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Abstract: In this paper, by using an integral identity together withttbthe Holder and the Power-Mean integral inequality we
established some new integral inequalities for functiohssenth derivatives in absolute value afe, m)-convex functions.
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1 Introduction

In this work, we establish some new integral inequalitieddiactions whoseth derivatives in absolute value gre, m)-
convex functions. Convexity theory has appeared as a paltedhnique to study a wide class of unrelated problems in
pure and applied sciences. For some inequalities, gepatialis and applications concerning convexity see [5, 729,

14, 16-18, 20]. Recently, in the literature there are so npapers about-times differentiable functions on several kinds

of convexities. In references [1, 3, 4, 6, 16, 19, 20], readan find some results about this issue. Many papers have been
written by a number of mathematicians concerning ineqealfior different classes dir,m)-convex functions see for
instance the recent papers [1, 2, 10, 11, 13, 15] and thesrefes within these papers.

Definition 1. A function f: 1 C R— R is said to be convex if the inequality
f(tx+ (1-t)y) <tf(x)+(1—-t)f(y)

is valid for all x,y € land t € [0, 1]. If this inequality reverses, then fis said to be concavenerval | # @. This definition
is well known in the literature.

In [18], G. Toader definedrconvexity as the following.

Definition 2. The functionf. [0,b] — R, b > 0, is said to be m-convex, wheream[0, 1], if we have
f(tx+m(d—t)y) <tf(x)+m(1—t)f(y)

for all x,y € [0,bjand t€ [0,1]. Denote by k(b) the set of the m-convex functions[0nb] for which f(0) <O0.

In [17], V.G. Mihesan defineda, m)-convexity as the following.
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Definition 3. The functionf: [0,b] — R, b > 0, is said to be ar, m)-convex, wheréa,m) € [0,1)?, if we have
f(tx+m(1—t)y) <t9f (x)+m(1—-t%) f(y)

for all x,y € [0,bJ]and te [0, 1]. Denote by K (b) the class of all(a, m)-convex functions of0, b] for which f(0) < 0.

It can be easily seen that f¢o,m) = (1, m), (a, m)-convexity reduces to m-convexitg, m) = (a,1), (a, m)-convexity
reduces toa-convexity and forla,m) = (1,1), (a,m)-convexity reduces to the concept of usual convexity defined
[0,b], b> 0. Forrecent results and generalizations concernfagm)-convex functions, see ([2] and [15]).

Let 0< a < b, throughout this paper we will use

a+b ( pptl_ gp+l
(

P
A(a,b):T, Lp(a,b) = )) , a#b peR p#-10,

p+1)(b—a

for the arithmetic, geometric, logarithmic, generalizegdrithmic mean foa, b > 0 respectively.

2 Main Results

Especially we note that;

(i) Incase oim=1 anda = s, the results are obtained in this paper reduce to the reshtttined fois-convex functions
in the first sense in [14].
(ii) In case ofa = m= 1, the results are obtained in this paper reduce to the sesbttined for convex functions in
[16].
We will use the following Lemma [16] in order to obtain the maesults.

Lemma 1.Let f:1 C R— R be n-times differentiable mapping onfor n € N and " ¢ L[a,b], where ab € I” with
a < b, we have the identity

n-1 f(k)(b)bk+1 £k ak+1 )n+l b
kzo(l)k< (k+1) ) / f(x /ax £ (x) dx

where an empty sum is understood to be nil.

Theorem 1. For all n € N; let f : 1 C [0,00) — Rbe n-times differentiable function on and ab € I” with a< b. If
£ ¢ Lja,b] and \ £()

n—-1 f(k) (b) pkt+1 _ f(k) (a) ak+1 b
k;(_l)k< k+1)! ) _/a fogdx

wherel +— 1.

q
for q> 1is (a,m)-convex orja, b], then the following inequality holds.

< pto-antan | (O e (2]

Proof. Since‘ £

for g > 1is(a,m)-convex ona,bl, using Lemma 1, the Holder integral inequality and
q X—a b—xa\|? [x—a]“ x—a\? a
1) ‘f()<b Al mm) S[m] f(b)er[l(ﬁ) }f(m)

n-1 K (b>bk+1 fk ak+1
(1)k< (k+1) ) / f(x)dx| <

we have

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 2, 180-185 (2017)www.ntmsci.com BISKA 18

pPHL gLy B (b—a)+L
np+1 np+1> a+1

b”"ﬁpfi“’”f(Zﬁ{ummf<%>J+mf<s:> o-a)’
1 [ p"P+L _ ghptl %
Ao ad [ It (2 o mi(2)] i (2 0-0)

1 1,1[ bRt ’ f(b)—mf(2) a
= =23 ! {(np+1)(b—a)} [ +mf(ﬁ1)]

= 2 (b-apab) fb) —m(5)

This completes the proof of theorem.

