hand side coincides with

$$
\begin{align*}
& \sigma_{1}\left(l_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) x^{k} x_{j} x^{l-e_{1}} y^{\lambda+\theta+\eta} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left(-[j] l_{j^{\prime}}^{*}\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) x^{k} x^{l-e_{j^{\prime}}} y^{\eta+\theta+\lambda} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left(k_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} l_{i}-\eta-2^{-1}|v|\right) x_{j} x^{k-e_{1}} x^{l} y^{\lambda+\eta+\theta} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left(-l_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-\lambda-2^{-1}|u|\right) x_{j} x^{k} x^{l-e_{1}} y^{\lambda+\eta+\theta} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left(\left(1-\mu_{j}-\theta\right) \sum_{i \in M_{1}}[i] k_{i}^{*} l_{i^{\prime}}^{*} x_{j} x^{k-e_{i}} x^{l-e_{i^{\prime}}} y^{\lambda+\eta+\theta} \xi^{u} \xi^{v}\right) \\
& +\sigma_{1}\left(\left(1-\mu_{j}-\theta\right) \sum_{i \in T}(-1)^{\left|\xi^{u}\right|} x_{j} x^{k} x^{l} y^{\lambda+\eta+\theta} D_{i}\left(\xi^{u}\right) D_{i^{\prime}}\left(\xi^{v}\right)\right) . \tag{3.10}
\end{align*}
$$

We treat two cases separately:
(a) $k+l-e_{1}+e_{j}=\pi-\pi_{1} e_{1}, \lambda+\eta+\theta=0$ and $\xi^{u} \xi^{v}=\xi^{\omega}$.
(b) $k+l-e_{j^{\prime}}=\pi-\pi_{1} e_{1}, \lambda+\eta+\theta=0$ and $\xi^{u} \xi^{v}=\xi^{\omega}$.

Now we only prove the case (a). By a direct computation, we see that the equation (3.9) coincides with

$$
\begin{equation*}
-k_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-(\lambda+\theta)-2^{-1}|u|\right) . \tag{3.11}
\end{equation*}
$$

and the equation (3.10) equals

$$
\begin{equation*}
k_{1}^{*}\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} l_{i}-\eta-2^{-1}|v|\right) . \tag{3.12}
\end{equation*}
$$

Note that $k_{i}+l_{i}=\pi_{i} \equiv-1(\bmod p), k_{j}+l_{j}+1=\pi_{j} \equiv-1(\bmod p)$ and $k_{1}+l_{1}-$ $1=0$. Then we may assume $k_{1}=1$ and $l_{1}=0$, which implies that (3.11) equals $-\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} k_{i}-(\lambda+\theta)-2^{-1}|u|\right)$ and the equation (3.12) coincides with $\left(1-\mu_{j}-\theta\right)\left(1-\sum_{i \in M_{1}} \mu_{i} l_{i}-\eta-2^{-1}|v|\right)$. Since $2 n+4-q \equiv 0(\bmod p),(3.3)$ is valid. Suppose $k_{1}=0$ and $l_{1}=1$. Obviously, both sides of (3.3) equal 0 .
(4) One may easily see that ψ_{s+1} is skew and of degree $-\tau$. For $j \in T$, the left-hand side of (3.4) coincides with

$$
\sigma_{\tau}\left(\left(2^{-1}-\theta\right) k_{1}^{*} l_{1}^{*} x^{k-e_{1}} x^{l-e_{1}} y^{\lambda+\eta+\theta} \xi_{j} \xi^{u} \xi^{v}\right)+\sigma_{\tau}\left((-1)^{|u|} k_{1}^{*} x^{k-e_{1}} x^{l} y^{\lambda+\eta+\theta} \xi^{u} \partial_{j}\left(\xi^{v}\right)\right)
$$

while the right-hand side of (3.4) equals

$$
\sigma_{\tau}\left(\left(2^{-1}-\theta\right) k_{1}^{*} l_{1}^{*} x^{k-e_{1}} x^{l-e_{1}} y^{\lambda+\eta+\theta} \xi_{j} \xi^{u} \xi^{v}\right)+\sigma_{\tau}\left((-1)^{|x|} k_{1}^{*} x^{k-e_{1}} x^{l} y^{\lambda+\eta+\theta} \xi^{u} \partial_{j}\left(\xi^{v}\right)\right)
$$

Then two cases arise:
(a) $k+l-2 e_{1}=\pi, \lambda+\eta+\theta=0$ and $\xi_{j} \xi^{u} \xi^{v}=\xi^{\omega}$.
(b) $k+l-e_{1}=\pi, \lambda+\eta+\theta=0$ and $\partial_{j}\left(\xi^{u}\right) \xi^{v}=\xi^{\omega}$.

We only deal with the case (a). By a direct computation, both sides coincide with $k_{1}^{*} l_{1}^{*}\left(2^{-1}-\theta\right)$. Then the equation of (3.4) is valid. Similarly, (3.3) is true in case of $j \in M_{1}$.
3.3. Lemma. The following statements hold.

