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Abstract
It is known that composite quantile regression estimator could be much
more efficient and sometimes arbitrarily more efficient than the least
squares estimator. In this paper, tests for the index parameter and
index function in the single-index composite quantile regression are
considered. The asymptotic behaviors of the proposed tests are estab-
lished and their limiting null distributions are demonstrated to follow
an asymptotically χ2-distribution. The simulation studies and a real
data application are conducted to illustrate the finite sample perfor-
mance of the proposed methods.

2000 AMS Classification: Primary 60G08 62G10; secondary 62G20.
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1. Introduction
We consider the single-index model

Y = g0(XT γ0) + ε, (1.1)

where Y is a response variable and X is a vector of p-dimensional covariates; g0(·) is an
unknown univariate measurable function; γ0 is the unknown single-index vector coefficient
and ‖γ0‖ = 1 for model identifiability, where ‖ · ‖ denotes the Euclidean norm; the error
ε is independent of X with E(ε) = 0.

Single-index models (SIMs) provide an efficient way of coping with high-dimensional
nonparametric estimation problems and avoid the “curse of dimensionality" by assuming
that the response is only related to a single linear combination of the covariates. Various
methods are available for fitting the SIMs. Härdle and Stoker (1989) employed the aver-
age derivative method (ADE) to study the SIMs. Ichimura (1993) studied the properties
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of a semiparametric least-squares estimator in a general single-index model. Yu and Rup-
pert (2002) proposed the penalized spline estimation procedure, while Xia and Härdle
(2006) applied the minimum average variance estimation method, which was originally
introduced by Xia et al. (2002) for dimension reduction. Wu et al. (2010) proposed a
back-fitting algorithm which was shown to be more efficient than the ADE, to serve the
same purpose in single-index quantile regression. Cui et al. (2011) considered an esti-
mating function approach to generalized single-index models with an efficient fixed point
algorithm. Zhu et al. (2012) proposed a computationally efficient two-step estimation
procedure to estimate the parameters involved in the quantile regression function. Other
works about SIMs can see Xue and Zhu (2006); Huang and Zhang (2011); Huang et al.
(2013) and so on.

Some authors also studied testing problems for the index parameter γ0 and the index
function g(·) based on least square method. For example, Zhang et al. (2010) employed
the generalized likelihood ratio (GLR) test method to the testing problem for the para-
metric components in the SIMs. The GLR test was first proposed by Fan et al. (2001)
for nonparametric models. Huang and Zhang (2010) employed the GLR test for varying-
coefficient single-index model. Liang et al. (2010) used GLR test and Wald test to deal
with the testing issue of the index parameters and proposed a goodness-of-fit test to
the nonparametric component in the partially linear single-index models. Huang and
Zhang (2012) extended GLR test method to test the parametric parts in a single-index
varying-coefficient model. Wong et al. (2013) constructed a generalized F-type testing
statistic to test the significance of index parameters in varying-coefficient single-index
models. However, the usual least squares method is sensitive to outliers and does not
perform well when the error distribution is heavily skewed. Since outliers or aberrant
observations are usually observed in regression model as well as in many other fields, a
reliable treatment of outliers is an important step in highlighting features of a dataset.
The least absolute deviation method is an obvious alternative to the least squares. How-
ever, the relative efficiency of the least absolute deviation can be arbitrarily small when
compared with the least squares. Therefore, we do not consider it as a safe alternative
to the least squares.

The composite quantile regression was first proposed by Zou and Yuan (2008) for
estimating the regression coefficients in the classical linear regression model. Zou and
Yuan (2008) showed that the relative efficiency of the CQR estimator compared with the
least squares estimator is greated than 70% regardless of the error distribution. Moreover,
CQR could be much more efficient and sometimes arbitrarily more efficient than the least
squares. Based on CQR, Kai, Li and Zou (2010) proposed the local polynomial CQR
estimators for estimating the nonparametric regression function and its derivative. It is
shown that the local CQR method can significantly improve the estimation efficiency of
the local least squares estimator for commonly-used non-normal error distributions. Kai,
Li and Zou (2011) studied semiparametric CQR estimates for semiparametric varying-
coefficient partially linear model. Jiang et al. (2012a) considered CQR method for
random censored data. Recently, Jiang et al. (2012b) extended CQR method to single-
index model. Furthermore, Jiang et al. (2013) proposed a computationally efficient
two-step composite quantile regression for single-index model. These nice theoretical
properties of CQR motivates us to consider testing problem for single index models
based on CQR method so as to make test statistics more effective and robust.

