\int Hacettepe Journal of Mathematics and Statistics Volume 43 (5) (2014), 787–799

Second Cohomology of the Modular Lie Superalgebra Ω^{\dagger}

Xiaoning Xu^{*} and Xiaojun Li[†]

Received 15:02:2013 : Accepted 19:07:2013

Abstract

We consider the finite-dimensional simple modular Lie superalgebra Ω which was defined by Zhang and Zhang (2009), over an algebraically closed fields of characteristic p > 3. In this paper, we determine the second cohomology group of the modular Lie superalgebra Ω by computing the first cohomology group $H^1(\Omega, \Omega^*)$, where Ω^* denotes the dual space of Ω .

2000 AMS Classification: 17B50, 17B40.

Keywords: Modular Lie superalgebra, skew derivation, cohomology group.

1. Introduction

Many important results of modular Lie superalgebras have been obtained (see, for example, [1, 5, 8]). But the classification problem is still open for the finite-dimensional simple modular Lie superalgebras. Since cohomology theory is closely related to the structures of modular Lie algebras and play an important role in the classification of modular Lie algebras(see [2, 3, 4]), it is significant to study the cohomology groups of modular Lie algebras. The dimensions of the second cohomology groups of simple modular Lie algebras of Cartan type were computed in [2, 3, 4]. The second cohomology groups of simple modular Lie superalgebras of Cartan type W, S, H and K were determined in [9, 11]. The second cohomologies of Lie Superalgebras HO and KO were studied in [6]. The second cohomologies of two classes of special odd modular Lie superalgebras were investigated in [7].

The finite-dimensional simple modular Lie superalgebra Ω was defined in [13]. Its derivation superalgebra and filtration structure were investigated in [12, 13]. The second cohomology group of modular Lie superalgebra Ω for $2n + 4 - q \not\equiv 0 \pmod{p}$, which possesses a nondegenerate associative form, can be easily obtained according to [9]. In

^{*}School of Mathematics, Liaoning University, Shenyang, 110036, China, Email: ldxxn@yahoo.com.cn Corresponding author.

[†]School of Mathematics, Liaoning University, Shenyang, 110036, China,

Supported by National Natural Science Foundation of China (Grants No. 11126129) and the PhD Start-up Foundation of Liaoning University of China (No. 2012002).

paper [9], it was also verified that if a modular Lie superalgebra L was simple and did not possess any nondegenerate associative form, then its second cohomology group $H^2(L, \mathbb{F})$ was isomorphic to the first cohomology group $H^1(L, L^*)$. Thus we shall determine the second cohomology group of the modular Lie superalgebra Ω for $2n + 4 - q \equiv 0 \pmod{p}$, which does not have a nondegenerate associative form, by computing $H^1(\Omega, \Omega^*)$.

2. Preliminaries

Let \mathbb{F} be an algebraically closed field of characteristic p > 3 and not equal to its prime field Π . For m > 0, let $E = \{z_1, \dots, z_m\} \in \mathbb{F}$ be linearly independent over prime field Π and the additive subgroup H generated by E doesn't contain 1. If $\lambda \in H$, then we let $\lambda = \sum_{i=1}^{m} \lambda_i z_i$ and $y^{\lambda} = y_1^{\lambda_1} \cdots y_m^{\lambda_m}$, where $0 \leq \lambda_i < p$. We use the notation \mathbb{N} for the set of positive integers and \mathbb{N}_0 for the set of non-negative integers. Let $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ be the ring of integers modulo 2.

Given $n \in \mathbb{N}$ and r = 2n + 2, we put $M = \{1, \dots, r-1\}$. Suppose that $\mu_1, \dots, \mu_{r-1} \in \mathbb{F}$ such that $\mu_1 = 0, \mu_j + \mu_{n+j} = 1, j = 2, \dots, n+1$. Let $k_i \in \mathbb{N}_0$ for $i \in M$, then k_i can be uniquely expressed in *p*-adic form $k_i = \sum_{v=0}^{s_i} \varepsilon_v(k_i) p^v$, where $0 \leq \varepsilon_v(k_i) < p$. We define truncated polynomial algebra

$$A = \mathbb{F}[x_{10}, x_{11}, \cdots, x_{1s_1}, \cdots, x_{r-10}, x_{r-11}, \cdots, x_{r-1s_{r-1}}, y_1, \cdots, y_m]$$

such that

$$x_{ij}^p = 0, \, \forall i \in M, \, j = 0, 1, \cdots, s_i; \, y_i^p = 1, \, i = 1, \cdots, m.$$

Let $Q = \{(k_1, \dots, k_{r-1}) \mid 0 \le k_i \le \pi_i, \pi_i = p^{s_i+1} - 1, i \in M\}$. If $k = (k_1, \dots, k_r) \in Q$, we write $x^k = x_1^{k_1} \cdots x_{r-1}^{k_{r-1}}$, where $x_i^{k_i} = \prod_{v=0}^{s_i} x_{iv}^{\varepsilon_v(k_i)}$ for $i \in M$. For $0 \le k_i, k'_i \le \pi_i$, it is easy to see that

(2.1)
$$x_i^{k_i} x_i^{k'_i} = x_i^{k_i + k'_i} \neq 0 \Leftrightarrow \varepsilon_v(k_i) + \varepsilon_v(k'_i) < p, \ v = 0, 1, \cdots, s_i.$$

Let $\Lambda(q)$ be the Grassmann superalgebra over \mathbb{F} in q variables $\xi_{r+1}, \dots, \xi_{r+q}$ with $q \in \mathbb{N}$ and q > 1. Denote the tensor product by $\widetilde{\Omega} := A \otimes_{\mathbb{F}} \Lambda(q)$. Obviously, $\widetilde{\Omega}$ is an associative superalgebra with a \mathbb{Z}_2 -gradation induced by the trivial \mathbb{Z}_2 -gradation of A and the natural \mathbb{Z}_2 -gradation of $\Lambda(q)$:

$$\widehat{\Omega}_{\overline{0}} = A \otimes_{\mathbb{F}} \Lambda(q)_{\overline{0}}, \quad \widehat{\Omega}_{\overline{1}} = A \otimes_{\mathbb{F}} \Lambda(q)_{\overline{1}}$$

For $f \in A$ and $g \in \Lambda(q)$, we abbreviate $f \otimes g$ to fg. For $k \in \{1, \dots, q\}$, we set

$$\mathbb{B}_k = \{ \langle i_1, i_2, \cdots, i_k \rangle \mid r+1 \le i_1 < i_2 < \cdots < i_k \le r+q \}$$

and $\mathbb{B}(q) = \bigcup_{k=0}^{q} \mathbb{B}_{k}$, where $\mathbb{B}_{0} = \emptyset$. If $u = \langle i_{1}, \cdots, i_{k} \rangle \in \mathbb{B}_{k}$, we let $|u| = k, \{u\} = \{i_{1}, \cdots, i_{k}\}$ and $\xi^{u} = \xi_{i_{1}} \cdots \xi_{i_{k}}$. Put $|\emptyset| = 0$ and $\xi^{\emptyset} = 1$. Then $\{x^{k}y^{\lambda}\xi^{u} \mid k \in Q, \lambda \in H, u \in \mathbb{B}(q)\}$ is an \mathbb{F} -basis of $\widetilde{\Omega}$.

If L is a Lie superalgebra, then h(L) denotes the set of all \mathbb{Z}_2 -homogeneous elements of L, i.e., $h(L) = L_{\bar{0}} \cup L_{\bar{1}}$. If |x| appears in some expression in this paper, we always regard x as a \mathbb{Z}_2 -homogeneous element and |x| as its \mathbb{Z}_2 -degree.

Set s = r + q, $T = \{r + 1, \dots, s\}$ and $R = M \cup T$. Put $M_1 = \{2, \dots, r-1\}$. Define $\tilde{i} = \bar{0}$, if $i \in M_1$, and $\tilde{i} = \bar{1}$, if $i \in T$. Let

$$i' = \begin{cases} i+n, & 2 \le i \le n+1, \\ i-n, & n+2 \le i \le r-1, \\ i, & r+1 \le i \le s, \end{cases} \qquad [i] = \begin{cases} 1, & 2 \le i \le n+1, \\ -1, & n+2 \le i \le r-1, \\ 1, & r+1 \le i \le s. \end{cases}$$

For $e_i = (\delta_{i0}, \dots, \delta_{ir}), i \in M$, we abbreviate x^{e_i} to x_i . Let $D_i, i \in R$, be the linear transformation of $\widetilde{\Omega}$ such that

$$D_i(x^k y^\lambda \xi^u) = \begin{cases} k_i^* x^{k-e_i} y^\lambda \xi^u, & i \in M \\ x^k y^\lambda \cdot \partial \xi^u / \partial \xi_i, & i \in T, \end{cases}$$

where k_i^* is the first nonzero number of $\varepsilon_0(k_i), \varepsilon_1(k_i), \cdots, \varepsilon_{s_i}(k_i)$. Then $D_i \in \text{Der} \widetilde{\Omega}$. Set

$$\bar{\partial} = I - \sum_{j \in M_1} \mu_j x_{j\,0} \frac{\partial}{\partial x_{j\,0}} - \sum_{j=1}^m z_j y_j \frac{\partial}{\partial y_j} - 2^{-1} \sum_{j \in T} \xi_j \frac{\partial}{\partial \xi_j},$$

where I is the identity mapping of $\widetilde{\Omega}$. For $f \in h(\widetilde{\Omega})$ and $g \in \widetilde{\Omega}$, we define a bilinear operation [,] in $\widetilde{\Omega}$ such that

(2.2)
$$[f,g] = D_1(f)\bar{\partial}(g) - \bar{\partial}(f)D_1(g) + \sum_{i \in M_1 \cup T} [i](-1)^{\tilde{i}|f|} D_i(f)D_{i'}(g).$$

Then Ω becomes a Lie superalgebra for the operation [,] defined above.