$$
\begin{gather*}
\left(x_{i} y^{\eta}\right)^{\pi_{i^{\prime}}} \cdot \psi_{i}\left(x_{i} y^{\eta}\right)=\vartheta_{i} \sigma_{\tau}, \quad i \in M_{1}, \vartheta_{i} \in \mathbb{F}, \eta \in H, \tag{3.13}\\
\left(y^{\eta}\right)^{\pi_{1}} \cdot \psi_{1}\left(y^{\eta}\right)=\vartheta_{1} \sigma_{\tau}, \vartheta_{1} \in \mathbb{F}, \eta \in H, \tag{3.14}\\
\left(\operatorname{ad} y^{\eta} \xi_{j}\right)^{2 \pi_{1}+1} \cdot \psi_{j}\left(y^{\eta} \xi_{j}\right)=\vartheta_{j} \sigma_{\tau}, \quad j \in T, \vartheta_{j} \in \mathbb{F}, \eta \in H, \tag{3.15}
\end{gather*}
$$

where the mapping ψ_{i} is defined in Proposition 3.2 for $i \in M \cup T$.
Proof. we see that $\left(\widetilde{\Omega}^{*}\right)^{\widetilde{\Omega}}=\mathbb{F} \sigma_{\tau}$ according to Lemma 2.5. In order to prove (3.13), we only need to show that $\left(\operatorname{ad} x_{i} y^{\eta}\right)^{p^{s} i^{\prime+1}}\left(x^{k} y^{\lambda} \xi^{u}\right)=0$ by Lemma 2.5 for all $x^{k} y^{\lambda} \xi^{u} \in \widetilde{\Omega}$. Since $\operatorname{ad} x_{i} y^{\eta}=[i] y^{\eta} D_{i^{\prime}}+\left(\eta-\mu_{i^{\prime}}\right) y^{\eta} x_{i} D_{1}$, we have $\left(\operatorname{ad} x_{i} y^{\eta}\right)^{p^{s_{i} i^{\prime+1}}}=[i]\left(y^{\eta} D_{i^{\prime}}\right)^{s^{s_{i^{\prime}}+1}}+$ $\left(\eta-\mu_{i^{\prime}}\right)^{s^{s} i^{\prime}+1}\left(y^{\eta} x_{i} D_{1}\right)^{p^{s_{i}+1}}$. By computing step by step, we obtain

$$
\begin{aligned}
& \left(y^{\eta} D_{i^{\prime}}\right)\left(x^{k} y^{\lambda} \xi^{u}\right)=y^{\eta} D_{i^{\prime}}\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{i^{\prime}}^{*} y^{\eta} x^{k-e_{i^{\prime}}} y^{\eta+\lambda} \xi^{u}, \\
& \left(y^{\eta} D_{i^{\prime}}\right)^{2}\left(x^{k} y^{\lambda} \xi^{u}\right)=y^{\eta} D_{i^{\prime}}\left(k_{i^{\prime}}^{*} y^{\eta} x^{k-e_{i^{\prime}}} y^{\eta+\lambda} \xi^{u}\right)=k_{i^{\prime}}^{*}\left(k_{i^{\prime}}-1\right)^{*} x^{k-2 e_{i^{\prime}}} y^{2 \eta+\lambda} \xi^{u}, \\
& \ldots \ldots \ldots . \quad \ldots \ldots \ldots . . \quad \ldots \ldots \\
& \left(y^{\eta} D_{i^{\prime}}\right)^{p_{i_{i}^{\prime}}+1}-1 \\
& \left(x^{k} y^{\lambda} \xi^{u}\right)=k_{i^{\prime}}^{*}\left(k_{i^{\prime}}-1\right)^{*} \cdots\left(k_{i^{\prime}}-\pi_{i^{\prime}}+1\right)^{*} x^{k-\pi_{i^{\prime}} e_{i^{\prime}}} y^{\pi_{i^{\prime}} \eta+\lambda} \xi^{u} .
\end{aligned}
$$

Then $\left(y^{\eta} D_{i^{\prime}}\right)^{p^{s_{i^{\prime}}+1}}\left(x^{k} y^{\lambda} \xi^{u}\right)=0$. Moreover,

$$
\begin{aligned}
& \left(y^{\eta} x_{i} D_{1}\right)\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{1}^{*} x_{i} x^{k-e_{1}} y^{\lambda+\eta} \xi^{u}, \\
& \left(y^{\eta} x_{i} D_{1}\right)^{2}\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{1}^{*}\left(k_{1}-1\right)^{*} x_{i} x_{i} x^{k-2 e_{1}} y^{\lambda+2 \eta} \xi^{u} \text {, } \\
& \text {......... } \\
& \left(y^{\eta} x_{i} D_{1}\right)^{p^{s_{i^{\prime}}+1}-1}\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{1}^{*}\left(k_{1}-1\right)^{*} \cdots\left(k_{1}-\pi_{i^{\prime}}+1\right)^{*} x_{i} x_{i} \cdots x_{i} x^{k-\pi_{i^{\prime}} e_{1}} y^{\pi_{i^{\prime}} \eta+\lambda} \xi^{u} .
\end{aligned}
$$

Consequently,

$$
\left(y^{\eta} x_{i} D_{1}\right)^{s^{s_{i^{\prime}+1}}}\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{1}^{*}\left(k_{1}-1\right)^{*} \cdots\left(k_{1}-\pi_{i^{\prime}}\right)^{*} x_{i} x_{i} \cdots x_{i} x^{k-\left(\pi_{i^{\prime}}+1\right) e_{1}} y^{\left(\pi_{i^{\prime}}+1\right) \eta+\lambda} \xi^{u}=0 .
$$