To the best knowledge of the authors, tests for the hypothesis of the index parameter
γ0 and index function g0(·) in single index composite quantile regression have not been
considered so far in the literature, and the purpose of the present paper is to propose test
method for this problem. The asymptotic behavior of the proposed test is demonstrate
that its limiting null distribution follows a χ2-distribution. It avoids density estimation



by introducing a novel and intriguing resampling scheme, so that the distribution of the
test statistic can be approximated.

The paper is organized as follows. In section 2, we introduce the test procedures
for model (1.1), and the main theoretical restults are also given in this section. Both
simulation examples and the application of real data are given in Section 3 to illustrate
the proposed procedures. Final remarks are given in Section 4. All the conditions and
technical proofs are deferred to the Appendix.

2. Methodology
2.1. Estimation. We first briefly recall the CQR method for SIMs. Suppose that
{xi, yi}ni=1 is an independent identically distributed (i.i.d.) sample from (X,Y ). For
xTi γ “close to" u, g(xTi γ) can be approximated linearly by

g(xTi γ) ≈ g(u) + g′(u)(xTi γ − u) = a+ b(xTi γ − u),

where a , g(u) and b , g′(u). Let ρτk (r) = τkr − rI(r < 0), k = 1, 2, . . . , q, be q check
loss functions at q quantile positions: τk = k/(q + 1). Let K(·) be the kernel weight
function and h is the bandwidth.

The estimation procedures for estimating γ and g(·) are stated as follows:
Step 0 (Initialization step). Obtain initial γ̂(0) from minimum average variance esti-

mation (MAVE) of Xia and Härdle (2006). Standardize the initial estimate such that
‖γ̂‖ = 1 and γ̂1 > 0.

Step 1. Given γ̂, obtain {â1j , . . . , âqj , b̂j}nj=1 by solving a series of the following

min
(a1j ,...,aqj ,bj)

q∑
k=1

n∑
i=1

ρτk{yi − akj − bj(xi − xj)
T γ̂}ωij ,

where ωij = K

(
xTi γ̂−x

T
j γ̂

h

)
/
∑n
l=1 K

(
xTl γ̂−x

T
j γ̂

h

)
and with the bandwidth h chosen

optimally.
Step 2. Given {â1j , . . . , âqj , b̂j}nj=1, obtain γ̂ by solving

min
γ

n∑
j=1

q∑
k=1

n∑
i=1

ρτk{yi − âkj − b̂j(xi − xj)
T γ}ωij ,

with ωij evaluated at γ and h from step 1.
Step 3. Repeat Steps 1 and 2 until convergence.
Step 4. Fix γ at its estimated value from Step 3. The final estimate of g(·) is

ĝ(u;h, γ̂) = 1
q

∑q
k=1 âk, where

(â1, . . . , âq, b̂) = arg min
(a1,...,aq,b)

q∑
k=1

n∑
i=1

ρτk{yi − ak − b(x
T
i γ̂ − u)}K

(
xTi γ̂ − u

h

)
.

Remark 1. The choice of the bandwidths can be found in Remark 1 of Jiang et al.
(2012b).