Define $\Omega := [\widetilde{\Omega}, \widetilde{\Omega}]$. It can be proved that $\Omega = \operatorname{span}_{\mathbb{F}} \{x^k y^\lambda \xi^u | (k, \lambda, u) \neq (\pi, 0, \omega)\}$ for $2n + 4 - q \equiv 0 \pmod{p}, \pi = (\pi_1, \cdots, \pi_{r-1})$ and $\omega = \langle r+1, \cdots, s \rangle$, and Ω is a simple Lie superalgebra. In the sequel, we always assume that $2n + 4 - q \equiv 0 \pmod{p}$.

Now we give a \mathbb{Z} -gradation of Ω : $\Omega = \bigoplus_{j \in X} \Omega_j$, where

(2.3)
$$\Omega_j = \operatorname{span}_{\mathbb{F}} \{ x^k y^\lambda \xi^u \mid \sum_{i \in M_1} k_i + 2k_1 + |u| - 2 = j \}.$$

and $X = \{-2, -1, \dots, \tau\}, \tau = \sum_{i \in M_1} \pi_i + 2\pi_1 + q - 2$. If $f \in \Omega_j$, then f is called a \mathbb{Z} -homogeneous element and j is the \mathbb{Z} -degree of f which is denoted by $\operatorname{zd}(f)$.

Assume that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a finite-dimensional modular Lie superalgebra and L possesses a \mathbb{Z} -gradation $L = \bigoplus_{i=-\varsigma}^{\delta} L_i$. Then $L^* := \operatorname{Hom}_{\mathbb{F}}(L, \mathbb{F}) = \bigoplus_{i=-\delta}^{\varsigma} (L^*)_i$ is a \mathbb{Z} -gradation L-module by virtue of $(x \cdot f)(y) = -(-1)^{|x||f|} f([x, y])$ for $x, y \in L$, $f \in L^*$.

Let $\overline{H} \subset L_0 \cap L_{\overline{0}}$ be a nilpotent subalgebra of $L_{\overline{0}}$. Let

$$L = \bigoplus_{\alpha \in \Delta} L_{(\alpha)}$$
 and $L^* = \bigoplus_{\beta \in \Theta} (L^*)_{(\beta)}$

be the weight space decompositions of L and L^* with respect to \overline{H} , respectively. Since $\overline{H} \subset L_0 \cap L_{\overline{0}}$, there exist subsets $\Delta_i \subset \Delta$ and $\Theta_j \subset \Theta$ such that

$$L_i = \bigoplus_{\alpha \in \Delta_i} L_i \cap L_{(\alpha)}$$
 and $(L^*)_j = \bigoplus_{\beta \in \Theta_j} (L^*)_j \cap (L^*)_{(\beta)}$

Thus L has a structure of $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$ -gradation, where $\operatorname{Map}(\bar{H}, \mathbb{F})$ is the group consisting of the mappings from \bar{H} into \mathbb{F} . The L-module L^* is $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$ -graded by

$$(L^*)_{(i,\alpha)} = \{ f \in L^* \mid f(L_j \cap L_{(\beta)}) = 0, \ (j,\beta) \neq -(i,\alpha) \}$$

Then we have $(L^*)_{(i,\alpha)} = (L^*)_i \cap (L^*)_{(\alpha)}$.

By equation (2.2), $\overline{H} := \mathbb{F}x_1$ is an Abelian subalgebra of Ω . Furthermore, \overline{H} is an Abelian subalgebra of $\Omega_0 \cap \Omega_{\overline{0}}$ with the weight space decomposition $\Omega = \bigoplus_{\alpha \in \Delta} \Omega_{(\alpha)}$. It is easy to see that $\Delta_i \cap \Delta_j \neq \emptyset$ if and only if $i \equiv j \pmod{p}$.

2.1. Lemma. [11] Let $L^* = \bigoplus_{\beta \in \Theta} (L^*)_{(\beta)}$ be the weight space decomposition relative to \overline{H} . Then the following statements hold:

(1) $\Theta = -\Delta$ and there is an isomorphism $(L^*)_{(\beta)} \cong (L_{(-\beta)})^*$ of \overline{H} -modules for all $\beta \in \Theta$. (2) $\Theta_i = -\Delta_{-i}$ for $-\delta \leq i \leq \varsigma$.

2.2. Definition. A linear mapping $\psi: L \to L^*$ is called a derivation if

$$\psi([x,y]) = (-1)^{|\psi||x|} x \cdot \psi(y) - (-1)^{|\psi(x)||y|} y \cdot \psi(x)$$
 for all $x, y \in L$

Let $\operatorname{Der}_{\mathbb{F}}(L, L^*)$ denote the space of derivations from L into L^* and $\operatorname{Inn}_{\mathbb{F}}(L, L^*)$ be the subspace of inner derivations. Recall that a derivation ψ from L into L^* is called inner if there is some $f \in L$ such that

$$\psi(x) = -(-1)^{|f||x|} x \cdot f$$
 for all $x \in L$.

 $\operatorname{Der}_{\mathbb{F}}(L, L^*)$ inherits the $(\mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}))$ -gradation from L and L^* . A derivation $\psi \in \operatorname{Der}_{\mathbb{F}}(L, L^*)$ is referred to as homogeneous of degree (i_0, α_0) provided that

 $\psi(L_i \cap L_{(\alpha)}) \subset (L^*)_{i+i_0} \cap (L^*)_{(\alpha+\alpha_0)} \text{ for all } (i,\alpha) \in \mathbb{Z} \times \operatorname{Map}(\bar{H}, \mathbb{F}).$

Let $\{f_1, \dots, f_m\}$ be an \mathbb{F} -basis of $L_{\bar{0}}$ and $\{g_1, \dots, g_n\}$ be an \mathbb{F} -basis of $L_{\bar{1}}$. Let U(L) denote the universal enveloping algebra of L and $L^- = \sum_{i=-\varsigma}^{-1} L_i$. As the U(L)-module structure of L is induced by the L-module structure of L, we see that

$$(2.4) \qquad (f_1^{s_1}\cdots f_m^{s_m}g_{i_1}\cdots g_{i_t})\cdot z = (\mathrm{ad}f_1)^{s_1}\cdots (\mathrm{ad}f_m)^{s_m}\mathrm{ad}g_{i_1}\cdots \mathrm{ad}g_{i_t}(z),$$

where $\{f_1^{s_1}\cdots f_m^{s_m}g_{i_1}\cdots g_{i_t}|s_i\geq 0, i=1,\cdots,m; 1\leq i_1\leq \cdots \leq i_t\leq n\}$ is an \mathbb{F} -basis of U(L).

2.3. Lemma. [11] Suppose that $L = U(L^-) \cdot L_{\delta}$ and $\psi : L \to L^*$ is a homogeneous linear mapping of degree $l > 2\varsigma - \delta$. Assume that L^- is generated by a subset J of L. If

$$\psi([x,y]) = (-1)^{|\psi||x|} x \cdot \psi(y) - (-1)^{|\psi(x)||y|} y \cdot \psi(x) \text{ for all } x \in J \text{ and } y \in L,$$

then ψ is a derivation.

2.4. Definition. A derivation $\psi: L \to L^*$ is said to be skew if

 $\psi(x)(y) = -(-1)^{|x||y|}\psi(y)(x)$ for all $x, y \in L$.

Let $U(L)^+$ denote the two-sided ideal generated by L. Clearly, for every derivation $\psi: L \to L^*$, there exists a homomorphism $\varphi: U(L)^+ \to L^*$ of U(L)-modules such that $\varphi(x) = \psi(x)$ for all $x \in L$.

2.5. Lemma. [11] Let $\psi : L \to L^*$ be a derivation. Assume $e \in L$ such that $(ade)^{p^t} = 0$ for $t \in \mathbb{N}$. Then $e^{p^t - 1} \cdot \psi(e) \in (L^*)^L$, where

$$(L^*)^L = \{ f \in L^* \mid L \cdot f = 0 \} = \{ f \in L^* \mid f([L, L]) = 0 \}.$$

2.6. Lemma. [11] Let $V \subset L$ be a \mathbb{Z}_2 -graded subspace such that

$$L = U(L^{-})^{+} \cdot V \oplus V.$$

Let $W \subset \mathbb{N}_{0}^{n}$ and $\{e_{1}, e_{2}, \dots, e_{n}\}$ be a basis of L^{-} such that (a) $\operatorname{ann}_{U(L^{-})^{+}}(L) = \operatorname{span}_{\mathbb{F}}\{e^{b} \mid b \notin W\}$, where $b = (b_{1}, b_{2}, \dots, b_{n})$ and $e^{b} := e_{1}^{b_{1}}e_{2}^{b_{2}}\cdots e_{n}^{b_{n}}$,

and $\operatorname{ann}_{U(L^{-})^{+}} := \{ u \in U(L^{-})^{+} \mid u \cdot L = 0 \};$

(b) there is a basis $\{v_1, v_2, \dots, v_m\}$ of V such that $\{e^a \cdot v_j \mid a \in W, 1 \le j \le m\}$ is a basis of L over \mathbb{F} .

Then the following statements hold:

(1) If $\mu_i = p^{k_i} - 1$ for $1 \leq i \leq n$ and L = [L, L], then the canonical mapping $\Phi_1 : H^1(L, L^*) \to H^1(L^-, L^*)$ is trivial.

(2) If $\psi : L \to L^*$ is a derivation satisfying ker(ade_i) \subset ker $\psi(e_i)$ for $1 \leq i \leq n$, then ψ defines an element of ker Φ_1 .

(3) If there is a $\mu \in \mathbb{N}_0^n$ such that $W = \{b \in \mathbb{N}_0^n \mid b \leq \mu\}$, then $\ker(\mathrm{ad} e_i) \subset \ker\psi(e_i)$ if and only if $e_i^{\mu_i} \cdot \psi(e_i) = 0$.

2.7. Lemma. [11] Suppose $L = \bigoplus_{i=-\varsigma}^{\delta} L_i$. Let $\psi : L \longrightarrow L^*$ be a homogeneous derivation of degree l.