This shows that $\left(\operatorname{ad} x_{i} y^{\eta}\right)^{p^{s_{i}+1}}=0$, as desired.
Similarly, by a direct computation, we get

$$
\begin{aligned}
& \left(\operatorname{ad} y^{\eta}\right)\left(x^{k} y^{\lambda} \xi^{u}\right)=-k_{1}^{*}(1-\eta) x^{k-e_{1}} y^{\lambda+\eta} \xi^{u}, \\
& \left(\operatorname{ad} y^{\eta}\right)^{2}\left(x^{k} y^{\lambda} \xi^{u}\right)=-k_{1}^{*}\left(k_{1}-1\right)^{*}(1-\eta)^{2} x^{k-2 e_{1}} y^{\eta+2 \lambda} \xi^{u}, \\
& \ldots \ldots \ldots . \quad \quad \ldots \ldots \ldots . . \\
& \left(\operatorname{ad} y^{\eta}\right)^{p^{s_{1}+1}-1}\left(x^{k} y^{\lambda} \xi^{u}\right)=k_{1}^{*}\left(k_{1}-1\right)^{*} \cdots\left(k_{1}-\pi_{1}+1\right)^{*}(1-\eta)^{\pi_{1}} x^{k-\pi_{1} e_{1}} y^{\eta+\pi_{1} \lambda} \xi^{u} .
\end{aligned}
$$

Then $\left(\operatorname{ad} y^{\eta}\right)^{p^{s_{1}+1}}\left(x^{k} y^{\lambda} \xi^{u}\right)=0$. (3.14) can be proved.
Since $\left(\operatorname{ad} y^{\eta} \xi_{j}\right)^{2}\left(x^{k} y^{\lambda} \xi^{u}\right) \in \mathbb{F} x^{k-e_{1}} y^{\lambda+2 \eta} \xi^{u}$, we obtain $\left(\operatorname{ad} y^{\eta} \xi_{j}\right)^{2 p^{s_{1}+1}}=0$. Then (3.15) is true according to Lemma 2.5.

Applying (3.13), (3.14) and (3.15) to $x^{\pi} \xi^{\omega}$, we see that

$$
\vartheta_{i}=\kappa \neq 0, \quad \kappa \in \mathbb{F}, \quad i \in M_{1} ; \quad \vartheta_{1}=\varrho \neq 0, \varrho \in \mathbb{F} ; \quad \vartheta_{j}=\nu \neq 0, \quad \nu \in \mathbb{F}, \quad j \in T .
$$

3.4. Lemma. Let $\psi: \widetilde{\Omega} \rightarrow \widetilde{\Omega}^{*}$ be a derivation. Then there are elements $\vartheta_{1}, \vartheta_{2}, \cdots, \vartheta_{s} \in \mathbb{F}$ such that $\left.\left(\psi-\sum_{i=1}^{s} \vartheta_{i} \psi_{i}\right)\right|_{\Omega^{-}}$is an inner derivation.

Proof. Set $L:=\widetilde{\Omega}$ and $V:=\mathbb{F} x^{\pi} \xi^{\omega}$. Put $e_{i}:=x_{i} y^{\eta^{(i)}}, i \in M_{1} ; e_{i}:=y^{\eta^{(i)}} \xi_{i}, i \in T$; $e_{1}:=y^{\theta}, 1^{\prime}=1$ and $\chi:=\left(\pi_{1^{\prime}}, \pi_{2^{\prime}}, \cdots, \pi_{(r-1)^{\prime}}, 1, \cdots, 1\right) \in \mathbb{N}^{s-1}$. Now we show that $W:=\{b \mid b \leq \chi\}$ fulfills the conditions of Lemma 2.6.

First we verify the equation $\operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)=\operatorname{Span}_{\mathbb{F}}\left\{e^{b} \mid b \notin W\right\}$ holds. Let $e^{b} \in$ $U\left(L^{-}\right)^{+}$and $b \notin W$. Noting that $e_{r+1}, e_{r+2}, \cdots, e_{s} \in L_{\overline{1}}$, there is an $i \in M$ such that $b_{i}>\pi_{i^{\prime}}$. If $i=1$, then we have $e^{b} \cdot\left(x^{k} y^{\lambda} \xi^{u}\right)=0$ by $\left(\operatorname{ad} y^{\theta}\right)^{p^{s_{1}+1}}=0$. For $i \in M_{1}$, the proof of Lemma 3.3 and equality (2.4) ensure that $e_{i}^{p^{s} i^{\prime+1}} \cdot\left(x^{k} y^{\lambda} \xi^{u}\right)=0$, where $0 \leq k \leq \pi, \lambda \in H, u \in \mathbb{B}(q)$. Thus the inclusion $\operatorname{Span}_{\mathbb{F}}\left\{e^{b} \mid b \notin W\right\} \subseteq \operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)$ holds.

Let $v=\sum_{0<b} \beta(b) e^{b}$ be an element of $\operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)$. Then $\sum_{b>\chi} \beta(b) e^{b} \in \operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)$ follows from the result above. As $v=\sum_{0<b} \beta(b) e^{b}=\sum_{0<b \leq \chi} \beta(b) e^{b}+\sum_{b>\chi} \beta(b) e^{b} \in$ $\operatorname{ann}_{U\left(L^{-}\right)^{+}}(L), \sum_{0<b \leq \chi} \beta(b) e^{b} \in \operatorname{ann}_{U\left(L^{-}\right)^{+}}(L)$. Let $0 \neq u:=\sum_{0<b \leq \chi} \beta(b) e^{b}$. Put $\jmath:=\min \left\{b_{1} \mid \beta(b) \neq 0\right\}$. Then

$$
\begin{aligned}
0= & u \cdot x^{\pi+\left(\jmath-\pi_{1}\right) e_{1}} \xi^{\omega} \\
= & \sum_{0<b \leq \chi, b_{1}=\jmath} \beta(b) e^{b} \cdot x^{\pi+\left(\jmath-\pi_{1}\right) e_{1}} \xi^{\omega} \\
= & \sum_{0<b \leq \chi, b_{1}=\jmath} \beta(b) \alpha(b)(1-\theta)^{\jmath} \jmath^{*}(\jmath-1)^{*} \cdots 1 \\
& \prod_{i=2}^{r-1} \pi_{i^{\prime}}^{*}\left(\pi_{i^{\prime}}-1\right)^{*} \cdots\left(\pi_{i^{\prime}}-b_{i}+1\right)^{*} \cdot x^{\pi-\pi_{1} e_{1}-b^{\prime}} e_{r+1}^{b_{r+1}} \cdots e_{s}^{b_{s}} y^{\jmath \theta+\eta^{\prime}} \xi^{\omega},
\end{aligned}
$$