2.2. Testing index parameter. Consider the following testing problem

H0 : γ01 = · · · = γ0l = 0←→ H1 : not all γ0j = 0, j ≤ l, l ≤ p. (2.1)

Following the least absolute deviation analysis (Chen et al., 2008), we propose the
composite quantile likelihood ratio test method under the null hypothesis. This method
is an extension of the least absolute deviation techniques developed by Chen et al. (2008)



to the single index composite quantile regression. To test hypothesis (2.1), we define the
composite quantile likelihood ratio test statistics as follows:

λn =

q∑
k=1

n∑
i=1

ρτ{yi − g̃k(xTli γ̃l)} −
q∑
k=1

n∑
i=1

ρτ{yi − ĝk(xTi γ̂)},

where γ̃l and γ̂ are the estimators of γ0l and γ0 under H0 and H1, respectively. g̃k(xTli γ̃l)
and ĝk(xTi γ̂) are the same definition âk in Step 1 of Section 2.1 given γ̃l and γ̂ under H0

and H1, respectively. These estimators can be obtained by using the same estimation
method as that used in Section 2.1. Xl = (Xl+1, . . . , Xp) and γl = (γl+1, . . . , γp).

It is nature to see whether the asymptotic null distribution of the test statistic λn is
a χ2-distribution. The following theorem answers this question.
Theorem 1. Suppose that conditions (A1-A5) in the Appendix hold. Then, under H0

(2.1), as h→ 0, and nh→∞,

σ−1
n (λn − µn + dn)

L−→ N(0, 1),

where L−→ stands for convergence in distribution. Furthermore, if g(·) is linear or nh9/2 →
0, then, under H0 (2.1), the test statistic rKλn approximately follows a χ2-distribution
with rKµn degrees of freedom, namely

rKλn ∼ χ2(rKµn),

where

rK = 2µn/σ
2
n, µn = A(µpn − µln), σ2

n = A2(σ2
pn + σ2

ln), A =

q∑
k=1

τk(1− τk)

f(ck)
,

µpn =
|Ω|
h

(
K(0)− 1

2

∫
Ω

K2(t)dt

)
, µln =

|Ωl|
h

(
K(0)− 1

2

∫
Ωl

K2(t)dt

)
,

σ2
pn = 2

|Ω|
h

∫
Ω

(
K(t)− 1

2
K ∗K(t)

)2

dt, σ2
ln = 2

|Ωl|
h

∫
Ωl

(
K(t)− 1

2
K ∗K(t)

)2

dt,

dn = Op(
√
nh2) +Op(nh

4),

where K ∗K denotes the convolution of K, |Ω| is the length of the support of the density
f1(·) of XT γ, and |Ωl| is the length of the support of the density f2(·) of XT

l γl.

2.3. Testing index function. After obtaining nonparametric estimates of g0(·), re-
searchers frequently ask whether certain parametric models fit the nonparametric com-
ponents. Without loss of generality, a simple linear model under the null hypothesis is
considered. Accordingly, the null and alternative hypotheses are given as follows

H0 : g0(u) = α+ βu←→ H1 : g0(u) 6= α+ βu, for some u, (2.2)

where α and β are unknown constant parameters. The hypothesis test (2.2) considers
a semiparametric null hypothesis versus a semiparametric alternative hypothesis. We
consider the following test statistic

λ̃n =

q∑
k=1

n∑
i=1

ρτk{yi − α̂k − β̂x
T
i γ̂} −

q∑
k=1

n∑
i=1

ρτk{yi − ĝ(xTi γ̂)},

where α̂k and β̂ are the linear composite quantile regression estimators of α+ τk and β.
The following theorem shows that the asymptotic null distribution of the test statistic

λ̃n is still following a χ2-distribution.



Theorem 2. Suppose that conditions (A1-A5) in the Appendix hold. Then, under H0

(2.2), as h→ 0, and nh→∞,

σ̃−1
n (λ̃n − µ̃n + dn)

L−→ N(0, 1).

Furthermore, if g(·) is linear or nh9/2 → 0, then, under H0, the test statistic r̃K λ̃n
approximately follows a χ2-distribution with r̃K µ̃n degrees of freedom, namely

r̃K λ̃n ∼ χ2(r̃K µ̃n),

where r̃K = 2µ̃n/σ̃
2
n, µ̃n = Aµpn and σ̃2

n = A2σ2
pn.

