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Abstract

We generalize the concept of weakly regularity in semigroups to S-acts,
where S is a monoid. We prove among other results that if a monoid
is von-Neumann regular then weakly regularity and von-Neumann reg-
ularity, in the context of S-acts, coincide. We also define locally pro-
jective S-acts, which is the generalization of projective S-acts. We
consider many relationships between weakly regular S-acts and locally
projective S-acts.
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1. Preliminaries

A right S-act is a triple (M, S, ), where M is a nonempty set, S is a semigroup and
0 : M xS — M is a mapping such that §(m, st) = 6(6(m, s),t) for allm € M and s,t € S.
For simplicity, we set d(m, s) = ms. We denote right S-act by Ms. Analogously, we can
define a left S-act which we denote as sM. An Si1-Sa-biact is a 5-tuple (M, S1, S2, 01, d2),
where (M, S1,01) is left Si-act and (M, Sz, d2) is right Sa-act. That is, s1(msz2) = (s1m)s2
for all s1 € Si, s2 € S2 and m € M. We denote Si-Se-biact by s, Ms,. A right
S-act is said to be wunitary if S is a semigoup with identity 1 then m1 = m for all
m € M. A nonempty subset N of a right S-act Mg is said to be S-subact of Mg
if NS C N. Let Ms and Ag be right S-acts. A mapping f : Ms — Ag is called
S-homomorphism if f(ms) = f(m)s for all m € M and s € S. The S-monomorphism, S-
epimorphism, S-isomorphism and S-endomorphism are defined as usual. Simply, we use
the abbreviation hom for homomorphism, mon for monomorphism, epi for epimorphism,
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iso for isomorphism and end for endomorphism. Let Ag and Bgs be right S-acts. We
denote the set containing all homs from As to Bs as

H(A,B) ={f| f is an S-homomorphism from As to Bs}.

Clearly, the set H(A, A) is a monoid with respect to the composition of mappings. Every
right S-act Ag is a left (A, A)-act under the action pa = 1(a), where ¢ € H(A, A) and
a € A

A nonempty subset U of a right S-actAg is called a generating set of Ag if every
element a € A can be represented as a = us for some u € U,s € S. We say that Ag is
finitely generated if |U| < co. We call Ag cyclic if generating set U of Ag is a singleton set.
A generating set U of Ag is called a basis of Ag if every element a € As can be uniquely
represented in the form a = us for some u € U,s € S. That is, if a = u1s1 = u2s2 then
u1 = uz and s1 = s3. A right S-act is called free if it has a basis. A right S-act Ps is
called projective if for every S-epi g : Ms — Ngs and every S-hom h : Pg — Ng there
exists an S-hom k : Ps — Mg such that gk = h, where Ms and Ng are any S-acts.
Dual to projective S-acts, there is the notion of injective S-acts. A right S-act Ag is
called injective if for any S-mon « : Cs — Bs and S-hom 8 : Cs — Ag, there is an
S-hom p: Bs — Ag such that pa = 8, where Bg and Cs are any S-acts. For our later
convenience we recall the following two results.

1.1. Proposition ([4]). Let J be a nonempty set. Let |JX; be the disjoint union of
right -acts X; and take injections v; : X; — |J X; defined by v; = IU X51x,” where IU X,

denotes identity mapping. Then U X is an S-act and the injections v; are S-homs, for all
j € J. Moreover, for every right S-act Ks and for every family {k; € H(X;,Ks),j € J},
the mapping k : \J X; — Ks with k(z) = k;(z) for z € X; is the unique S-hom such that
ky; =kj forallj e J.

1.2. Proposition ([4]). A right S-act Ms is projective if and only if Mg = UPj, where
P; =2 e;8, forallj € J.

In the rest of the paper, by an S-act we always mean unitary right S-act. For the
sake of clarity, we sometimes suppress S in the notation of S-acts.

2. Weakly Reagular S-acts

Following [3], we call a monoid S right weakly regular, if for all t € S, t is in (tS)>.
Needless to say, S is called left weakly regular if for all t € S, t is in (St)2. In this section,
we introduce the notion of weakly regular S-acts. The following is the formal definition
of weakly regular S-acts.

2.1. Definition. An S-act Mg is called weakly regular if for all m € M, there exist
S-homs 9 € H(M, M) and £ € H(M, S) such that m = ¢(m)&(m).