where $\alpha(b)= \pm 1, b^{\prime}=\left\{0, b_{2} e_{2^{\prime}}, \cdots, b_{r-1} e_{(r-1)^{\prime}}\right\}$ and $\eta^{\prime}=b_{2} \eta_{2}+b_{3} \eta_{3}+\cdots+b_{r-1} \eta_{r-1}$. We see that $x^{\pi-\pi_{1} e_{1}-b^{\prime}} e_{r+1}^{b_{r+1}} \cdots e_{s}^{b_{s}} y^{\jmath \theta+\eta^{\prime}} \xi^{\omega} \neq 0, \jmath^{*}(\jmath-1)^{*} \cdots 1 \cdot \prod_{i=2}^{r-1} \pi_{i^{\prime}}^{*}\left(\pi_{i^{\prime}}-1\right)^{*}$. $\cdots\left(\pi_{i^{\prime}}-b_{i}+1\right)^{*} \neq 0$, and $(1-\theta)^{\jmath} \neq 0$ for $\theta \in H$. Hence $\beta(b)=0$ whenever $b_{1}=\jmath$, a contradiction. Thus $v \in \operatorname{span}_{\mathbb{F}}\left\{e^{b} \mid b \notin W\right\}$ and the converse inclusion holds. Hence the condition (a) in Lemma 2.6 is satisfied.

Our previous results ensure that $\left\{e^{b} \cdot x^{\pi} \xi^{\omega} \mid 0 \leq b \leq \chi\right\}$ generates $\widetilde{\Omega}$. Then condition (b) in Lemma 2.6 holds according to $\operatorname{dim}_{\mathbb{F}} \widetilde{\Omega}=2^{|q|} \cdot p^{l}$, where $l=\sum_{i \in M}\left(s_{i}+1\right)+m$.

Recall that the mapping ψ is defined in Proposition 3.1. Noting that $\Omega=[\widetilde{\Omega}, \widetilde{\Omega}]=$ $\left\langle x^{k} y^{\lambda} \xi^{u} \mid(k, \lambda, u) \neq(\pi, 0, \omega)\right\rangle$ for $2 n+4-q \equiv 0(\bmod p)$, we obtain $\sigma_{\tau}([\widetilde{\Omega}, \widetilde{\Omega}])=0$. Then by Lemma 2.5 , there exist $\vartheta_{1}, \vartheta_{2}, \cdots, \vartheta_{s} \in \mathbb{F}$ such that

$$
\begin{aligned}
& \left(x_{i} y^{\eta^{(i)}}\right)^{\pi_{i^{\prime}}} \cdot \psi\left(x_{i} y^{\eta^{(i)}}\right)=\vartheta_{i}^{2} \sigma_{\tau}, \quad i \in M_{1}, \\
& \left(y^{\theta}\right)^{\pi_{1}} \cdot \psi\left(y^{\theta}\right)=\vartheta_{1}^{2} \sigma_{\tau}, \\
& \left(y^{\eta^{(j)}} \xi_{j}\right)^{2 \pi_{1}+1} \cdot \psi\left(y^{\eta^{(j)}} \xi_{j}\right)=\vartheta_{j}^{2} \sigma_{\tau}, \quad j \in T .
\end{aligned}
$$

Put $\phi:=\psi-\sum_{j=1}^{s} \vartheta_{j} \psi_{j}$. Then by computing and Lemma 3.3, we have $\left(e_{i}\right)^{2 \pi_{1}+1} \cdot \phi\left(e_{i}\right)=0$ for $i \in T$ and $\left(e_{i}\right)^{\pi_{i^{\prime}}} \cdot \phi\left(e_{i}\right)=0$ for $i \in M_{1}$. The assertion now follows by applying (2) and (3) of Proposition 2.6.
3.5. Lemma. Let $d \geq 3$. Then $B(\widetilde{\Omega})_{d}=\widetilde{\Omega}_{d}$ for $d \not \equiv 0,-2(\bmod p)$.

Proof. Put $B:=B(\widetilde{\Omega})=\left[\widetilde{\Omega}^{+}, \widetilde{\Omega}^{+}\right]$, where $\widetilde{\Omega}^{+}=\sum_{i=1}^{\tau}(\widetilde{\Omega})_{i}$ is the subalgebra of $\tilde{\Omega}$. The inclusion " \subseteq " of our assertion is obvious. The converse inclusion will be proved by considering the following cases. Let $x^{k} y^{\lambda} \xi^{u} \in \widetilde{\Omega}_{d}$.
(i) $k_{1}=1$.
(1) $i \notin\{u\}$ and $\{u\} \neq\{\omega\}$. We have $\left[x_{1} \xi_{i}, x^{k-e_{1}} y^{\lambda} \xi_{i} \xi^{u}\right]=-x^{k} y^{\lambda} \xi^{u}$. Since $\left[x_{1} \xi_{i}, x^{k-e_{1}} y^{\lambda} \xi_{i} \xi^{u}\right] \subseteq$ $\left[\widetilde{\Omega}^{+}, \widetilde{\Omega}^{+}\right]_{d}=B_{d}, x^{k} y^{\lambda} \xi^{u} \in B_{d}$.
(2) $\{u\} \cup\{v\} \cup\{i\}=\{\omega\}$. suppose $|\omega| \geq 4$. If $1-\lambda-2^{-1}|v| \not \equiv 0(\bmod p)$, then by $\left[x_{1}^{2} x^{k-e_{1}} \xi_{i} \xi^{u}, y^{\lambda} \xi^{v}\right]=2\left(1-\lambda-2^{-1}|v|\right) x^{k} y^{\lambda} \xi^{\omega}$, we get $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$. If $1-\lambda-2^{-1}|v| \equiv$ $0(\bmod p)$, then $1-\lambda-2^{-1}(|v|+1)=-2^{-1} \not \equiv 0(\bmod p)$. Since $\left[x_{1}^{2} x^{k-e_{1}} \xi_{i} \xi^{u-\langle j\rangle}, y^{\lambda} \xi_{j} \xi^{v}\right]=$ $2 \alpha\left(1-\lambda-2^{-1}(|v|+1)\right) x^{k} y^{\lambda} \xi^{\omega}$ with $\alpha= \pm 1, x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$, as desired.