2.4. Bootstrap test. To implement the proposed test, one usually needs to derive the
null distribution of the test statistic λn (or λ̃n). Although Theorem 1 (or Theorem 2)
provides us an asymptotic distribution on λn (or λ̃n). It is rather difficult and inaccurate
to estimate the nuisance parameter f(ck). In this section, the bootstrap test is used to
implement our proposed test procedure. Following Jiang et al. (2014), we rewrite the
details as follows.

Step 1. Compute the test statistic λn (or λ̃n) and the residuals ε̂i, i = 1, . . . , n from
the unrestricted model (1.1) by using the estimation procedure in Section 2.

Step 2. Generate n i.i.d. random variables ε̂∗1, . . . , ε̂∗n from the centered empirical
distribution of ε̂, and compute y∗i = g̃(xTli γ̃0l) + ε̂∗i (or y∗i =

∑q
k=1 α̂k + β̂xTi γ̂ + ε̂i),

i = 1, . . . , n. This forms a bootstrap sample {xi, y∗i }ni=1.
Step 3. Using the bootstrap sample in step 2, obtain the test statistic λ∗n in the same

manner as λn (or λ̃n). Further repeat this many times to generate a sample of statistic
λ∗n.

Step 4. Use the bootstrap sample in step 3 to determine the quantiles of the test
statistic under H0. Furthermore, obtain the p-value by calculating the percentage of
observations from the bootstrap sample of λ∗n whose value exceeds λn (or λ̃n).

3. Numerical studies
In this section, we first use Monte Carlo simulation studies to assess the finite sample

performance of the proposed procedures and then demonstrate the application of the
proposed methods with the real data analysis. The performances of CQR method with
different q are very similar (see the simulation part in Kai et al., 2010; Jiang et al.,
2012b and Jiang et al., 2013a). Furthermore, Kai et al. (2010, 2011) suggest q=9 for
CQR method. Therefore, we only consider q=9 for our proposed test method (CQR9).
Moreover, we compare our method with the method based on least squares (LS) of Zhang
et al. (2010) for index parameter and Liang et al. (2010) for index function.

3.1. Simulation example for index parameter. We conduct a small simulation
study with n = 100 and the data are generated from the following "sine-bump" model

Y = sin{π(γT0 X −A)/(B −A)}+ 0.1ε,

where X is uniformly distributed on [0, 1]3, A =
√

3/2 − 1.645/
√

12 and B =
√

3/2 +

1.645/
√

12. In our simulation, we consider four error distributions for ε : N(0, 1); t(3);
t(5) and U(−1, 1) distribution. All of the simulations are run for 1000 replicates and
number of resample is N = 1000. The null hypothesis is taken as H0 : γ03 = 0; here the
true parameters γ01, γ02 are taken as 1/

√
5, 2/

√
5, respectively.

For the power assessment, we evaluate the power in a sequence of alternatives with
parameters γ03, and according to each γ03, the true parameters γ01, γ02 are taken as some
fixed values for the model identifiability. Tables 1 lists the power functions at significance
level α = 0.05 for four random error distributions. The results show that the empirical



significance levels of two test method are close to the nominal significance levels when
the null is true under normal errors. For other non-normal errors, our proposed method
(CQR9) is better than LS method.

Table 1 Empirical significant levels and powers for Example 3.1.
Method γ03 N(0,1) t(3) t(5) U(-1,1)
LS 0.00 0.045 0.038 0.041 0.044

0.01 0.098 0.130 0.142 0.163
0.02 0.250 0.225 0.166 0.331
0.03 0.558 0.266 0.382 0.510
0.04 0.570 0.428 0.414 0.898
0.05 0.744 0.485 0.700 0.979
0.06 0.913 0.564 0.734 1.000
0.07 0.940 0.772 0.958 1.000
0.08 0.964 0.826 0.960 1.000
0.09 1.000 0.857 1.000 1.000
0.10 1.000 0.940 1.000 1.000