2.2. Theorem. A monoid S is left weakly regular if and only if the right S-act Ss is
weakly regular S-act.

Proof. = Let S be a weakly regular monoid. For all 2 € S, z is in (Sz)?. That is,
xz = yxzx for some y,z € S. We define the mapping a : Ss — Ss by a(a) = ya, for all
a € S, where y is fixed. We also define the mapping 8 : Ss — Ss by 3(b) = zb, for all
b € S, where z is fixed. Clearly, these two mappings are S-homs. The element = can be
represented as x = a(z)B(x). Thus, Ss is weakly regular.

< Suppose Ss is weakly regular. For all ¢t € Sg, there exist S-homs 1, £ € F(S, S) such
that ¢t = ¥ (£)&(t) = ¥ (1)t £(1)t = sts't, where s = (1) and s’ = £(1). Thus, S is weakly
regular. O



2.3. Corollary. A monoid S is right weakly regular if and only if the left S-act 35S is
weakly regular S-act.

Proof. The proof is similar to the above theorem. O

2.4. Proposition. A bisubact 5,01y Ns of a weakly regular biact s¢ar,aryMs is weakly
reqular.

Proof. For all n € N, there exist S-homs ¢ € H(M, M) and § € H(M, S) such that n =
(n)€(n). We know that scar,an)Ns is a left H(M, M)-subact of 5¢(as,aryM. Therefore,
(n) is in N. But g(a,a)Ns is a right S-subact of Mg too. Therefore, ¢(n)§(n) is in
N. Let 1[1 and é be restrictions of ¢ and & respectively to N. We can rewrite the above
equation as n = ¥(n)€(n). Hence, se(m,m)Ns is weakly regular. O

2.5. Lemma. Let Mg be an S-act. For any m € M and any S-hom & € H(M, S), the
mapping m& : Ms — Mg defined by (m&)(x) =m - &(x), for allz € M, is S-end.

Proof. Obvious. O

We define the following notation as we are going to use it in our next result. To define
we proceed as follows. Let Ag and Bg be two S-acts and X be a nonempty set. We
define

HA,B)(X)={f(z) | fe H(A,B) ANz € X}.

2.6. Theorem. An S-act Mg is weakly regular if and only if N = NH(M, S)(N) for all
left H(M, M)-subacts s¢(n,ay N of the left H(M, M)-act scar,an M.

Proof. = For all n € N, there exist S-homs ¢ € H(M,M) and { € H(M,S) such
that n = ¥(n)€(n). As gcu,m) N is subact of s¢ar )M, it follows that ¢(n) is in
N. Therefore, n is in NH(M,S)(N). Hence, N C NH(M,S)(N). To prove that
NH(M,S)(N) C N, we proceed as follows. Let n&(n’) be in NH(M,S)(N), where
n,n’ € N and £ € H(M,S). We can write né(n') = (n€)(n). By Lemma 2.5, nf is an
S-hom from Ms to Ms. It follows that (n€)(n') is in N because ¢, a) N is subact of
Ms. Thus, we conclude N = NH(M, S)(N).

< For all m € M, we know that s¢ar, v H (M, M))(m) is subact of sear,ayM. By
assumption, we have H(M, M)(m) = H(M, M)(m)H(M, S)(H(M, M)(m)). It follows
that,

m = I(m) = Y(m)§(y(m)) = Y(m)(§ 7)(m),
where I € H(M, M) is an identity mapping, ¥,y € H(M,M) and £, & v € H(M,S).
Thus, Mg is weakly regular. ]

Before we mention our next result, we recall the following definition.

2.7. Definition. An S-act Ag is a retract of an S-act Bg if there exist S-homs o : Ag —
Bs and : Bs — As such that 8 o = I4, where I4 is the identity mapping from Ag to
As.

2.8. Lemma. FEvery retract of a weakly reqular S-act is weakly regular.

Proof. Let Bs be a retract of a weakly regular S-act Mg. This implies that there exist
S-homs a : Bs — Mg and 8 : Ms — Bg such that 8 a = Ig. Let b be in B. We have

(21) b= pB(a(b)).
As Mg is weakly regular, there exist S-homs ¢ € H(M, M) and £ € H(M, S) such that
(22)  ab) = (a(b))&(cx(b)).



From equations 2.1 and 2.2, we get

b= B(Y(a(b))§(b)) = (B 1 a)(b)(§ ) (b),
where 8 pa € H(B, B) and £ a € H(B, S). Thus, Bs is weakly regular. a

2.9. Definition. Let Mg be an S-act. An element 0 in Mg is called a fized element if
Ot =0 for all tin S.

2.10. Theorem. Let {M; | j € J} be a family of S-acts, where each M; has a fized
element. Their disjoint union UjEJ M is weakly regular if and only if each M; is weakly
regular.