Let $|\omega|=3$. Then by $\left[x_{1}^{2} x^{k-e_{1}} y^{\lambda}, \xi^{\omega}\right]=-x^{k} y^{\lambda} \xi^{\omega}$, we obtain $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$.
Let $|\omega|=2$. If $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda \not \equiv 0(\bmod p)$, then by means of $\left[x^{k} y^{\lambda}, x_{1} \xi^{\omega}\right]=$ $-\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda\right) x^{k} y^{\lambda} \xi^{\omega}$, one gets $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$. If $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda \equiv 0(\bmod p)$, then $1-\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda\right)=1 \not \equiv 0(\bmod p)$. As $\left[x^{k} y^{\lambda} \xi_{1}, x_{1} \xi_{2}\right]=\left(1-\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\right.\right.$ $\lambda)) x^{k} y^{\lambda} \xi_{1} \xi_{2}, x^{k} y^{\lambda} \xi_{1} \xi_{2} \in B_{d}$ is valid.
(ii) $k_{1} \geq 2$.
(1) $\varepsilon_{0}\left(k_{1}-1\right) \neq p-1$. If $\{u\} \neq\{\omega\}$ and $i \notin\{u\}$, then $\left[x_{1} \xi_{i}, x^{k-e_{1}} y^{\lambda} \xi_{i} \xi^{u}\right]=-x^{k} y^{\lambda} \xi^{u}$ implies that $x^{k} y^{\lambda} \xi^{u} \in B_{d}$.

Let $\{u\}=\{\omega\}$ and $|\omega| \geq 2$. According to

$$
\begin{equation*}
\left[x_{1}^{2}, x^{k-e_{1}} y^{\lambda} \xi^{\omega}\right]=\left[2\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}|\omega|\right)-\left(k_{1}-1\right)^{*}\right] x^{k} y^{\lambda} \xi^{\omega} \tag{3.16}
\end{equation*}
$$

we obtain $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$ whenever $2\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}|\omega|\right)-\left(k_{1}-1\right)^{*} \not \equiv 0(\bmod p)$. If $2\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}|\omega|\right)-\left(k_{1}-1\right)^{*} \equiv 0(\bmod p)$, then we consider the following equation

$$
\left[x_{1}^{2} \xi_{i_{1}}, x^{k-e_{1}} y^{\lambda} \xi^{\omega-\left\langle i_{1}\right\rangle}\right]=2^{-1}\left(\left(k_{1}-1\right)^{*}+2\right) x^{k} y^{\lambda} \xi^{\omega} .
$$

If $\left(k_{1}-1\right)^{*}+2 \not \equiv 0(\bmod p)$, then we have $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$.
If $\left(k_{1}-1\right)^{*}+2 \equiv 0(\bmod p)$, then $\left(k_{1}-1\right)^{*}=p-2$, which means that two cases arise: (a) $\varepsilon_{0}\left(k_{1}-1\right)=0$, i.e., $k_{1}^{*}=1=\varepsilon_{0}\left(k_{1}\right)$,
(b) $\varepsilon_{0}\left(k_{1}-1\right)=p-2$, i.e., $k_{1}^{*}=p-1=\varepsilon_{0}\left(k_{1}\right)$.

Consider the case (a). By $\left[x_{1} \xi_{i_{1}}, x^{k} y^{\lambda} \xi^{\omega-\left\langle i_{1}\right\rangle}\right]=-x^{k} y^{\lambda} \xi^{\omega}$, we obtain $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$.
Consider the case (b). Let $|\omega| \geq 3$.
If $k_{1} \neq \pi_{1}$, then by $\left[x^{k+e_{1}} y^{\lambda} \xi^{u_{1}}, \xi^{u_{2}}\right]=-2^{-1}\left(k_{1}+1\right)^{*} x^{k} y^{\lambda} \xi^{\omega}$ and $\left(k_{1}+1\right)^{*} \not \equiv 0(\bmod p)$, we have $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$, where $\left|u_{2}\right|=3$ and $\left\{u_{1}\right\} \cup\left\{u_{2}\right\}=\{\omega\}$.