CQR9 0.00 0.047 0.048 0.053 0.050
0.01 0.073 0.176 0.176 0.181
0.02 0.151 0.314 0.194 0.426
0.03 0.439 0.375 0.441 0.669
0.04 0.600 0.675 0.488 0.900
0.05 0.760 0.720 0.723 0.984
0.06 0.877 0.800 0.755 1.000
0.07 0.918 0.868 0.959 1.000
0.08 0.980 0.895 0.980 1.000
0.09 1.000 0.959 1.000 1.000
0.10 1.000 1.000 1.000 1.000

3.2. Simulation example for index function. To examine the performance of the
test statistic in Section 2.3, we generated 1000 realizations from the model given below
with simple size n = 100.

Y = g0(XT γ) + 0.5ε.

Considering the following hypotheses:

H0 : g0(X) = θ0 + θ1X←→ H1 : g0(X) = θ0 + θ1X + r exp(πX),

where r ranges from 0.0 to 1.0. X = XT γ, X is uniformly distributed on [0, 1]2, and the
true parameters γ1 = 1/

√
5, γ2 = 2/

√
5 , θ0 = 2 and θ1 = 1. The random errors and

others are generated from the same way as in Section 3.1.
The simulation results are reported in Table 2. The performance of test statistic for

index function is the same as that of test statistic for index parameter. Therefore, the
test statistic for testing index function is also available.

3.3. Walking behavior data. We also illustrate the methodology via an application
to a walking behavior data set. The data set used here consists of weekly measurements
of the number of walking times and individual attributes factors based on a travel survey
of 126 individuals from Lujiazui Garden neighborhood in Shanghai between February
2012 and April 2012. Five individual attributes factors: age X1, gender X2, the highest
level of education X3, number of household X4, income X5 are considered. Our main
interest is to study the relationship between individual attributes and the number of
weekly walking times (Y ) in Lujiazui Garden neighborhood in Shanghai.



Table 2 Empirical significant levels and powers for Example 5.2.
Method r N(0,1) t(3) t(5) U(-1,1)
LS 0.0 0.044 0.036 0.043 0.040

0.1 0.221 0.251 0.257 0.302
0.2 0.329 0.280 0.299 0.554
0.3 0.482 0.302 0.361 0.758
0.4 0.593 0.380 0.444 0.924
0.5 0.758 0.498 0.579 0.994
0.6 0.888 0.557 0.687 0.996
0.7 0.946 0.635 0.836 1.000
0.8 0.970 0.730 0.874 1.000
0.9 0.994 0.798 0.924 1.000
1.0 1.000 0.892 0.972 1.000

CQR9 0.0 0.048 0.050 0.052 0.044
0.1 0.220 0.526 0.440 0.326
0.2 0.242 0.683 0.504 0.402
0.3 0.372 0.742 0.543 0.786
0.4 0.680 0.823 0.580 0.943
0.5 0.720 0.905 0.743 0.954
0.6 0.788 0.960 0.907 0.998
0.7 0.914 0.987 0.942 1.000
0.8 0.960 1.000 0.980 1.000
0.9 1.000 1.000 0.992 1.000
1.0 1.000 1.000 1.000 1.000

The single-index model

Y = g0(γ1X1 + γ2X2 + γ3X3 + γ4X4 + γ5X5) + ε, (3.1)

is fitted to the given data. We apply the proposed test method to see whether index
function is statistically significant. The bootstrap times is 1000 and only q = 9 is con-
sidered in this example. The p-value for above test problem are all 0.001. Therefore, the
single-index model (3.1) is suit to fit the given data under significance level α = 0.05.
Furthermore, a natural question is whether the coefficients of X1 − X5 are statistically
significant. To answer this question, the proposed test method for index parameter is
employed. The p-values for this problem are summarized in Table 3, which indicates that
X2 and X5 are not significant under significance level α = 0.05.

Finally, the single-index model

Y = g0(γ1X1 + γ3X3 + γ4X4) + ε,

is fitted to the given data. The estimated parametric coefficients are γ1 = 0.199; γ3 =
−0.601 and γ4 = −0.774.