Proof. = We show that, for all j € J, M; is a retract of U M. To show this we proceed
as follows. We define the mapping «; : |J M; — M, by

o (z) = x if x € M;

IV 6 otherwise

where 6 is a fixed element in M;. It is not hard to show that o; is an S-hom . Let
v; : Mj — |J M; be injection, for all j € J. It implies that a v; = Iar;. By Lemma 2.8,
M; is weakly regular.
< Let m be in U].GJ M. This implies that, there exists an ¢ in J such that m is in M;.
As M; is weakly regular, there exist S-homs ¢; € H(M;, M;) and & € H(M;,S) such
that

(23)  m=1hi(m)&(m).

We define S-hom ¢ : | J M; — |J M; by () = 1b;(x) (where 1; € H(M;, M;)) whenever
x € Mj,forallj e J. Let,foralljeJ, v : M; — U M; be injections. Consider a family
{¢; € H(M;, S),j € J}. By Proposition 1.1, there exists a unique S-hom & : [JM; — S
with £(y) = &;(y), for y € Mj, such that £ v, = &;, for all j € J. Thus, the above
Equation 2.3 can be rewritten as

m = P(m)§ vi(m) = Pp(m)€(m).

Thus, U Mj is weakly regular. O

jeg
2.11. Proposition. Let Ss be a weakly regular S-act. If e is an idempotent element in
S, then eSs is weakly reqular.

Proof. 1t is enough to show that eSg is a retract of Ss. To show this we begin by defining
the mapping a : Ss — eSs by a(t) = et, for all ¢ € S. Clearly, « is S-hom. Suppose
that 8 : eSs — Ss is an inclusion mapping. Let et be an element of eS. We have
a Bet) = alet) = €’t = et. This implies that o 8 = I.s. Thus, eSs is a retract of
Ss. O

2.12. Theorem. A monoid S is a weakly reqular S-act if and only if every projective
S-act is weakly regular.

Proof. = Let As be a projective S-act. By Proposition 1.2, we have Ag = UPj7 where
P; is isomorphic to e;5, e; is idempotent in S, for all j € J. By Proposition 2.11, each
e;S is a weakly regular S-act. From Theorem 2.10, it follows that UejS is a weakly
regular S-act. Hence, Ag is weakly regular.

< Since every monoid S (considered as a right S-act) is projective. So by our assumption,
S is weakly regular S-act. O



Let us recall that an S-act is called free if it has a basis. We borrow the following
proposition from [4].

2.13. Proposition. Every free S-act is projective.
Now, we are ready to prove our next result.

2.14. Proposition. As S-act Ss is weakly regular if and only if every free S-act is
weakly reqular.

Proof. = The proof is evident from Theorem 2.12 and Proposition 2.13.

< As every monoid S is free with basis {1}, where 1 is the identity element in S.
Therefore, Ss is free with basis {1}. We conclude that Sgs is weakly regular. (]

2.15. Proposition. Let Ms be a free S-act with basis {u;}, j € J. Then for all j € J,
S-act u;Ss is a retract of Ss.

Proof. For all j € J: we define the mapping «; : u;S — Ss by a;(u;z) = z, for all
x € S. We also define the mapping 3; : Ss — u;S by B;(y) = u;y, where y is in S. It is
not hard to show that these mappings are S-homs . Clearly, 8 o = I,;s. Hence, u;Ss is
a retract of Sg. O

A semigroup X is called von-Neumann regular if for any x € X, there exists an element
y in X such that z = zxyx. We extend the von-Neumann regularity of semigroups to S-
acts through the following definition.

2.16. Definition. An S-act Mg is called von-Neumann regular if for all m € M there
exists an S-act £ € H (M, S) such that m = m&(m).

The immediate consequence of this definition is the following result, whose proof is
straightforward.

2.17. Lemma. FEvery von-Neumann regular S-act is weakly reqular. (]

2.18. Lemma. If S is von-Neumann regular monoid then every weakly reqular S-act is
von-Neumann reqular.

Proof. Suppose Mg is a weakly regular. For all m € M, there exist S-homs ¢ € H(M, M)
and § € H(M, S) such that
(24)  m=y¢(m)&(m).

As S is von-Neumann regular monoid, there exists an element = € S such that
(25)  £m) = Em)e(m).

Putting Equation 2.5 in Equation 2.4, we get

(26)  m = p(m)E(m)ae(m) = mag(m).

We define the mapping ¢ : Ms — Ss by ¢(m) = z€(m). Clearly, ¢ is S-hom . We
rewrite Equation 2.6 as m = m¢(m). Hence, Mg is von-Neumann regular. O

From the above two lemmas it follows that if a monoid S is von-Neumann regular
then the concept of von-Neumann regularity and weak regularity coincides over S-acts.
We formalize this observation in the following theorem.