(1) If $l > \varsigma - \delta$ and ψ defines an element of ker Φ_1 , then ψ is an inner derivation.

(2) If $l = \varsigma - \delta$, ψ is skew and defines an element of ker Φ_1 , then ψ is an inner derivation.

2.8. Lemma. [11] Suppose $L = \bigoplus_{i=-\varsigma}^{\delta} L_i$. Let $\psi : L \longrightarrow L^*$ be a homogeneous derivation of degree l with $-2\delta \leq l \leq -\delta - 1$. If $-\Delta_{\delta} \not\subset \phi_{-(\delta+l)}$, then $\psi = 0$, where $\phi_d \subset \Delta_d$ for d > 1.

3. Second cohomology group $H^2(\Omega, \mathbb{F})$

3.1. Proposition. Suppose that $\psi : \Omega \to \Omega^*$ is a skew derivation of degree $l \ge 5 - \tau$. Then there exists a homogeneous skew derivation $\psi: \Omega \to \Omega^*$ of degree l which extends ψ .

Proof. We define a linear mapping $\widetilde{\psi}: \widetilde{\Omega} \to \widetilde{\Omega}^*$ such that

$$\widetilde{\psi}(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) := \begin{cases} \psi(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) & x^k y^\lambda \xi^u, x^l y^\eta \xi^v \in \Omega, \\ 0 & other \ cases. \end{cases}$$

As $\widetilde{\Omega} = \Omega \oplus \mathbb{F} x^{\pi} \xi^{\omega}$, $\widetilde{\psi}$ is a skew linear mapping of degree *l*. Then we will show that

(3.1)
$$\widetilde{\psi}([f,g]) = (-1)^{|\widetilde{\psi}||f|} f \cdot \widetilde{\psi}(g) - (-1)^{|\widetilde{\psi}(f)||g|} g \cdot \widetilde{\psi}(f), \ \forall f, g \in \widetilde{\Omega}.$$

We shall prove it in two cases:

(i) Consider the case $f, g \in \Omega$. We need only to prove that

(3.2)
$$\widetilde{\psi}([f,g])(x^{\pi}\xi^{\omega}) = (-1)^{|\widetilde{\psi}||f|}(f \cdot \widetilde{\psi}(g))(x^{\pi}\xi^{\omega}) - (-1)^{|\widetilde{\psi}(f)||g|}(g \cdot \widetilde{\psi}(f))(x^{\pi}\xi^{\omega}).$$

By virtue of the definition of $\tilde{\psi}$, the left-hand side of the equation (3.2) equals 0. Setting $f \in \Omega_i$ and $g \in \Omega_j$, we see that the right-hand side of (3.1) is contained in $(\widetilde{\Omega}^*)_{i+j+l}$. Thereby, the right-hand side of (3.2) coincides with 0 unless $i + j + l = -\tau$, which implies that $-\tau = i + j + l \ge i + j + 5 - \tau \ge 1 - \tau$ for $i, j \ge -2$, a contradiction.

(ii) Consider the case $f = x^{\pi} \xi^{\omega}$. By $\widetilde{\Omega} = \bigoplus_{i=-2}^{\tau} \widetilde{\Omega}_i$ and $\Omega = [\widetilde{\Omega}, \widetilde{\Omega}]$, we have $[x^{\pi} \xi^{\omega}, \widetilde{\Omega}] \subset$ $\Omega_{\tau} \oplus \Omega_{\tau-1} \oplus \Omega_{\tau-2}$. Note that $\operatorname{zd}(\widetilde{\psi}([x^{\pi}\xi^{\omega},\widetilde{\Omega}])) \ge l + \tau - 2 \ge (5-\tau) + \tau - 2 = 3$ and $\widetilde{\psi}([x^{\pi}\xi^{\omega},\widetilde{\Omega}]) \subseteq \widetilde{\Omega}^{*} = \bigoplus_{i=-\tau}^{2} (\widetilde{\Omega}^{*})_{i}$. Then we obtain $\widetilde{\psi}([x^{\pi}\xi^{\omega},g]) \in \sum_{i\geq 3} (\widetilde{\Omega}^{*})_{i} = 0$ for $g \in \widetilde{\psi}$. It is easy to see that $x^{\pi} \xi^{\omega} \cdot \widetilde{\psi}(g) \subseteq \widetilde{\Omega}^*$ and $g \cdot \widetilde{\psi}(x^{\pi} \xi^{\omega}) \subseteq \widetilde{\Omega}^*$. Thus we have $g \cdot \widetilde{\psi}(x^{\pi}\xi^{\omega})(x^{k}y^{\lambda}\xi^{u}) = \alpha \widetilde{\psi}(x^{\pi}\xi^{\omega})([g, x^{k}y^{\lambda}\xi^{u}]) = 0$ for all $x^{k}y^{\lambda}\xi^{u} \in \widetilde{\Omega}$, where $\alpha = \pm 1$ and $x^{\pi}\xi^{\omega} \cdot \widetilde{\psi}(g) \in \sum_{i>3} (\widetilde{\Omega}^*)_i = 0.$ The proof is complete.

For $i \in M$, we define a linear mapping $\sigma_i : \widetilde{\Omega} \to \mathbb{F}$ by

$$\sum_{k \le \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^k y^\lambda \xi^u \to \gamma(\pi - \pi_{i'} e_{i'}, 0, \omega),$$

where 1' = 1.

For $i \in T$, we define a linear mapping $\sigma_i : \widetilde{\Omega} \to \mathbb{F}$ by

$$\sum_{k \le \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^k y^\lambda \xi^u \to \gamma(\pi - \pi_1 e_1, 0, \omega \setminus \{i\}).$$

We define a linear mapping $\sigma_{\tau}: \widetilde{\Omega} \to \mathbb{F}$ by

$$\sum_{k \le \pi, \lambda \in H, u \in \mathbb{B}(q)} \gamma(k, \lambda, u) x^k y^\lambda \xi^u \to \gamma(\pi, 0, \omega).$$

3.2. Proposition. The following statements hold.

(1) The mapping $\psi_i: \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^*$ given by $\psi_i(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) = \sigma_i(k_i^* x^{k-e_i} y^\lambda \xi^u x^l y^\eta \xi^v)$

is a skew derivation of degree derivation $l = p^{s_{i'}+1} - \tau$ for $i \in M_1$.

(2) The mapping
$$\psi_i : \tilde{\Omega} \longrightarrow \tilde{\Omega}^*$$
 given by $\psi_i(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) = \sigma_i(\bar{\partial}(x^k y^\lambda \xi^u) \partial_i(x^k y^\lambda \xi^u x^l y^\eta \xi^v))$

- $\begin{array}{l} (2) \text{ The mapping } \varphi_1 : \Omega & \rightarrow \Omega \end{array} \text{ given by } \varphi_i(w \ g \ \zeta) & \rightarrow (\lambda \ g \ \zeta) \end{array} \\ (3) \text{ The mapping } \psi_1 : \widetilde{\Omega} & \rightarrow \widetilde{\Omega}^* \text{ given by } \psi_1(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) = \sigma_1(\bar{\partial}(x^k y^\lambda \xi^u)x^k y^\lambda \xi^u x^l y^\eta \xi^v) \end{array}$

is a skew derivation of degree derivation $l = 2p^{s_1+1} - \tau$. (4) The mapping $\psi_{s+1} : \widetilde{\Omega} \longrightarrow \widetilde{\Omega}^*$ given by $\psi_{s+1}(x^k y^\lambda \xi^u)(x^l y^\eta \xi^v) = \sigma_\tau(k_1^* x^{k-e_1} y^\lambda \xi^u x^l y^\eta \xi^v)$ is a skew derivation of degree derivation $l = -\tau$.

Proof. Noting that $\widetilde{\Omega}^-$ is generated by $\widetilde{\Omega}_{-1} = \sum_{i=2}^{r-1} \mathbb{F} x_i y^{\theta} + \sum_{i=r+1}^{s} \mathbb{F} y^{\theta} \xi_i$ and $p^{s_{i'+1}} > 4$, by Lemma 2.3, it is sufficient to show that for $i \in M \cup T$ and $j \in M_1 \cup T$, the equalities below hold:

$$\begin{split} &\psi_{i}([x_{j}y^{\theta},x^{k}y^{\lambda}\xi^{u}])(x^{l}y^{\eta}\xi^{v}) \\ & ((x_{j}y^{\theta},x^{k}y^{\lambda}\xi^{u}))(x^{l}y^{\eta}\xi^{v}) - (-1)^{|\xi^{u}||\psi_{i}(x_{j}y^{\theta})|}(x^{k}y^{\lambda}\xi^{u}\cdot\psi_{i}(x_{j}y^{\theta}))(x^{l}y^{\eta}\xi^{v}), \\ &\psi_{i}([\xi_{j}y^{\theta},x^{k}y^{\lambda}\xi^{u}])(x^{l}y^{\eta}\xi^{v}) \\ &((\xi_{j}y^{\theta},x^{k}y^{\lambda}\xi^{u}))(x^{l}y^{\eta}\xi^{v}) - (-1)^{|\xi^{u}||\psi_{i}(\xi_{j}y^{\theta})|}(x^{k}y^{\lambda}\xi^{u}\cdot\psi_{i}(\xi_{j}y^{\theta}))(x^{l}y^{\eta}\xi^{v}). \end{split}$$

In case (1)-(3), we only prove (3.3), and (3.4) is treated similarly.