Table 3 P-value of the GAVTγ test for Walking behavior data.
X1 X2 X3 X4 X5

γ 0.143 0.024 -0.566 -0.798 -0.141
P-value 0.044 0.414 0.006 0.029 0.333

4. Conclusion
The aim of this paper is to provide test statistic for linear hypothesis testing problem

in SIMs based on composite quantile regression. The proposed inference procedure via



resampling avoids the difficulty of density estimation. All simulation studies confirm that
the performance of the proposed method works well. The approach described here may
be extended to varying coefficient models (Kai et al., 2011), which would be considered
in future research.
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Appendix
To prove main results in this paper, the following technical conditions are imposed.

A1. The kernel K(·) is a symmetric density function with finite support.
A2. The density functions of XT γ and XT

l γl are compactly supported, bounded, Lip-
schitz continuous and bounded away from zero by a constant uniformly for γ and γl in
a neighborhood of γ0 and γ0l, respectively, and XT γ has a bounded support Ω for γ in
a neighborhood of γ0, XT

l γl has a bounded support Ωl for γl in a neighborhood of γ0l.
Further the density of XT γ0 and XT

l γl are bounded away from 0 and ∞ on its support.
A3. The function g0(·) has a continuous and bounded second derivative.
A4. The error terms ε has a symmetric distribution with a positive density f(·).
A5. E|ε|4 <∞.
Remark 2. Conditions (A1)-(A5) are standard conditions, which are commonly used in
single-index regression model, see Wu et al. (2010) and Jiang et al. (2012b).

Lemma. Suppose that the conditions (A1-A5) above hold. Then, as n→∞, h→ 0,
and nh→∞, uniformly in u ∈ Ω,

γ̂ − γ0 = Op(n
−1/2),

ĝk(u)− g0(u)− ck = (R(u) + e(u))(1 + op(1)),

and under H0 (2.1), uniformly in t ∈ Ωl,

γ̃l − γ0l = Op(n
−1/2),

g̃k(t)− g0(t)− ck = (Rl(t) + el(t))(1 + op(1)),

whereR(u) = 1
2
ν2g
′′
0 (u)h2, e(u) = 1

n
f−1

1 (u)f−1(ck)
∑n
i=1 ηi,kKh(xTk γ0−u), ν2 =

∫
Ω
u2K(u)du,

Rl(t) = 1
2
ν2lg

′′
0 (t)h2, el(t) = 1

n
f−1

1 (t)f−1(ck)
∑n
i=1 ηi,kKh(xTlkγ0l− t), ν2l =

∫
Ωl
t2K(t)dt.

ηi,k = τk − I{εi ≤ ck}.
Proof of Lemma. By the proof of Theorem 1 in Jiang et al. (2012b), we can obtain

ĝk(u)− g0(u)− ck =
1

n
f−1

1 (u)f−1(ck)
n∑
i=1

η∗i,k(u)Kh(xTk γ0 − u)(1 + op(1)),

where η∗i,k(u) = τk − I{εi ≤ ck − [g0(ui)− g0(u)− g′0(u)(ui − u)]}. By Taylor expression

η∗i,k(u) = ηi,k +
1

2
η′i,k(xTk γ0 − u)2(1 + o(1)),

then, we can obtain

ĝk(u)−g0(u)−ck =

[
1

n
f−1

1 (u)f−1(ck)

n∑
i=1

ηi,kKh(xTk γ0 − u) +
1

2
ν2g
′′
0 (u)h2(1 + o(1))

]
(1+op(1)).

The proof of γ̂ − γ0 = Op(n
−1/2) can immediately be obtained from Theorem 3 of

Jiang et al. (2012b). This completes the proof of Lemma.