If $k_{1}=\pi_{1}$, then there exists an i such that $k_{i} \neq \pi_{i}$. Otherwise, we obtain

$$
\begin{aligned}
d & =\sum_{i \in M_{1}} \pi_{i}+2 \pi_{1}-2+|\omega| \\
& =\sum_{i \in M_{1}}\left(p^{t_{i}+1}-1\right)+2\left(p^{t_{1}+1}-1\right)-2+q \\
& \equiv-(2 n+4-q) \equiv 0(\bmod p),
\end{aligned}
$$

contradicting $d \not \equiv 0,-2(\bmod p)$. Hence we have

$$
\left[x^{k+e_{i}} y^{\lambda}, x_{i^{\prime}} \xi^{\omega}\right]=\left(1-\mu_{i^{\prime}} k_{i^{\prime}}-2^{-1}|\omega|\right) k_{1}^{*} x^{k+e_{i}+e_{i^{\prime}}-e_{1}} y^{\lambda} \xi^{\omega}+[i]\left(k_{i}+1\right)^{*} x^{k} y^{\lambda} \xi^{\omega}
$$

Set $k+e_{i}+e_{i^{\prime}}-e_{1}=l$. If $\left(1-\mu_{i^{\prime}} k_{i^{\prime}}-2^{-1}|\omega|\right) \not \equiv 0(\bmod p)$, then $\varepsilon_{0}\left(l_{1}\right)=p-2$ yields $2\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}|\omega|\right)-\left(k_{1}-1\right)^{*} \not \equiv 0(\bmod p)$. According to (3.16), we get $x^{l} y^{\lambda} \xi^{\omega} \in B_{d}$. Otherwise, the first term on the right-hand side of the equation above coincides with 0 . Since $\left(k_{i}+1\right)^{*} \not \equiv 0(\bmod p), x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$ is valid.

Let $|\omega|=2$. If $\varepsilon_{0}\left(k_{i}\right)=p-1$ for all i, then $d=\sum_{i \in M_{1}} k_{i}+2 k_{1}-2+|\omega| \equiv$ $-(2 n+4-q) \equiv 0(\bmod p)$, contradicting $d \not \equiv 0,-2(\bmod p)$. Consequently, we have

$$
\left[x^{k+e_{i}} y^{\lambda}, x_{i^{\prime}} \xi^{\omega}\right]=-k_{1}^{*} \mu_{i^{\prime}} k_{i^{\prime}} x^{k+e_{i}+e_{i^{\prime}}-e_{1}} y^{\lambda} \xi^{\omega}+[i]\left(k_{i}+1\right)^{*} x^{k} y^{\lambda} \xi^{\omega} .
$$

Put $k+e_{i}+e_{i^{\prime}}-e_{1}=l$. Then $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$, which is completely analogous to the proof above.
(2) $\varepsilon_{0}\left(k_{1}-1\right)=p-1$. Let $\{u\}=\{\omega\}$. If $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|\omega|-1) \not \equiv 0(\bmod p)$, then by $\left[x_{1} \xi_{i_{1}}, x^{k} y^{\lambda} \xi^{\omega-\left\langle i_{1}\right\rangle}\right]=\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|\omega|-1)\right) x^{k} y^{\lambda} \xi^{\omega}$, we get $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$. If $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|\omega|-1) \equiv 0(\bmod p)$, then $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|\omega|-2) \not \equiv$ $0(\bmod p)$. Since $\left[x_{1} \xi_{i_{1}} \xi_{i_{2}}, x^{k} y^{\lambda} \xi^{\omega-\left\langle i_{1}\right\rangle-\left\langle i_{2}\right\rangle}\right]=\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|\omega|-2)\right) x^{k} y^{\lambda} \xi^{\omega}$, $x^{k} y^{\lambda} \xi^{\omega} \in B_{d}$, as desired.

Let $\{u\} \neq\{\omega\}$. If there exists an $i \in M_{1}$ such that $\varepsilon_{0}\left(k_{i}\right) \neq 0$, then by $\left[x_{i}^{2} \xi_{i}, x^{k-2 e_{i}} y^{\lambda} \xi_{i} \xi^{u}\right]=$ $-x^{k} y^{\lambda} \xi^{u}$, we obtain $x^{k} y^{\lambda} \xi^{u} \in B_{d}$. Let $\varepsilon_{0}\left(k_{i}\right)=0$ for all $i \in M_{1}$. If $\sum_{i \in M_{1}} k_{i}+2 k_{1}-$ $2 \geq 1$, it is easily seen that $x^{k} y^{\lambda} \xi^{u} \in B_{d}$ by $\left[x_{1} y^{\lambda} \xi^{u}, x^{k}\right]=x^{k} y^{\lambda} \xi^{u}$. Let $\sum_{i \in M_{1}} k_{i}+$ $2 k_{1}-2 \leq 0$. The assumption $d \geq 3$ in this proposition implies that $|u| \geq 3$. Then by $\left[x_{1} \xi_{i_{1}}, x^{k} y^{\lambda} \xi^{u-\left\langle i_{1}\right\rangle}\right]=\left(1-\lambda-2^{-1}|u|+2^{-1}\right) x^{k} y^{\lambda} \xi^{u}$, we obtain $x^{k} y^{\lambda} \xi^{u} \in B_{d}$ if
$1-\lambda-2^{-1}|u|+2^{-1} \not \equiv 0(\bmod p)$. Since $1-\lambda-2^{-1}|u|+2^{-1} \equiv 0(\bmod p)$ implies $1-\lambda-2^{-1}|u|+1 \not \equiv 0(\bmod p)$, we obtain $x^{k} y^{\lambda} \xi^{u} \in B_{d}$ by $\left[x_{1} \xi_{i_{1}} \xi_{i_{2}}, x^{k} y^{\lambda} \xi^{u-\left\langle i_{1}\right\rangle-\left\langle i_{2}\right\rangle}\right]=$ $\left(1-\lambda-2^{-1}|u|+1\right) x^{k} y^{\lambda} \xi^{u}$.
(iii) $k_{1}=0$.