(1) The linear mapping ψ_i is said to be skew if

$$\psi_i(x^k y^\lambda \xi \mathfrak{Z}) \mathfrak{K}^l y^\eta \xi^v) = -(-1)^{|u||v|} \psi_i(x^l y^\eta \xi^v)(x^k y^\lambda \xi^u), \ \forall \ x^k y^\lambda \xi^u, x^l y^\eta \xi^v \in \widetilde{\Omega}, \ 2 \le i \le r-1.$$

By computing directly, we see that the left-hand side of (3.5) equals $\sigma_i(k_i^* x^{k-e_i} x^l y^{\lambda+\eta} \xi^u \xi^v)$ and the right-hand side of (3.5) coincides with $-\sigma_i(l_i^* x^k x^{l-e_i} y^{\lambda+\eta} \xi^u \xi^v)$. If $k + l - e_i = \pi - \pi_{i'}e_{i'}$, then $k_i + l_i - 1 = \pi_i \equiv -1 \pmod{2}$; that is, $k_i^* + l_i^* \equiv 0 \pmod{2}$ for all $i \in M_1$. Hence both sides of (3.5) equal k_i^* . Otherwise, both sides coincide with 0. Therefore, the mapping ψ_i is skew, as desired. Moreover, the linear mapping ψ_i is of degree $l = p^{s_i'+1} - \tau$ by a direct computation. For $j \in M_1$, the left-hand side of (3.3) coincides with

$$\psi_i(-k_1^*(1-\mu_j-\theta))x_jx^{k-e_1}y^{\lambda+\theta}\xi^u)(x^ly^{\eta}\xi^v) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}\xi^u)(x^ly^{\eta}\xi^v) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}\xi^v)(x^ly^{\eta}\xi^v) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}\xi^v) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}y^{\lambda+\theta}) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}y^{\lambda+\theta}) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}y^{\lambda+\theta}) + \psi_i([j]k_{j'}^*x^{k-e_{j'}}y^{\lambda+\theta}$$

while the right-hand side of (3.3) equals

$$-\psi_i(x^k y^{\lambda} \xi^u)(-l_1^*(1-\mu_j-\theta)x_j x^{l-e_1} y^{\lambda+\theta} \xi^v) - \psi_i(x^k y^{\lambda} \xi^u)([j]l_{j'}^* x^{l-e_{j'}} y^{\eta+\theta} \xi^v) + \psi_i(x_j y^{\theta})([x^k y^{\lambda} \xi^u, x^l y^{\eta} \xi^v])$$

We distinguish two cases:

Case 1. $i \neq j$. 1.1. $k + l - e_i - e_{j'} = \pi - \pi_{i'} e_{i'}, \xi^u \xi^v = \xi^\omega$ and $\lambda + \eta + \theta = 0$. 1.2. $k + l + e_j - e_i - e_1 = \pi - \pi_{i'} e_{i'}, \xi^u \xi^v = \xi^\omega$ and $\lambda + \eta + \theta = 0$. Case 2. i = j. 2.1. $k + l - e_i - e_{i'} = \pi - \pi_{i'} e_{i'}, \xi^u \xi^v = \xi^\omega$ and $\lambda + \eta + \theta = 0$. 2.2. $k + l - e_1 = \pi - \pi_{i'} e_{i'}, \xi^u \xi^v = \xi^\omega$ and $\lambda + \eta + \theta = 0$.

Firstly, we deal with the case 1.1. We see that the left-hand side of (3.3) equals $-[j]k_{j'}^*l_i^*$, while the right-hand side of (3.3) coincides with $-[j]k_i^*l_{j'}^*$. As $k+l-e_i-e_{j'}=\pi-\pi_{i'}e_{i'}$, we get $k_i+l_i-1=\pi_i\equiv-1 \pmod{p}$ and $k_{j'}+l_{j'}-1=\pi_{j'}\equiv-1 \pmod{p}$, i.e., $k_i^*+l_i^*\equiv 0 \pmod{p}$ and $k_{j'}+l_{j'}\equiv 0 \pmod{p}$. Thus $-[j]k_{j'}^*l_i^*=-[j]k_i^*l_{j'}^*$ and the equality (3.3) holds.

For the case 1.2, we know that the left-hand side of (3.3) coincides with $k_1^* l_i^* (1-\mu_j - \theta)$. But the right-hand side of (3.3) equals $l_1^* k_i^* (1-\mu_j - \theta)$. By the assumptions, we also have $k_i^* + l_i^* \equiv 0 \pmod{p}$ and $k_1^* + l_1^* \equiv 0 \pmod{p}$. Consequently, the right-hand side of (3.3) coincides with $k_1^* l_i^* (1-\mu_j - \theta)$, as desired.

The proof of the case 2.1 is similar to the case 1.2.

For the case 2.2, it is easy to see that the left-hand side of the equation (3.3) coincides with $(1 - \mu_j - \theta)k_1^* l_i^*$. And the right-hand side equals $(1 - \mu_j - \theta)k_i^* l_1^* + (1 - \sum_{i \in M_1} \mu_i l_i - \eta - 2^{-1}|v|)k_1^* - (1 - \sum_{i \in M_1} \mu_i k_i - \lambda - 2^{-1}|u|)l_1^*$. By means of our assumptions, we have $k_1^* + l_1^* \equiv 0 \pmod{p}$, $k_i + l_i \equiv -1 \pmod{p}$ and $k_{i'} + l_{i'} = 0$. Hence, the right-hand side of the equation (3.3) equals $l_1^*(1 - \mu_j - \theta)(k_i^* + 1) = (1 - \mu_j - \theta)k_1^* l_i^*$, as desired.

(2) In analogy with (1), it is easily seen that the mapping ψ_i is skew and of degree $2p^{s_1+1} - \tau$. For $j \in M_1$, the left-hand side of (3.3) equals

$$\sigma_{i}(-k_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\mu_{j}-(\lambda+\theta)-2^{-1}|u|)x_{j}x^{k-e_{1}}x^{l}y^{\lambda+\theta+\eta}\partial_{i}(\xi^{u}\xi^{v}))$$

$$(3.6)\!\!+\sigma_{i}([j]k_{j'}^{*}(1-\sum_{i\in M_{1}}\mu_{i}k_{i}+\mu_{j'}-(\lambda+\theta)-2^{-1}|u|)x^{k-e_{j'}}x^{l}y^{\lambda+\eta+\theta}\partial_{i}(\xi^{u}\xi^{v})),$$

while the right-hand side coincides with

$$\sigma_{i}(l_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)x_{j}x^{k}x^{l-e_{1}}y^{\lambda+\theta+\eta}\partial_{i}(\xi^{u}\xi^{v})) -\sigma_{i}([j]l_{j'}^{*}(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)x^{k}x^{l-e_{j'}}y^{\lambda+\theta+\eta}\partial_{i}(\xi^{u}\xi^{v})) +\sigma_{i}(k_{1}^{*}(1-\sum_{i\in M_{1}}\mu_{i}l_{i}-\eta-2^{-1}|v|)(1-\mu_{j}-\theta)x_{j}x^{k-e_{1}}x^{l}y^{\lambda+\eta+\theta}\partial_{i}(\xi^{u}\xi^{v})) -\sigma_{i}(l_{1}^{*}(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)(1-\mu_{j}-\theta)x_{j}x^{k}x^{l-e_{1}}y^{\lambda+\eta+\theta}\partial_{i}(\xi^{u}\xi^{v})) +\sigma_{i}(\sum_{i\in M_{1}}[i]k_{i}^{*}l_{i'}^{*}(1-\mu_{j}-\theta)x_{j}x^{k-e_{i}}x^{l-e_{i'}}y^{\lambda+\eta+\theta}\partial_{i}(\xi^{u}\xi^{v})) +\sigma_{i}(\sum_{i\in T}(-1)^{|\xi^{u}|}(1-\mu_{j}-\theta)x_{j}x^{k}x^{l}y^{\lambda+\eta+\theta}\partial_{i}(D_{i}(\xi^{u})D_{i'}(\xi^{v}))).$$

We consider the following cases:

We consider the following cases: Case 1. $k + l + e_j - e_1 = \pi - \pi_1 e_1$, $\lambda + \eta + \theta = 0$ and $\partial_i (\xi^u \xi^v) = \xi^{\omega - \langle i \rangle}$. Case 2. $k + l - e_{j'} = \pi - \pi_1 e_1$, $\lambda + \eta + \theta = 0$ and $\partial_i (\xi^u \xi^v) = \xi^{\omega - \langle i \rangle}$. Now we only prove the Case 2. Then the equation (3.6) equals $[j]k_{j'}^*(1 - \sum_{i \in M_1} \mu_i k_i - \sum_{i \in M_1} \mu_i k_i)$ $(\lambda + \theta) + \mu_{j'} - 2^{-1}|u|)$, while the equation (3.7) coincides with

$$(3.8[j]l_{j'}^*(1-\sum_{i\in M_1}\mu_ik_i-\lambda-2^{-1}|u|)+[j](1-\mu_j-\theta)k_j^*l_{j'}^*+[j'](1-\mu_j-\theta)k_{j'}^*l_j^*.$$