Now we proceed to prove the theorems.
Proof of Theorem 1. We can rewrite λn as

λn =

q∑
k=1

n∑
i=1

ρτk

{
εi − ck −

(
g̃k(xTli γ̃l)− g0(xTliγ0l)− ck

)}
−

q∑
k=1

n∑
i=1

ρτk

{
εi − ck −

(
ĝk(xTi γ̂)− g0(xTliγ0l)− ck

)}
=

q∑
k=1

[
n∑
i=1

ρτk

{
εi − ck −

(
g̃k(xTli γ̃l)− g0(xTliγ0l)− ck

)}
−

n∑
i=1

ρτk {εi − ck}

]

−
q∑
k=1

[
n∑
i=1

ρτk

{
εi − ck −

(
ĝk(xTi γ̂)− g0(xTliγ0l)− ck

)}
−

n∑
i=1

ρτk {εi − ck}

]

,
q∑
k=1

λ1k −
q∑
k=1

λ2k.

By Lemma and the proof of Theorem 1 in Jiang et al. (2014), we can obtain

λ1k =− τk(1− τk)|Ωl|
hf(ck)

(
K(0)− 1

2

∫
Ωl

K2(t)dt

)
− 1

n

n∑
i,s=1,i 6=s

ηi,kηs,k
f2(xTliγ0l)f(ck)

(
Kh(xTliγ0l − xTlsγ0l)−

1

2
Kh ∗Kh(xTliγ0l − xTlsγ0l)

)
+Op(

√
nh2) +Op(nh

4) , −Akµln −Wlk + dn,

λ2k =− τk(1− τk)|Ω|
hf(ck)

(
K(0)− 1

2

∫
Ω

K2(t)dt

)
− 1

n

n∑
i,s=1,i 6=s

ηi,kηs,k
f2(xTi γ0)f(ck)

(
Kh(xTi γ0 − xTs γ0)− 1

2
Kh ∗Kh(xTi γ0 − xTs γ0)

)
+Op(

√
nh2) +Op(nh

4) , −Akµpn −W k + dn.

Therefore,

λn = A(µpn − µln) +

q∑
k=1

(W k −Wlk) +

q∑
k=1

dn,

, µn +Wn + dn.

Next we discuss the asymptotic distribution of Wn. Note that,

E(Wn) = 0, V ar(Wn) = σ2
n(1 + o(1)),

where σ2
n = A2(σ2

pn + σ2
ln). By Proposition 3.2 in De Jong (1987), Wn is asymptotically

normal,

σ−1
n Wn

L−→ N(0, 1),

which implies that,

σ−1
n (λn − µn + dn)

L−→ N(0, 1).



The proof is completed.
Proof of Theorem 2. λ̃n can be rewrite as

λ̃n =

q∑
k=1

n∑
i=1

ρτk

{
εi − ck + [ck + α− α̂k] + (βγT0 − β̂γ̂T )xi

}
−

q∑
k=1

n∑
i=1

ρτ
{
εi − ck + [ck + g0(xTi γ0)− ĝk(xTi γ̂)]

}
=

q∑
k=1

[
n∑
i=1

ρτk

{
εi − ck + [ck + α− α̂k] + (βγT0 − β̂γ̂T )xi

}
−

n∑
i=1

ρτ {εi − ck}

]

+

q∑
k=1

[
n∑
i=1

ρτ
{
εi − ck + [ck + g0(xTi γ0)− ĝk(xTi γ̂)]

}
−

n∑
i=1

ρτ {εi − ck}

]

,
q∑
k=1

λ̃1k −
q∑
k=1

λ2k.

By the Theorem 1 in Zou et al. (2008), we can obtain following results,

α̂k − α− ck = Op(n
−1/2), β̂γ̂T − βγT0 = Op(n

−1/2),

then, we have
∑q
k=1 λ̃1k = Op(1), and by the proof of Theorem 1, then we can obtain

λ̃n = Aµpn +

q∑
k=1

W k + dn = µ̃n +

q∑
k=1

W k + dn.

Similar to the proof of Theorem 1, which implies that,

σ̃−1
n (λ̃n − µ̃n + dn)

L−→ N(0, 1).

The proof is completed.
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