For $|u| \geq 1$, if $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|u|-1) \not \equiv 0(\bmod p)$, then by means of $\left[x_{1} \xi_{i_{1}}, x^{k} y^{\lambda} \xi^{u-\left\langle i_{1}\right\rangle}\right]=\left(1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|u|-1)\right) x^{k} y^{\lambda} \xi^{u}$, we see that $x^{k} y^{\lambda} \xi^{u} \in B_{d}$.

For $|u| \geq 2$, if $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|u|-1) \equiv 0(\bmod p)$, then $1-\sum_{j \in M_{1}} \mu_{j} k_{j}-$ $\lambda-2^{-1}(|u|-2)=2^{-1} \not \equiv 0(\bmod p)$. According to $\left[x_{1} \xi_{i_{1}} \xi_{i_{2}}, x^{k} y^{\lambda} \xi^{u-\left\langle i_{1}\right\rangle-\left\langle i_{2}\right\rangle}\right]=(1-$ $\left.\sum_{j \in M_{1}} \mu_{j} k_{j}-\lambda-2^{-1}(|u|-2)\right) x^{k} y^{\lambda} \xi^{u}$, we have $x^{k} y^{\lambda} \xi^{u} \in B_{d}$.

For $|u|=0$, the assumption $d \geq 3$ in this proposition implies that $\sum_{i \in M_{1}} k_{i}+2 k_{1}-$ $2 \geq 3$. If $x_{i} x^{k-e_{i}}=0$ for all i, then $\varepsilon_{0}\left(k_{i}\right)=0$. Hence $d=\sum_{i \in M_{1}} k_{i}+2 k_{1}-2=$ $\sum_{i \in M_{1}} k_{i}-2 \equiv-2(\bmod p)$, contradicting $d \not \equiv 0,-2(\bmod p)$. Thus there exists an $i \in M_{1}$ such that $x_{i} x^{k-e_{i}} \neq 0$, which implies $x_{i}^{2} x^{k-2 e_{i}} \neq 0$. Then we get $x^{k} y^{\lambda} \in B_{d}$ by virtue of $\left[x_{i}^{3}, x^{k-2 e_{i}+e_{i^{\prime}}} y^{\lambda}\right]=3 \alpha\left(k_{i^{\prime}}+1\right)^{*} x^{k} y^{\lambda}$, where $\alpha= \pm 1$.
3.6. Proposition. The algebra Ω dose not possess a nondegenerate associative for $2 n+$ $4-q \equiv 0(\bmod p)$.

Proof. We know that $\Omega=\bigoplus_{i=-2}^{\tau} \Omega_{i}$, where $\Omega_{\tau}=\operatorname{span}_{\mathbb{F}}\left\{x^{\pi} y^{\eta} \xi^{\omega} \mid \eta \in H \backslash\{0\}\right\}$. Clearly $\operatorname{dim} \Omega_{\tau}=p^{m}-1$ and $\operatorname{dim} \Omega_{-2}=p^{m}$. Thus $\operatorname{dim} \Omega_{\tau} \neq \operatorname{dim} \Omega_{-2}$. Then our assertion is true by Proposition 2.1 in [10].
3.7. Theorem. The second cohomology group $H^{2}(\Omega, \mathbb{F})$ is $(s+1)$-dimensional.

Proof. It was proved in [9] that $H^{2}(L, \mathbb{F})$ is isomorphic to the vector space of skew outer derivations from L into L^{*} if the modular Lie superalgebra L is simple and does not admit any nondegenerate associative form. We see that Ω is simple (see [13]) and has no nondegenerate associative form according to Proposition 3.6. We propose to show that the vector space V of skew derivations from Ω to Ω^{*} decomposes as

$$
V=\oplus_{i=1}^{s+1} \mathbb{F} \psi_{i} \oplus \operatorname{Inn}_{\mathbb{F}}\left(\Omega, \Omega^{*}\right),
$$

where ψ_{i} defined in Proposition 3.2 is regarded as a skew derivation from Ω to Ω^{*} for $i \in M \cup T$.

Let $\psi \in V$ of degree l. Then $-2 \tau \leq l \leq 4$. For $-(\tau-1) \leq l \leq 4$, by corresponding ψ to the root space decomposition, we obtain $\psi=0$ or $l \equiv 0(\bmod p)$. As $\tau \equiv 0(\bmod p)$, we have $\psi=0$ for $l=-\tau+1,-\tau+2,-\tau+3,-\tau+4$. Let $5-\tau \leqq l \leq 4$. According to Proposition 3.1, ψ can be extended to a skew derivation $\widetilde{\psi}: \widetilde{\Omega} \rightarrow \widetilde{\Omega}^{*}$. By Lemma 3.4, it follows that there are $\vartheta_{1}, \vartheta_{2}, \cdots, \vartheta_{s} \in \mathbb{F}$ and $f \in \widetilde{\Omega}^{*}$ such that

$$
\widetilde{\psi}(z)=\sum_{i=1}^{s} \vartheta_{i} \psi_{i}(z)+(-1)^{|z||f|} z \cdot f, \quad \forall z \in \widetilde{\Omega}^{-}
$$

Put $g:=\left.f\right|_{\Omega}$. Then $\psi(z)=\sum_{i=1}^{s} \vartheta_{i} \psi_{i}(z)+(-1)^{|z||g|} z \cdot g$ for all $z \in \Omega^{-}$. Hence, $\psi-\sum_{i=1}^{s} \vartheta_{i} \psi_{i} \in \operatorname{Inn}\left(\Omega, \Omega^{*}\right)$ by virtue of Lemma 2.7.