As $k + l - e_{j'} = \pi - \pi_1 e_1$, $k_{j'} + l_{j'} - 1 = \pi_{j'} \equiv -1 \pmod{p}$. Hence the equation (3.8) coincides with $[j]k_{j'}^*(1 - \sum_{i \in M_1} \mu_i k_i - (\lambda + \theta) + \mu_{j'} - 2^{-1}|u|)$ and (3.3) is valid. (3) The linear mapping ψ_1 is clearly skew and of degree $2p^{s_1+1} - \tau$. For the left-hand

side of (3.3), we obtain

(3.9)
$$\sigma_{1}(-k_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-(\lambda+\theta)-2^{-1}|u|)x_{j}x^{k-e_{1}}x^{l}y^{\lambda+\theta+\eta}\xi^{u}\xi^{v}) + \sigma_{1}([j]k_{j'}^{*}(1-\sum_{i\in M_{1}}\mu_{i}k_{i}+\mu_{j'}-(\lambda+\theta)-2^{-1}|u|)x^{k-e_{j'}}x^{l}y^{\lambda+\theta+\eta}\xi^{u}\xi^{v}),$$

and the right-hand side coincides with

$$\sigma_{1}(l_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)x^{k}x_{j}x^{l-e_{1}}y^{\lambda+\theta+\eta}\xi^{u}\xi^{v}) +\sigma_{1}(-[j]l_{j'}^{*}(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)x^{k}x^{l-e_{j'}}y^{\eta+\theta+\lambda}\xi^{u}\xi^{v}) +\sigma_{1}(k_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}l_{i}-\eta-2^{-1}|v|)x_{j}x^{k-e_{1}}x^{l}y^{\lambda+\eta+\theta}\xi^{u}\xi^{v}) +\sigma_{1}(-l_{1}^{*}(1-\mu_{j}-\theta)(1-\sum_{i\in M_{1}}\mu_{i}k_{i}-\lambda-2^{-1}|u|)x_{j}x^{k}x^{l-e_{1}}y^{\lambda+\eta+\theta}\xi^{u}\xi^{v}) +\sigma_{1}((1-\mu_{j}-\theta)\sum_{i\in M_{1}}[i]k_{i}^{*}l_{i'}^{*}x_{j}x^{k-e_{i}}x^{l-e_{i'}}y^{\lambda+\eta+\theta}\xi^{u}\xi^{v}) +\sigma_{1}((1-\mu_{j}-\theta)\sum_{i\in M_{1}}[i]k_{i}^{*}l_{i'}x_{j}x^{k}x^{l}y^{\lambda+\eta+\theta}D_{i}(\xi^{u})D_{i'}(\xi^{v})).$$

$$(3.10) \qquad +\sigma_{1}((1-\mu_{j}-\theta)\sum_{i\in T}(-1)^{|\xi^{u}|}x_{j}x^{k}x^{l}y^{\lambda+\eta+\theta}D_{i}(\xi^{u})D_{i'}(\xi^{v})).$$

We treat two cases separately:

(a) $k + l - e_1 + e_j = \pi - \pi_1 e_1, \ \lambda + \eta + \theta = 0 \text{ and } \xi^u \xi^v = \xi^\omega.$ (b) $k + l - e_{j'} = \pi - \pi_1 e_1, \ \lambda + \eta + \theta = 0 \text{ and } \xi^u \xi^v = \xi^\omega.$

Now we only prove the case (a). By a direct computation, we see that the equation (3.9) coincides with

(3.11)
$$-k_1^*(1-\mu_j-\theta)(1-\sum_{i\in M_1}\mu_ik_i-(\lambda+\theta)-2^{-1}|u|).$$

and the equation (3.10) equals

(3.12)
$$k_1^*(1-\mu_j-\theta)(1-\sum_{i\in M_1}\mu_i l_i-\eta-2^{-1}|v|)$$

Note that $k_i + l_i = \pi_i \equiv -1 \pmod{p}$, $k_j + l_j + 1 = \pi_j \equiv -1 \pmod{p}$ and $k_1 + l_1 - 1 = 0$. Then we may assume $k_1 = 1$ and $l_1 = 0$, which implies that (3.11) equals $-(1-\mu_j-\theta)(1-\sum_{i\in M_1}\mu_ik_i-(\lambda+\theta)-2^{-1}|u|)$ and the equation (3.12) coincides with $(1-\mu_j-\theta)(1-\sum_{i\in M_1}\mu_il_i-\eta-2^{-1}|v|)$. Since $2n+4-q \equiv 0 \pmod{p}$, (3.3) is valid. Suppose $k_1 = 0$ and $l_1 = 1$. Obviously, both sides of (3.3) equal 0.

(4) One may easily see that ψ_{s+1} is skew and of degree $-\tau$. For $j \in T$, the left-hand side of (3.4) coincides with

$$\sigma_{\tau}((2^{-1}-\theta)k_{1}^{*}l_{1}^{*}x^{k-e_{1}}x^{l-e_{1}}y^{\lambda+\eta+\theta}\xi_{j}\xi^{u}\xi^{v}) + \sigma_{\tau}((-1)^{|u|}k_{1}^{*}x^{k-e_{1}}x^{l}y^{\lambda+\eta+\theta}\xi^{u}\partial_{j}(\xi^{v})),$$

while the right-hand side of (3.4) equals

$$\sigma_{\tau}((2^{-1}-\theta)k_{1}^{*}l_{1}^{*}x^{k-e_{1}}x^{l-e_{1}}y^{\lambda+\eta+\theta}\xi_{j}\xi^{u}\xi^{v}) + \sigma_{\tau}((-1)^{|u|}k_{1}^{*}x^{k-e_{1}}x^{l}y^{\lambda+\eta+\theta}\xi^{u}\partial_{j}(\xi^{v})).$$

Then two cases arise:

(a) $k + l - 2e_1 = \pi$, $\lambda + \eta + \theta = 0$ and $\xi_j \xi^u \xi^v = \xi^\omega$. (b) $k + l - e_1 = \pi$, $\lambda + \eta + \theta = 0$ and $\partial_j (\xi^u) \xi^v = \xi^\omega$.

We only deal with the case (a). By a direct computation, both sides coincide with $k_1^* l_1^* (2^{-1} - \theta)$. Then the equation of (3.4) is valid. Similarly, (3.3) is true in case of $j \in M_1$.

3.3. Lemma. The following statements hold.

(3.13)
$$(x_i y^{\eta})^{\pi_{i'}} \cdot \psi_i (x_i y^{\eta}) = \vartheta_i \sigma_{\tau}, \quad i \in M_1, \, \vartheta_i \in \mathbb{F}, \, \eta \in H,$$

(3.14)
$$(y^{\eta})^{\pi_1} \cdot \psi_1(y^{\eta}) = \vartheta_1 \sigma_{\tau}, \, \vartheta_1 \in \mathbb{F}, \, \eta \in H,$$

(3.15)
$$(\mathrm{ad}y^{\eta}\xi_j)^{2\pi_1+1} \cdot \psi_j(y^{\eta}\xi_j) = \vartheta_j \sigma_{\tau}, \quad j \in T, \, \vartheta_j \in \mathbb{F}, \, \eta \in H,$$

where the mapping ψ_i is defined in Proposition 3.2 for $i \in M \cup T$.

Proof. we see that $(\widetilde{\Omega}^*)^{\widetilde{\Omega}} = \mathbb{F}\sigma_{\tau}$ according to Lemma 2.5. In order to prove (3.13), we only need to show that $(\mathrm{ad} x_i y^{\eta})^{p^{s_i'+1}}(x^k y^{\lambda} \xi^u) = 0$ by Lemma 2.5 for all $x^k y^{\lambda} \xi^u \in \widetilde{\Omega}$. Since $\mathrm{ad} x_i y^{\eta} = [i] y^{\eta} D_{i'} + (\eta - \mu_{i'}) y^{\eta} x_i D_1$, we have $(\mathrm{ad} x_i y^{\eta})^{p^{s_{i'}+1}} = [i] (y^{\eta} D_{i'})^{p^{s_{i'}+1}} + (\eta - \mu_{i'})^{p^{s_{i'}+1}} (y^{\eta} x_i D_1)^{p^{s_{i'}+1}}$. By computing step by step, we obtain

 $(y^{\eta}D_{i'})^{p^{s_{i'}+1}-1}(x^ky^{\lambda}\xi^u) = k_{i'}^*(k_{i'}-1)^*\cdots(k_{i'}-\pi_{i'}+1)^*x^{k-\pi_{i'}e_{i'}}y^{\pi_{i'}\eta+\lambda}\xi^u.$ Then $(y^{\eta}D_{i'})^{p^{s_{i'}+1}}(x^ky^{\lambda}\xi^u) = 0.$ Moreover,

 $(y^{\eta} x_i D_1)(x^k y^{\lambda} \xi^u) = 0. \text{ Moreover,}$ $(y^{\eta} x_i D_1)(x^k y^{\lambda} \xi^u) = k_1^* x_i x^{k-e_1} y^{\lambda+\eta} \xi^u.$

$$(y^{\eta}x_iD_1)^2(x^ky^{\lambda}\xi^u) = k_1^*(k_1-1)^*x_ix_ix^{k-2e_1}y^{\lambda+2\eta}\xi^u,$$

.....

$$(y^{\eta}x_{i}D_{1})^{p^{s_{i'}+1}-1}(x^{k}y^{\lambda}\xi^{u}) = k_{1}^{*}(k_{1}-1)^{*}\cdots(k_{1}-\pi_{i'}+1)^{*}x_{i}x_{i}\cdots x_{i}x^{k-\pi_{i'}e_{1}}y^{\pi_{i'}\eta+\lambda}\xi^{u}$$

ently.

Consequently,

$$(y^{\eta}x_iD_1)^{p^{s_{i'}+1}}(x^ky^{\lambda}\xi^u) = k_1^*(k_1-1)^*\cdots(k_1-\pi_{i'})^*x_ix_i\cdots x_ix^{k-(\pi_{i'}+1)e_1}y^{(\pi_{i'}+1)\eta+\lambda}\xi^u = 0$$

This shows that $(adx_i y^{\eta})^{p^{s_{i'}+1}} = 0$, as desired.

Then $(ady^{\eta})^{p^{s_1+1}}(x^k y^{\lambda} \xi^u) = 0.$ (3.14) can be proved.

Since $(\mathrm{ad}y^{\eta}\xi_j)^2(x^ky^{\lambda}\xi^u) \in \mathbb{F}x^{k-e_1}y^{\lambda+2\eta}\xi^u$, we obtain $(\mathrm{ad}y^{\eta}\xi_j)^{2p^{s_1+1}} = 0$. Then (3.15) is true according to Lemma 2.5.

Applying (3.13), (3.14) and (3.15) to $x^\pi\xi^\omega$, we see that

$$\vartheta_i = \kappa \neq 0, \ \kappa \in \mathbb{F}, \ i \in M_1; \ \vartheta_1 = \varrho \neq 0, \ \varrho \in \mathbb{F}; \ \vartheta_j = \nu \neq 0, \ \nu \in \mathbb{F}, \ j \in T.$$

3.4. Lemma. Let $\psi : \widetilde{\Omega} \to \widetilde{\Omega}^*$ be a derivation. Then there are elements $\vartheta_1, \vartheta_2, \dots, \vartheta_s \in \mathbb{F}$ such that $(\psi - \sum_{i=1}^s \vartheta_i \psi_i)|_{\widetilde{\Omega}^-}$ is an inner derivation.