Corollary 1. Under the conditions Theorem 1 foenlwe have the following inequality,

1
q

f(b)b—f(@a 1 P
‘ b a 7b—a/a f(x)dx

< Lp(a,h) [me(%) +mf (%)1

a+1

q
Theorem 2.Foralln € N; let f:1 C [0,0) — R be n-times differentiable function afd a < b. If ‘ fW| "¢ L[ab]and

‘fm)

is (a,m)-convex orja, b], then the following inequality holds.

n—1 ‘ f(k)(b)bk+1 ak+1
kzo(1)< (k+1 ) /f

1'(b a)qun(gq_l>(a,b){(bEAa)a [ (0) - mf(m)}+m(b a)f (;)Lg(a,b)r

- nl

where M= M (a,b,a,n) = [Px"(x—a)%dx

Proof. From Lemma 1 and Power-mean integral inequality, we obtain

:1(1>k <f(k) (b) bk(+k1+1 ak+1> / 0dx
(o) (Lol
< $</:x”dx>lé (/:angrf(bwm[l (EH f(%))dx)%
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1/ NYaf ) o, . mf(2) b . . q
H</a xdx> <(b(a))"/a X"(x—a)“dx+ (b(a)z’/a X'[(b—a)" — (x—a) ]dx)

1 1
1 /pML_ g1\ 1 g f (b) ay /bl g+l mf(2) a
H< n+1 ) <(ba)“M+mf(H1)< nt+1 >(ba)"M
ph+l_ gn+l 13
<n+1><ba>}

N+l antl 3
x <7(bMa)" K (b)fmf<%)} +mb—a)f (%) [7(:+ 1)(;‘_61)})

— %(ba)léL:M)(a,b) {ﬁ [f (b)fmf(%)] +m(b—a)f <%) Lﬂ(a,b)]q

_ %(b_a)l%[

1

This completes the proof of theorem.

Corollary 2. Under the conditions Theorem 2.2 foenlwe have the following inequality.

1

sty (10 mi () ot () aan)]”

‘f(b)bf(a)a gAq%l(ab)

! bf d
b—a 7b—a/a (x)dx

Proposition 1. Under the conditions Corollary 2 for ¢ 1 we have the following inequality.

}f(b)g_;(a)a bia/:f(x)dX‘ < % (f(b)—mf(%)) +mf<%)A(a,b).

Corollary 3. Under the conditions Theorem 2 for=g1 we have the following inequality.

:Z:(—l)k ( f(K) (b) bkzrl(l+;)(!k) (a) ak+l> - ./: f x| <

[t (10-mi(3)) +mo-ar (3 en]

“nl

q
Theorem 3.Foralln € N; let f : | C [0,0) — R be n-times differentiable function afid< a < b. If ‘ f(W| "¢ L[a,b] and

‘f(”)

q
for q> 1is (a,m)-convex orja, b], then the following inequality holds.

n-1 ®) k+1_ (K k+1 b
()

a (a+1)b+a} mf<3)a42rb>q

gi_(bfa)LT (a,b)<[f(b)mf(3)] @ DaTe atb

1,1_
Where5+a =1

q
Proof. Since‘ f(W| " for g > 1is (a, m)-convex onfa, b], using Lemma 2.1 and the Holder integral inequality, weehie

following inequality.
n-1 £(K (b) 1 _ f(k) (a) akt+1 b 1 /b 1
S (- K _ < n ()
k:O( Y < (k+1)! /a FOqgex < n!/a X ‘f (x)‘dx

< n—1|</ab (x”é)pdx>é (/: (xé)q’fm) (x)\qu)é
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/:X([Hrf(bﬂm{l—(%)a]f(%))dx)é

[f(b) mf(2) /bx(xa>adx+mf<%)/bxdx>

(b—a7 (b—a)

1
q

(b—a)> b-a

x([f(b)—mf(%)} oy T +mf(%)[(b—a)2(b+a)]>a

_ %(ba)Lz%_nl%) (a,b) ([f (0)-mt(2)] {%] +mf(2) a—zb)

This completes the proof of theorem.

Corollary 4. Under the conditions Theorem 2.3 foenlwe have the following inequality,

it e <[ ()] [ () 552)'

3 Conclusions

In this paper, by using an integral identity we obtained some integral inequalities for functions whose derivatives
in absolute value argxr, m)-convex functions.
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