2.19. Theorem. If a monoid S is von-Neumann regular, then for an S-act Ms the
following are equivalent:

(1) Ms is weakly regular,
(2) Ms is von-Neumann regular. O



3. Locally Projective S-acts

We recall that an S-act Pg is projective if for every S-epi g : Mg — Ng (where Mg
and Ng are any two S-acts) and every S-hom h : Ps — Ng, there exists an S-hom
k : Ps — Mg such that gk = h. We generalize the concept of projective in the following
definition.

3.1. Definition. An S-act My is called locally projective if for all m € M there exists
an element m’ € M and an S-hom & € H(M, S) such that m = m'&(m).

It follows immediately that a weakly regular S-act is locally projective. We formalize
this in the following lemma.

3.2. Lemma. FEvery weakly regular S-act is locally projective. O
Our next lemma follows from the lemma above and Lemma 2.17.

3.3. Lemma. For an S-act we have the following implications:

von-Neumann reqular = Weakly regular = Locally projective. g

3.4. Theorem. FEvery projective S-act is locally projective.

Proof. Let Ms be a projective S-act. By Proposition 1.2, we can write Mg = UPj7
where P; = e;S, e; is an idempotent element of S, for all j € J. We represent the
isomorphism between P; and e;S by a; for all j € J. Let m be in M. This implies that
there exists an ¢ in J for which m is in P;. There exists an element s in S such that

. . . . —1
where m' = ai(e;) € Pi. As oy is S-iso, we can define its invrese. Assume that a; = :

P; — ¢;S is the inverse of a;. Thus, a[l = e;5. By Proposition 1.1, there exists the
unique S-hom a : |JP; — ;S with a(z) = a;'(z) for € P; such that af; = o] *,
where ; is injection from P; to |J P;. It follows that
m=me;s
=m'a;’(m)
= m'(af3)(m)

=m'a(m)
Thus, UPj is locally projective, so is Ms. O
3.5. Lemma. A retract of a locally projective S-act is locally projective.

Proof. Let an S-act Mg be locally projective. Suppose an S-act Ag is a retract of Mg.
There exist S-homs a: As = Mg and 8 : Ms — As such that 8 a = I4. To show Ag
is locally projective, we proceed as follows. Let a be an element in A. We write

(3.1)  a=pala).



We set a(a) = m. As Mg is locally projective, for m there exists m’ € M and ¢ € H(M, S)
such that m = m’¢(m). Putting the value of m in Equation 3.1, we get

a = B(m'¢(m))
(m")€(m)
(m")¢(e(a))
a'(€ a)(a),

where a’ = 3(m'). Thus, Ags is locally projective. O

B
B

m
m

3.6. Theorem. Let {M; | j € J} be a family of S-acts, where each M; has a fized
element. Their disjoint union |J
locally projective.

s M; is locally projective if and only if each M; is

Proof. = For all j € J. Let v; : M; — UMj be injection. We define the mapping
Qo UM]' — Mj by

o (z) = x if x € M;
AP =N 0 otherwise

where 0 is a fixed element in Mj. It is not hard to show that «; is S-hom . Clearly,
a; v; = In;. Bach Mj is a retract of [ J M;. By Lemma 3.5, each M; is locally projective.

< Let m be an element in UM] This implies that there exists an ¢ € J for which
m € M;. As M, is locally projective, there exists an element m’ € M; and an S-hom
& € H(M;, S) such that

(3.2)  m=m'&(m).
We assume that 8; : M; — UjeJ M; are injections and a family {¢; € H(M;,S),j € J}.

By Proposition 1.1, there exists the unique S-hom ¢ : UM; — Ss with &(z) = &(x)
(where x € Mj) such that £8; = &; for all j € J. Thus, Equation 3.2 can be written as:

m = m!(£87)(m)
= m/&(Bi(m))

=m'&(m).

Hence, U Mj is locally projective. O

jeJ

3.7. Definition. An S-subact Ng of an S-act Mg is called ideal pure if
NsJ = MgJn Ns,

for all left ideal J of S.

3.8. Proposition. A subact of a locally projective S-act is locally projective if the subact
is ideal pure.

Proof. Let n be an element in N. As Mg is locally projective, there exists an m € M
and an S-hom ¢ € H(M, S) such that n = mé&(n). Let £ be the restriction of £ to Ng,
that is, & |ng= £. We can rewrite the above equation as n = mé(n) For simplicity, we
set £(n) = z. Consider the left ideal J = Sz generated by x. As Ng is ideal pure, this



implies that NsJ = MsJIN Ns. We get,
n=mx € MsIN Ng = NgJ
= n/tz for some n’ € N,tx €9

1 1 ’
=n"xz, wheren =nteN

=n"E(n).