Proof. Set $L := \widetilde{\Omega}$ and $V := \mathbb{F}x^{\pi}\xi^{\omega}$. Put $e_i := x_i y^{\eta^{(i)}}, i \in M_1; e_i := y^{\eta^{(i)}}\xi_i, i \in T; e_1 := y^{\theta}, 1' = 1$

and $\chi := (\pi_{1'}, \pi_{2'}, \cdots, \pi_{(r-1)'}, 1, \cdots, 1) \in \mathbb{N}^{s-1}$. Now we show that $W := \{b \mid b \leq \chi\}$ fulfills the conditions of Lemma 2.6.

First we verify the equation $\operatorname{ann}_{U(L^-)^+}(L) = \operatorname{Span}_{\mathbb{F}}\{e^b \mid b \notin W\}$ holds. Let $e^b \in U(L^-)^+$ and $b \notin W$. Noting that $e_{r+1}, e_{r+2}, \cdots, e_s \in L_{\bar{1}}$, there is an $i \in M$ such that $b_i > \pi_{i'}$. If i = 1, then we have $e^b \cdot (x^k y^\lambda \xi^u) = 0$ by $(\operatorname{ad} y^\theta)^{p^{s_1+1}} = 0$. For $i \in M_1$, the proof of Lemma 3.3 and equality (2.4) ensure that $e_i^{p^{s_i'+1}} \cdot (x^k y^\lambda \xi^u) = 0$, where $0 \leq k \leq \pi, \lambda \in H, u \in \mathbb{B}(q)$. Thus the inclusion $\operatorname{Span}_{\mathbb{F}}\{e^b \mid b \notin W\} \subseteq \operatorname{ann}_{U(L^-)^+}(L)$ holds.

Let $v = \sum_{0 < b} \beta(b)e^b$ be an element of $\operatorname{ann}_{U(L^-)^+}(L)$. Then $\sum_{b > \chi} \beta(b)e^b \in \operatorname{ann}_{U(L^-)^+}(L)$ follows from the result above. As $v = \sum_{0 < b} \beta(b)e^b = \sum_{0 < b \leq \chi} \beta(b)e^b + \sum_{b > \chi} \beta(b)e^b \in \operatorname{ann}_{U(L^-)^+}(L)$. Let $0 \neq u := \sum_{0 < b \leq \chi} \beta(b)e^b$. Put $j := \min\{b_1 \mid \beta(b) \neq 0\}$. Then

$$0 = u \cdot x^{\pi + (j - \pi_1)e_1} \xi^{\omega}$$

=
$$\sum_{0 < b \le \chi, b_1 = j} \beta(b) e^{b} \cdot x^{\pi + (j - \pi_1)e_1} \xi^{\omega}$$

=
$$\sum_{0 < b \le \chi, b_1 = j} \beta(b) \alpha(b) (1 - \theta)^j j^* (j - 1)^* \cdots 1 \cdot$$
$$\prod_{i=2}^{r-1} \pi_{i'}^* (\pi_{i'} - 1)^* \cdots (\pi_{i'} - b_i + 1)^* \cdot x^{\pi - \pi_1 e_1 - b'} e^{b_{r+1}}_{r+1} \cdots e^{b_s} y^{j\theta + \eta'} \xi^{\omega},$$

where $\alpha(b) = \pm 1, b' = \{0, b_2 e_{2'}, \dots, b_{r-1} e_{(r-1)'}\}$ and $\eta' = b_2 \eta_2 + b_3 \eta_3 + \dots + b_{r-1} \eta_{r-1}$. We see that $x^{\pi - \pi_1 e_1 - b'} e_{r+1}^{b_{r+1}} \cdots e_s^{b_s} y^{j\theta + \eta'} \xi^{\omega} \neq 0, \ j^*(j-1)^* \cdots 1 \cdot \prod_{i=2}^{r-1} \pi_{i'}^*(\pi_{i'}-1)^* \cdot \dots (\pi_{i'} - b_i + 1)^* \neq 0$, and $(1 - \theta)^j \neq 0$ for $\theta \in H$. Hence $\beta(b) = 0$ whenever $b_1 = j$, a contradiction. Thus $v \in \operatorname{span}_{\mathbb{F}} \{e^b \mid b \notin W\}$ and the converse inclusion holds. Hence the condition (a) in Lemma 2.6 is satisfied.

Our previous results ensure that $\{e^b \cdot x^{\pi} \xi^{\omega} \mid 0 \le b \le \chi\}$ generates $\widetilde{\Omega}$. Then condition (b) in Lemma 2.6 holds according to $\dim_{\mathbb{F}} \widetilde{\Omega} = 2^{|q|} \cdot p^l$, where $l = \sum_{i \in M} (s_i + 1) + m$.

Recall that the mapping ψ is defined in Proposition 3.1. Noting that $\Omega = [\widetilde{\Omega}, \widetilde{\Omega}] = \langle x^k y^\lambda \xi^u | (k, \lambda, u) \neq (\pi, 0, \omega) \rangle$ for $2n + 4 - q \equiv 0 \pmod{p}$, we obtain $\sigma_\tau([\widetilde{\Omega}, \widetilde{\Omega}]) = 0$. Then by Lemma 2.5, there exist $\vartheta_1, \vartheta_2, \cdots, \vartheta_s \in \mathbb{F}$ such that

$$(x_i y^{\eta^{(i)}})^{\pi_{i'}} \cdot \psi(x_i y^{\eta^{(i)}}) = \vartheta_i^2 \sigma_\tau, \ i \in M_1,$$

$$(y^{\theta})^{\pi_1} \cdot \psi(y^{\theta}) = \vartheta_1^2 \sigma_\tau,$$

$$(y^{\eta^{(j)}} \xi_j)^{2\pi_1 + 1} \cdot \psi(y^{\eta^{(j)}} \xi_j) = \vartheta_j^2 \sigma_\tau, \ j \in T.$$

Put $\phi := \psi - \sum_{j=1}^{s} \vartheta_j \psi_j$. Then by computing and Lemma 3.3, we have $(e_i)^{2\pi_1+1} \cdot \phi(e_i) = 0$ for $i \in T$ and $(e_i)^{\pi_{i'}} \cdot \phi(e_i) = 0$ for $i \in M_1$. The assertion now follows by applying (2) and (3) of Proposition 2.6.

3.5. Lemma. Let $d \ge 3$. Then $B(\widetilde{\Omega})_d = \widetilde{\Omega}_d$ for $d \not\equiv 0, -2 \pmod{p}$.

Proof. Put $B := B(\widetilde{\Omega}) = [\widetilde{\Omega}^+, \widetilde{\Omega}^+]$, where $\widetilde{\Omega}^+ = \sum_{i=1}^{\tau} (\widetilde{\Omega})_i$ is the subalgebra of $\widetilde{\Omega}$. The inclusion " \subseteq " of our assertion is obvious. The converse inclusion will be proved by considering the following cases. Let $x^k y^{\lambda} \xi^u \in \widetilde{\Omega}_d$.

(i) $k_1 = 1$.

(1) $i \notin \{u\}$ and $\{u\} \neq \{\omega\}$. We have $[x_1\xi_i, x^{k-e_1}y^\lambda\xi_i\xi^u] = -x^k y^\lambda\xi^u$. Since $[x_1\xi_i, x^{k-e_1}y^\lambda\xi_i\xi^u] \subseteq [\tilde{\Omega}^+, \tilde{\Omega}^+]_d = B_d, x^k y^\lambda\xi^u \in B_d$.

(2) $\{u\} \cup \{v\} \cup \{i\} = \{\omega\}$. suppose $|\omega| \ge 4$. If $1 - \lambda - 2^{-1}|v| \ne 0 \pmod{p}$, then by $[x_1^2 x^{k-e_1} \xi_i \xi^u, y^\lambda \xi^v] = 2(1 - \lambda - 2^{-1}|v|) x^k y^\lambda \xi^\omega$, we get $x^k y^\lambda \xi^\omega \in B_d$. If $1 - \lambda - 2^{-1}|v| \equiv 0 \pmod{p}$, then $1 - \lambda - 2^{-1} (|v|+1) = -2^{-1} \ne 0 \pmod{p}$. Since $[x_1^2 x^{k-e_1} \xi_i \xi^{u-\langle j \rangle}, y^\lambda \xi_j \xi^v] = 2\alpha(1 - \lambda - 2^{-1}(|v|+1)) x^k y^\lambda \xi^\omega$ with $\alpha = \pm 1$, $x^k y^\lambda \xi^\omega \in B_d$, as desired. Let $|\omega| = 3$. Then by $[x_1^2 x^{k-e_1} y^\lambda, \xi^\omega] = -x^k y^\lambda \xi^\omega$, we obtain $x^k y^\lambda \xi^\omega \in B_d$.

Let $|\omega| = 3$. Then by $[x_1^* x^{k-e_1} y^{\lambda}, \xi^{\omega}] = -x^* y^{\lambda} \xi^{\omega}$, we obtain $x^* y^{\lambda} \xi^{\omega} \in B_d$. Let $|\omega| = 2$. If $1 - \sum_{j \in M_1} \mu_j k_j - \lambda \not\equiv 0 \pmod{p}$, then by means of $[x^k y^{\lambda}, x_1 \xi^{\omega}] = -(1 - \sum_{j \in M_1} \mu_j k_j - \lambda) x^k y^{\lambda} \xi^{\omega}$, one gets $x^k y^{\lambda} \xi^{\omega} \in B_d$. If $1 - \sum_{j \in M_1} \mu_j k_j - \lambda \equiv 0 \pmod{p}$, then $1 - (1 - \sum_{j \in M_1} \mu_j k_j - \lambda) = 1 \not\equiv 0 \pmod{p}$. As $[x^k y^{\lambda} \xi_1, x_1 \xi_2] = (1 - (1 - \sum_{j \in M_1} \mu_j k_j - \lambda) x^k y^{\lambda} \xi_1 \xi_2, x^k y^{\lambda} \xi_1 \xi_2 \in B_d$ is valid. (ii) $k_1 \ge 2$. (1) $\varepsilon_0(k_1 - 1) \ne p - 1$. If $\{u\} \ne \{\omega\}$ and $i \not\in \{u\}$, then $[x_1\xi_i, x^{k-e_1}y^\lambda\xi_i\xi^u] = -x^k y^\lambda\xi^u$ implies that $x^k y^\lambda \xi^u \in B_d$.