For $-2 \tau \leq l \leq-\tau$. According to the proof above, we see that $\psi=0$ or $l \equiv 0(\bmod p)$. Then $\psi=0$ for $l=-\tau-1 \not \equiv 0(\bmod p)$. Thus $-2 \tau \leq l \leq-\tau-2$ and $l=-\tau$. We first consider the case $-2 \tau \leq l \leq-\tau-2$. Note that $-(\tau-1+l) \geq 3$ and $-(\tau-1+l) \not \equiv$ $0,-2(\bmod p)$. Then Lemmas 2.8 and 3.5 ensure that $\psi=0$. For the case $l=-\tau$, we define a bilinear symmetric form $\zeta: \Omega \times \Omega \rightarrow \mathbb{F}$ given by

$$
\zeta\left(x^{k} y^{\lambda} \xi^{u}, x^{l} y^{\eta} \xi^{v}\right)=\sigma_{\tau}\left(x^{k} x^{l} y^{\lambda+\eta} \xi^{u} \xi^{v}\right) .
$$

It is easily seen that $\operatorname{rad}(\zeta)=\{x \in \Omega \mid \zeta(x, y)=0, \forall y \in \Omega\}=\mathbb{F} 1$. Let $\varpi: \Omega \rightarrow \tilde{V}$, $\widetilde{V}:=\Omega / \mathbb{F} 1$, be the canonical projection. We denote by ρ the bilinear form on \widetilde{V} which is induced by ζ. One may easily verify that the results of Theorems 3.3 and 3.7 in paper [3] are also true for Lie superalgebras. It follows that there is a unique skew p-module homomorphism $D: \widetilde{V} \rightarrow \widetilde{V}$ of degree -2 such that

$$
\psi(x)(y)=\rho(D(\varpi(x)), \varpi(y)), \quad \forall x, y \in \Omega,
$$

where
$P:=\quad \Omega^{-} \oplus \operatorname{span}_{\mathbb{F}}\left\{x_{i} x_{j} \mid 2 \leq i, j \leq r-1\right\} \oplus \operatorname{span}_{\mathbb{F}}\left\{x_{i} \xi_{j} \mid 2 \leq i \leq r-1, r+1 \leq j \leq s\right\}$ $\oplus \operatorname{span}_{\mathbb{F}}\left\{\xi_{i} \xi_{j} \mid r+1 \leq i<j \leq s\right\}$.
Clearly, the mapping D is uniquely determined by $D\left(\varpi\left(x^{\pi-e_{2}} \xi^{\omega}\right)\right)$. A direct computation entails the existence of $\beta \in \mathbb{F}$ with $D\left(\varpi\left(x^{\pi-e_{2}} \xi^{\omega}\right)\right)=\beta \varpi\left(x^{\pi-e_{1}-e_{2}} \xi^{\omega}\right)$ by the degree of D. As a result, $D(v)=2^{-1} \beta \cdot 1 \cdot v$ for $v \in \widetilde{V}$, and $\psi=\beta \psi_{s+1}$. Consequently, the dimension of the vector space of skew outer derivations of Ω is $s+1$ and our assertion is true.

References

[1] S. Bouarroudj, P. Grozman, D. Leites, Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009).
[2] S. Chiu, Central extensions and $H^{1}\left(L, L^{*}\right)$ of the graded Lie algebras of Cartan type, J Algebra 149 (1992) 46-67.
[3] R. Farnsteiner, Central extensions and invariant forms of graded Lie algebras, Algebra Groups Geom. 3 (1986) 431-455.
[4] R. Farnsteiner, Dual space derivations and $H^{2}(L, \mathbb{F})$ of graded Lie algebras, Canad. J. Math. 39 (1987) 1078-1106.
[5] W.D. Liu, Y.Z. Zhang, X.L. Wang, The derivation algebra of the Cartan-type Lie superalgebra HO, J. Algebra 273 (2004) 176-205.
[6] J.X. Yuan, W.D. Liu, W. Bai, Associative forms and second cohomologies of Lie superalgebras $H O$ and KO, J. Lie Theory 23 (2013) 203-215.
[7] W.D. Liu, J.X. Yuan, Special odd Lie superalgebras in prime characteristic, Sci. China Math. 55 (2012) 567-576.
[8] W.Q. Wang, L. Zhao, Representations of Lie superalgebras in prime characteristic, Proc. Lond. Math. Soc. 99 (2009) 145-167.
[9] Y. Wang, Y.Z. Zhang, Derivation algebra $\operatorname{Der}(H)$ and central extensions of Lie superalgebras, Comm. Algebra 32 (2004) 4117-4131.
[10] Y. Wang, Y.Z. Zhang, The associative forms of graded Cartan type Lie superalgebras. Chin Adv Math 29 (2000) 65-70
[11] W.J. Xie, Y.Z. Zhang, Second cohomology of the modular Lie superalgebra of Cartan type K, Algebra Colloq 16 (2009) 309-324
[12] X.N. Xu, L.Y. Chen, Y.Z. Zhang, On the modular Lie superalgebra Ω, J. Pure Appl. Algebra 215 (2011) 1093-1101.
[13] Y.Z. Zhang, Q.C. Zhang, Finite-dimensional modular Lie superalgebra Ω, J. Algebra 321 (2009) 3601-3619.

[^0]: *School of Mathematics, Liaoning University, Shenyang, 110036, China, Email: ldxxn@yahoo.com.cn Corresponding author.
 ${ }^{\dagger}$ School of Mathematics, Liaoning University, Shenyang, 110036, China, Supported by National Natural Science Foundation of China (Grants No. 11126129) and the PhD Start-up Foundation of Liaoning University of China (No. 2012002).