Hence, Ng is locally projective. O

3.9. Theorem. The following are equivalent.
(1) An S-act Mg is weakly regular.
(2) Ms is locally projective and every H(M, M)-S-bisubact of sc(a,ayMs is ideal
pure.
(8) Ms ts locally projective and for allm € M, H(M, M)mS is ideal pure.

Proof. (1) = (2) Let Mg be weakly regular S-act. By Lemma 3.2, Mg is locally
projective. To show that H(M, M)-S-bisubact s¢(ar,am)Ns of scar,mryMs is ideal pure,
we proceed as follows. Let z be an element in MsJ N Ng, where J is an ideal of S. As
by Proposition 2.4, s¢(a,a1) N is weakly regular, therefore, for the element z, there exist
P € H(N,N) and £ € H(N, S) such that x = ¢(z)&(x). As z is in MsJ too, there exist
elements m € M and t € J such that x = mt. We can write
£(z) = &(mt) =¢(m)t € STCT.
It follows that = ¢ (z)€(z) is in NsJ. So, MsI N Ng is contained in NgJ. Clearly, NgJ
is contained in Ng. Hence, MsJ N Ns = NgJ.
(2) = (3) Asforall m € M, H(M, M)mSs is H(M, M)-S-bisubact of 5¢(as,ar)Ms, so
by our assumption in (2), H(M, M)mSs is ideal pure.
(3) = (1) As Ms is locally projective, for all m € M, there exists m’ € M and S-hom
&€ € H(M, M) such that m = m’¢(m). By Lemma 2.5, the mapping m/€ is in H(M, M)
and by the fact that S contains the identity element 1, it follows that the m is in
Ms€(m) 0 H (M, M)mS.
By our assumption in (3), H(M, M)mS is ideal pure. Consider the left ideal S&(m) of
S. We can write
FH (M, M)mSSE(m) = H(M, M)mSE(m) = MsSE(m) NH(M, M)mS
= Ms&(m) N H(M, M)mS.
This implies that m is in H(M, M)mSE(m). This implies that there exists ¢p € H(M, M)
and u € S such that

m = Ymt&(m)
= (¢(mt))&(m)
= yp(m)t§(m),
where t£ € H(M, M). Thus, Mg is weakly regular. O

Before we begin our next result we define PM-injective S-acts stated in [1]. Let Mg ba
a fixed S-act. We say an S-act Ag is PM-injective if each S-hom from a cyclic S-subact
mS (for all m € M) of Mg to As extends to an S-hom from Mg to As.

3.10. Theorem. The following are equivalent:

(1) An S-act Ms is von-Neumann regular.
(2) Ms is locally projective and every S-act is PM-injective.



(3) Ms is locally projective and for each m € M, mSs is PM-injective.

Proof. (1) = (2) Let an S-act Mg be von-Neumann regular. By Lemma 3.3, Mg is
locally projective. Let Qs be an S-act. To show that Qs is PM-injective, we proceed
as follows. Assume that 8 : mSs — Qs is S-hom from a cyclic S-subact m.S (where
m € M) of the Ms to Qs. We define the mapping « : Ss — mSs by a(t) = mt. Clearly,
a is S-hom . Consider an S-hom ¢ from Mg to Ss. Such S-hom exsits as My is locally
projective. Now, the mapping Saf : Ms — Qs is the required S-hom that extends [.
Hence, Qs is PM-injective.

(2) = (3) Obvious.
(3) = (1) As Mg is locally projective, for all m € M, there exists m’ € M and S-hom
& € H(M, S) such that

(3.3)  m=m'E(m).

Let £ : mSs — Sg be restriction of £. Let I : mSs — mSs be identity mapping. As
mSs is PM-injective, there exists an extension, say p : Ms — mS, of I. We know that
Ep(m) = &(m). We can write

(34)  m'ép(m) = m'&(m).
Consider Equation 3.3:
m =m'é(m)

= m'ép(m); Using Equation 3.4

= m'ép(m’ﬁ(m)); Using Equation 3.3
m'Ep(m')E(m)
m'€(mt)€(m); Aussuming that p(m’) = mt for some t € S
m/§(m)t&(m)
m'&(m)(t€) (m)

= m(t&)(m),
where t£ € H(M,S). Thus, Mg is von-Neumann regular. |
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