Let $\{u\} = \{\omega\}$ and $|\omega| \ge 2$. According to

(3.16)
$$[x_1^2, x^{k-e_1}y^{\lambda}\xi^{\omega}] = \left[2(1-\sum_{j\in M_1}\mu_jk_j - \lambda - 2^{-1}|\omega|) - (k_1-1)^*\right]x^ky^{\lambda}\xi^{\omega}$$

we obtain $x^k y^{\lambda} \xi^{\omega} \in B_d$ whenever $2(1 - \sum_{j \in M_1} \mu_j k_j - \lambda - 2^{-1} |\omega|) - (k_1 - 1)^* \not\equiv 0 \pmod{p}$. If $2(1 - \sum_{j \in M_1} \mu_j k_j - \lambda - 2^{-1} |\omega|) - (k_1 - 1)^* \equiv 0 \pmod{p}$, then we consider the following equation

$$[x_1^2\xi_{i_1}, x^{k-e_1}y^{\lambda}\xi^{\omega-\langle i_1\rangle}] = 2^{-1}((k_1-1)^*+2)x^ky^{\lambda}\xi^{\omega}.$$

If $(k_1 - 1)^* + 2 \not\equiv 0 \pmod{p}$, then we have $x^k y^\lambda \xi^\omega \in B_d$.

If $(k_1 - 1)^* + 2 \equiv 0 \pmod{p}$, then $(k_1 - 1)^* = p - 2$, which means that two cases arise: (a) $\varepsilon_0(k_1 - 1) = 0$, i.e., $k_1^* = 1 = \varepsilon_0(k_1)$,

(b) $\varepsilon_0(k_1 - 1) = p - 2$, i.e., $k_1^* = p - 1 = \varepsilon_0(k_1)$.

Consider the case (a). By $[x_1\xi_{i_1}, x^k y^{\lambda}\xi^{\omega-\langle i_1 \rangle}] = -x^k y^{\lambda}\xi^{\omega}$, we obtain $x^k y^{\lambda}\xi^{\omega} \in B_d$. Consider the case (b). Let $|\omega| \ge 3$.

If $k_1 \neq \pi_1$, then by $[x^{k+e_1}y^{\lambda}\xi^{u_1},\xi^{u_2}] = -2^{-1}(k_1+1)^*x^ky^{\lambda}\xi^{\omega}$ and $(k_1+1)^* \not\equiv 0 \pmod{p}$, we have $x^ky^{\lambda}\xi^{\omega} \in B_d$, where $|u_2| = 3$ and $\{u_1\} \cup \{u_2\} = \{\omega\}$.

If $k_1 = \pi_1$, then there exists an *i* such that $k_i \neq \pi_i$. Otherwise, we obtain

$$d = \sum_{i \in M_1} \pi_i + 2\pi_1 - 2 + |\omega|$$

=
$$\sum_{i \in M_1} (p^{t_i+1} - 1) + 2(p^{t_1+1} - 1) - 2 + q$$

=
$$-(2n + 4 - q) \equiv 0 \pmod{p},$$

contradicting $d \not\equiv 0, -2 \pmod{p}$. Hence we have

$$[x^{k+e_i}y^{\lambda}, x_{i'}\xi^{\omega}] = (1 - \mu_{i'}k_{i'} - 2^{-1}|\omega|)k_1^* x^{k+e_i+e_{i'}-e_1}y^{\lambda}\xi^{\omega} + [i](k_i+1)^* x^k y^{\lambda}\xi^{\omega}.$$

Set $k + e_i + e_{i'} - e_1 = l$. If $(1 - \mu_{i'}k_{i'} - 2^{-1}|\omega|) \neq 0 \pmod{p}$, then $\varepsilon_0(l_1) = p - 2$ yields $2(1 - \sum_{j \in M_1} \mu_j k_j - \lambda - 2^{-1}|\omega|) - (k_1 - 1)^* \neq 0 \pmod{p}$. According to (3.16), we get $x^l y^\lambda \xi^\omega \in B_d$. Otherwise, the first term on the right-hand side of the equation above coincides with 0. Since $(k_i + 1)^* \neq 0 \pmod{p}$, $x^k y^\lambda \xi^\omega \in B_d$ is valid.

Let $|\omega| = 2$. If $\varepsilon_0(k_i) = p - 1$ for all *i*, then $d = \sum_{i \in M_1} k_i + 2k_1 - 2 + |\omega| \equiv -(2n + 4 - q) \equiv 0 \pmod{p}$, contradicting $d \not\equiv 0, -2 \pmod{p}$. Consequently, we have

$$[x^{k+e_i}y^{\lambda}, x_{i'}\xi^{\omega}] = -k_1^*\mu_{i'}k_{i'}x^{k+e_i+e_{i'}-e_1}y^{\lambda}\xi^{\omega} + [i](k_i+1)^*x^ky^{\lambda}\xi^{\omega}.$$

Put $k + e_i + e_{i'} - e_1 = l$. Then $x^k y^{\lambda} \xi^{\omega} \in B_d$, which is completely analogous to the proof above.

$$\begin{split} &(2)\,\varepsilon_0(k_1-1)=p-1. \text{ Let } \{u\}=\{\omega\}. \text{ If } 1-\sum_{j\in M_1}\mu_jk_j-\lambda-2^{-1}(|\omega|-1)\not\equiv 0\,(\text{mod}p), \text{ then} \\ &\text{ by } [x_1\xi_{i_1},x^ky^\lambda\xi^{\omega-\langle i_1\rangle}]=(1-\sum_{j\in M_1}\mu_jk_j-\lambda-2^{-1}(|\omega|-1))x^ky^\lambda\xi^\omega, \text{ we get } x^ky^\lambda\xi^\omega\in B_d. \\ &\text{ If } 1-\sum_{j\in M_1}\mu_jk_j-\lambda-2^{-1}(|\omega|-1)\equiv 0\,(\text{mod}p), \text{ then } 1-\sum_{j\in M_1}\mu_jk_j-\lambda-2^{-1}(|\omega|-2)\not\equiv 0\,(\text{mod}p). \\ &\text{ Since } [x_1\xi_{i_1}\xi_{i_2},x^ky^\lambda\xi^{\omega-\langle i_1\rangle-\langle i_2\rangle}]=(1-\sum_{j\in M_1}\mu_jk_j-\lambda-2^{-1}(|\omega|-2))x^ky^\lambda\xi^\omega, \\ &x^ky^\lambda\xi^\omega\in B_d, \text{ as desired.} \end{split}$$

Let $\{u\} \neq \{\omega\}$. If there exists an $i \in M_1$ such that $\varepsilon_0(k_i) \neq 0$, then by $[x_i^2\xi_i, x^{k-2e_i}y^{\lambda}\xi_i\xi^u] = -x^k y^{\lambda}\xi^u$, we obtain $x^k y^{\lambda}\xi^u \in B_d$. Let $\varepsilon_0(k_i) = 0$ for all $i \in M_1$. If $\sum_{i \in M_1} k_i + 2k_1 - 2 \geq 1$, it is easily seen that $x^k y^{\lambda}\xi^u \in B_d$ by $[x_1y^{\lambda}\xi^u, x^k] = x^k y^{\lambda}\xi^u$. Let $\sum_{i \in M_1} k_i + 2k_1 - 2 \leq 0$. The assumption $d \geq 3$ in this proposition implies that $|u| \geq 3$. Then by $[x_1\xi_{i_1}, x^k y^{\lambda}\xi^{u-\langle i_1 \rangle}] = (1 - \lambda - 2^{-1}|u| + 2^{-1})x^k y^{\lambda}\xi^u$, we obtain $x^k y^{\lambda}\xi^u \in B_d$ if

 $1 - \lambda - 2^{-1}|u| + 2^{-1} \neq 0 \pmod{p}$. Since $1 - \lambda - 2^{-1}|u| + 2^{-1} \equiv 0 \pmod{p}$ implies $1 - \lambda - 2^{-1}|u| + 1 \neq 0 \pmod{p}, \text{ we obtain } x^k y^{\lambda} \xi^u \in B_d \text{ by } [x_1 \xi_{i_1} \xi_{i_2}, x^k y^{\lambda} \xi^{u - \langle i_1 \rangle - \langle i_2 \rangle}] = (1 - \lambda - 2^{-1}|u| + 1)x^k y^{\lambda} \xi^u.$

(iii) $k_1 = 0$.

 $\begin{array}{l} (\mathbf{m}) \ \kappa_{1} = 0, \\ \text{For } |u| \geq 1, \text{ if } 1 - \sum_{j \in M_{1}} \mu_{j} k_{j} - \lambda - 2^{-1} (|u| - 1) \not\equiv 0 \pmod{p}, \text{ then by means of } \\ [x_{1}\xi_{i_{1}}, x^{k}y^{\lambda}\xi^{u-\langle i_{1}\rangle}] = (1 - \sum_{j \in M_{1}} \mu_{j}k_{j} - \lambda - 2^{-1} (|u| - 1))x^{k}y^{\lambda}\xi^{u}, \text{ we see that } x^{k}y^{\lambda}\xi^{u} \in B_{d}. \\ \text{For } |u| \geq 2, \text{ if } 1 - \sum_{j \in M_{1}} \mu_{j}k_{j} - \lambda - 2^{-1} (|u| - 1) \equiv 0 \pmod{p}, \text{ then } 1 - \sum_{j \in M_{1}} \mu_{j}k_{j} - \lambda - 2^{-1} (|u| - 2) = 2^{-1} \not\equiv 0 \pmod{p}. \text{ According to } [x_{1}\xi_{i_{1}}\xi_{i_{2}}, x^{k}y^{\lambda}\xi^{u-\langle i_{1}\rangle-\langle i_{2}\rangle}] = (1 - \sum_{j \in M_{1}} \mu_{j}k_{j} - \lambda - 2^{-1} (|u| - 2))x^{k}y^{\lambda}\xi^{u}, \text{ we have } x^{k}y^{\lambda}\xi^{u} \in B_{d}. \\ \text{For } |u| = 0, \text{ the accumption } d \geq 2 \text{ in this max}, \text{ if } u \in \mathbb{N}, \text{ if } u \in \mathbb{N}. \end{array}$

For |u| = 0, the assumption $d \ge 3$ in this proposition implies that $\sum_{i \in M_1} k_i + 2k_1 - \sum_{i \in M_1} k_i + 2k_1$ $2 \ge 3$. If $x_i x^{k-e_i} = 0$ for all i, then $\varepsilon_0(k_i) = 0$. Hence $d = \sum_{i \in M_1} k_i + 2k_1 - 2 = \sum_{i \in M_1} k_i - 2 \equiv -2 \pmod{p}$, contradicting $d \ne 0, -2 \pmod{p}$. Thus there exists an $i \in M_1$ such that $x_i x^{k-e_i} \neq 0$, which implies $x_i^2 x^{k-2e_i} \neq 0$. Then we get $x^k y^{\lambda} \in B_d$ by virtue of $[x_i^3, x^{k-2e_i+e_i'}y^{\lambda}] = 3\alpha(k_{i'}+1)^* x^k y^{\lambda}$, where $\alpha = \pm 1$.

3.6. Proposition. The algebra Ω dose not possess a nondegenerate associative for 2n + 1 $4 - q \equiv 0 \,(\mathrm{mod}p).$

Proof. We know that $\Omega = \bigoplus_{i=-2}^{\tau} \Omega_i$, where $\Omega_{\tau} = \operatorname{span}_{\mathbb{F}} \{ x^{\pi} y^{\eta} \xi^{\omega} \mid \eta \in H \setminus \{0\} \}$. Clearly $\dim \Omega_{\tau} = p^m - 1$ and $\dim \Omega_{-2} = p^m$. Thus $\dim \Omega_{\tau} \neq \dim \Omega_{-2}$. Then our assertion is true by Proposition 2.1 in [10]. \square

3.7. Theorem. The second cohomology group $H^2(\Omega, \mathbb{F})$ is (s+1)-dimensional.

Proof. It was proved in [9] that $H^2(L, \mathbb{F})$ is isomorphic to the vector space of skew outer derivations from L into L^* if the modular Lie superalgebra L is simple and does not admit any nondegenerate associative form. We see that Ω is simple (see [13]) and has no nondegenerate associative form according to Proposition 3.6. We propose to show that the vector space V of skew derivations from Ω to Ω^* decomposes as

$$V = \bigoplus_{i=1}^{s+1} \mathbb{F}\psi_i \oplus \operatorname{Inn}_{\mathbb{F}}(\Omega, \Omega^*)$$

where ψ_i defined in Proposition 3.2 is regarded as a skew derivation from Ω to Ω^* for $i \in M \cup T$.

Let $\psi \in V$ of degree l. Then $-2\tau \leq l \leq 4$. For $-(\tau - 1) \leq l \leq 4$, by corresponding ψ to the root space decomposition, we obtain $\psi = 0$ or $l \equiv 0 \pmod{p}$. As $\tau \equiv 0 \pmod{p}$, we have $\psi = 0$ for $l = -\tau + 1, -\tau + 2, -\tau + 3, -\tau + 4$. Let $5 - \tau \leq l \leq 4$. According to Proposition 3.1, ψ can be extended to a skew derivation $\widetilde{\psi}: \widetilde{\Omega} \to \widetilde{\Omega}^*$. By Lemma 3.4, it follows that there are $\vartheta_1, \vartheta_2, \dots, \vartheta_s \in \mathbb{F}$ and $f \in \widetilde{\Omega}^*$ such that

$$\widetilde{\psi}(z) = \sum_{i=1}^{s} \vartheta_i \psi_i(z) + (-1)^{|z||f|} z \cdot f, \quad \forall \ z \in \widetilde{\Omega}^-.$$

Put $g := f \mid_{\Omega}$. Then $\psi(z) = \sum_{i=1}^{s} \vartheta_i \psi_i(z) + (-1)^{|z||g|} z \cdot g$ for all $z \in \Omega^-$. Hence, $\psi - \sum_{i=1}^{s} \vartheta_i \psi_i \in \operatorname{Inn}(\Omega, \Omega^*)$ by virtue of Lemma 2.7.

For $-2\tau \leq l \leq -\tau$. According to the proof above, we see that $\psi = 0$ or $l \equiv 0 \pmod{p}$. Then $\psi = 0$ for $l = -\tau - 1 \not\equiv 0 \pmod{p}$. Thus $-2\tau \leq l \leq -\tau - 2$ and $l = -\tau$. We first consider the case $-2\tau \leq l \leq -\tau - 2$. Note that $-(\tau - 1 + l) \geq 3$ and $-(\tau - 1 + l) \not\equiv$ $0, -2 \pmod{p}$. Then Lemmas 2.8 and 3.5 ensure that $\psi = 0$. For the case $l = -\tau$, we define a bilinear symmetric form $\zeta : \Omega \times \Omega \to \mathbb{F}$ given by

$$\zeta(x^k y^\lambda \xi^u, x^l y^\eta \xi^v) = \sigma_\tau(x^k x^l y^{\lambda+\eta} \xi^u \xi^v)$$

It is easily seen that $\operatorname{rad}(\zeta) = \{x \in \Omega \mid \zeta(x, y) = 0, \forall y \in \Omega\} = \mathbb{F}1$. Let $\varpi : \Omega \to \widetilde{V}$, $\widetilde{V} := \Omega/\mathbb{F}1$, be the canonical projection. We denote by ρ the bilinear form on \widetilde{V} which is induced by ζ . One may easily verify that the results of Theorems 3.3 and 3.7 in paper [3] are also true for Lie superalgebras. It follows that there is a unique skew *p*-module homomorphism $D: \widetilde{V} \to \widetilde{V}$ of degree -2 such that

$$\psi(x)(y) = \rho(D(\varpi(x)), \varpi(y)), \quad \forall \ x, y \in \Omega,$$

where

$$P := \Omega^- \oplus \operatorname{span}_{\mathbb{F}} \{ x_i x_j \mid 2 \le i, j \le r-1 \} \oplus \operatorname{span}_{\mathbb{F}} \{ x_i \xi_j \mid 2 \le i \le r-1, r+1 \le j \le s \}$$
$$\oplus \operatorname{span}_{\mathbb{F}} \{ \xi_i \xi_j \mid r+1 \le i < j \le s \}.$$

Clearly, the mapping D is uniquely determined by $D(\varpi(x^{\pi-e_2}\xi^{\omega}))$. A direct computation entails the existence of $\beta \in \mathbb{F}$ with $D(\varpi(x^{\pi-e_2}\xi^{\omega})) = \beta \varpi(x^{\pi-e_1-e_2}\xi^{\omega})$ by the degree of D. As a result, $D(v) = 2^{-1}\beta \cdot 1 \cdot v$ for $v \in \widetilde{V}$, and $\psi = \beta \psi_{s+1}$. Consequently, the dimension of the vector space of skew outer derivations of Ω is s + 1 and our assertion is true. \Box

References

- S. Bouarroudj, P. Grozman, D. Leites, Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009).
- [2] S. Chiu, Central extensions and H¹(L, L^{*}) of the graded Lie algebras of Cartan type, J Algebra 149 (1992) 46–67.
- [3] R. Farnsteiner, Central extensions and invariant forms of graded Lie algebras, Algebra Groups Geom. 3 (1986) 431–455.
- [4] R. Farnsteiner, Dual space derivations and H²(L, F) of graded Lie algebras, Canad. J. Math. 39 (1987) 1078–1106.
- [5] W.D. Liu, Y.Z. Zhang, X.L. Wang, The derivation algebra of the Cartan-type Lie superalgebra HO, J. Algebra 273 (2004) 176–205.
- [6] J.X. Yuan, W.D. Liu, W. Bai, Associative forms and second cohomologies of Lie superalgebras HO and KO, J. Lie Theory 23 (2013) 203–215.
- [7] W.D. Liu, J.X. Yuan, Special odd Lie superalgebras in prime characteristic, Sci. China Math. 55 (2012) 567-576.
- [8] W.Q. Wang, L. Zhao, Representations of Lie superalgebras in prime characteristic, *Proc. Lond. Math. Soc.* 99 (2009) 145-167.
- Y. Wang, Y.Z. Zhang, Derivation algebra Der(H) and central extensions of Lie superalgebras, Comm. Algebra 32 (2004) 4117–4131.
- [10] Y. Wang, Y.Z. Zhang, The associative forms of graded Cartan type Lie superalgebras. Chin Adv Math 29 (2000) 65-70
- [11] W.J. Xie, Y.Z. Zhang, Second cohomology of the modular Lie superalgebra of Cartan type K, Algebra Colloq 16 (2009) 309-324
- [12] X.N. Xu, L.Y. Chen, Y.Z. Zhang, On the modular Lie superalgebra Ω, J. Pure Appl. Algebra 215 (2011) 1093–1101.
- [13] Y.Z. Zhang, Q.C. Zhang, Finite-dimensional modular Lie superalgebra Ω, J. Algebra 321 (2009) 3601–3619.