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Abstract

This is a survey article on semilinear problems with a non-symmetric linear part and a nonlinear part of
monotone type in real Hilbert spaces. We study the solvability of semilinear inclusions in the nonresonance
and resonance cases. Semilinear systems consisting of semilinear equations of different types are discussed.
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1. Introduction

Semilinear problems with nonlinear operators of monotone type have been studied in several ways of
approach; see [1, 2, 5, 15]. Mawhin and Willem [15] employed the Leray-Schauder theory combined with
monotone type operators in Galerkin arguments. For applications to nonlinear wave equations, we refer
to [3, 6, 11, 14]. Berkovits and Fabry [1, 2] treated semilinear equations based on a degree theory as an
extension of the Leray-Schauder degree utilizing compact embeddings.

Let H be a real separable Hilbert space. We first consider a semilinear equation of the form

Lu−Nu = h, (1.1)

where L is a closed densely defined linear operator on H with a compact resolvent and N is a nonlinear
operator. In the self-adjoint case, it is known that equation (1.1) has a solution provided that

‖Nu− λ1

2
u‖ ≤ µ‖u‖+ ν for all u ∈ H,
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where λ1 is the first positive eigenvalue of L and µ ∈ [0, λ1/2), ν ∈ [0,∞) are constants. More generally, if
KerL = KerL∗, L∗ being the adjoint operator of L, then, as shown in [8], there exists a positive number ρ
such that

‖Lu− ρ

2
u‖ ≥ ρ

2
‖u‖ for all u ∈ D(L). (1.2)

In this case, equation (1.1) admits a solution if there are constants µ ∈ [0, ρ/2) and ν ∈ [0,∞) such that

‖Nu− ρ

2
u‖ ≤ µ‖u‖+ ν for all u ∈ H.

The existence proof was mainly based on the Leray-Schauder theory. When dimKerL = ∞ and N is of
class (S+) or of class (S+)P , it was studied in [3, 12] based on suitable degree theory. Here P : H → KerL
denotes the orthogonal projection.

However, if KerL 6⊂ KerL∗, then the only number for which (1.2) holds is ρ = 0; see [8]. To overcome
the difficulty, one needs a linear homeomorphism J : H → H such that J(KerL) = KerL∗, as in [9], in
which case we can find a positive number ρ such that∥∥∥Lu− ρ

2
Ju
∥∥∥ ≥ ρ

2
‖Ju‖ for all u ∈ D(L). (1.3)

Berkovits and Fabry [1] showed the solvability of semilinear problem (1.1) under the condition∥∥∥Nu− ρ

2
Ju
∥∥∥ ≤ µ‖Ju‖+O(‖u‖α) for all u ∈ H, ‖u‖ → ∞.

In fact, inequalities of type (1.3) are essential for deriving a priori estimates needed in the use of degree; see
[1, 9].

Next, Berkovits and Fabry [1, 2] considered a system of semilinear equations in the form:{
L1u1 −N1(u1, u2) = h1,

L2u2 −N2(u1, u2) = h2,

where L1, L2 are closed densely defined linear operators with dimKerL1 = ∞ and dimKerL2 < ∞ and
N1, N2 are nonlinear operators.

In this aspect, we are now interested in the case where the nonlinear operator N is set-valued. We
consider a semilinear inclusion of the form

h ∈ Lu−Nu, (1.4)

where L is a non-symmetric closed densely defined linear operator with a compact resolvent and N is a
nonlinear set-valued operator of monotone type associated with linear homeomorphism J and orthogonal
projection P . For non-symmetric densely defined linear operators, see e.g., [1, 7, 9, 10]. Moreover, we observe
the following semilinear system {

L1u1 −N1,1(u1)−N1,2(u2) 3 h1,

L2u2 −N2(u1, u2) = h2,
(1.5)

where N1,1 is a bounded upper semicontinuous operator of monotone type, and N1,2, N2 are bounded
continuous operators. The system (1.5) can be written as h ∈ Lu − Nu, where L = (L1, L2) and N =
(N1,1 +N1,2, N2) are as above.

In this note, we establish the existence of a solution of semilinear inclusion (1.4) in the nonresonance and
resonance cases. The method is to use a topological degree theory for a class of these semilinear operators
in real Hilbert spaces. Moreover, we are concerned with the solvability of the above semilinear system (1.5),
where a key tool is the nonresonance theorem for semilinear inclusions. It is emphasized that our degree
theoretic approach enables us to deal with semilinear systems having nonlinear terms of different types.
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2. Degree theory

In this section, we introduce a topological degree theory for semilinear operators in real Hilbert spaces
by means of the Leray-Schauder degree.

Definition 2.1. Let X,Y be two Hausdorff topological spaces. A set-valued operator F : X → 2Y is said
to be:

(1) upper semicontinuous if the set F−1(A) = {u ∈ X |Fu ∩ A 6= ∅} is closed in X for every closed set A
in Y ;

(2) upper demicontinuous if F−1(A) is closed in X for every weakly closed set A in Y ;

(3) bounded if it maps bounded sets into bounded sets;

(4) compact if it is upper semicontinuous and the image of any bounded set is relatively compact;

(5) of Leray-Schauder type if it is of the form I − C, where I denotes the identity operator and C is
compact.

Let (H, 〈·, ·〉) be a real Hilbert space. Given a nonempty subset Ω of H, let Ω and ∂Ω denote the closure
and the boundary of Ω in H, respectively. Let Br(u) denote the open ball in H of radius r > 0 centered at
u. The symbol → (⇀) stands for strong (weak) convergence.

Definition 2.2. Given a bounded linear operator T : H → H, a set-valued operator F : Ω ⊂ H → 2H \ ∅ is
said to be:

(1) of class (S+)T , written F ∈ (S+)T , if for any sequence (un) in Ω, un = vn + zn, vn ∈ KerT, zn ∈
(KerT )⊥ and for any sequence (wn) in H with wn ∈ Fun such that un ⇀ u, vn → v, and

lim sup
n→∞

〈wn, T (un − u)〉 ≤ 0,

we have un → u;

(2) T -pseudomonotone, written F ∈ (PM)T , if for any sequence (un) in Ω, un = vn+zn, vn ∈ KerT, zn ∈
(KerT )⊥ and for any sequence (wn) in H with wn ∈ Fun such that un ⇀ u, vn → v, and

lim sup
n→∞

〈wn, T (un − u)〉 ≤ 0,

we have limn→∞ 〈wn, T (un − u)〉 = 0 and if u ∈ Ω and wj ⇀ w for some subsequence (wj) of (wn)
then w ∈ Fu;

(3) T -quasimonotone, written F ∈ (QM)T , if for any sequence (un) in Ω, un = vn + zn, vn ∈ KerT, zn ∈
(KerT )⊥ and for any sequence (wn) in H with wn ∈ Fun such that un ⇀ u and vn → v, we have

lim inf
n→∞

〈wn, T (un − u)〉 ≥ 0.

If all operators are assumed to be bounded and upper demicontinuous, it is easy to see that (S+)T ⊂
(PM)T ⊂ (QM)T and the class (S+)T is stable under (QM)T -perturbations. If J : H → H is a linear
homeomorphism and P is an orthogonal projection to a closed subspace of H, it is clear that (S+)J ⊂ (S+)JP
and, moreover, (S+)J = (S+)JP if dimKerP <∞.

We give a typical example of an operator which is of class (S+)JP but not of class (S+)J . See [2, Lemma
2.2] for the case J = I.
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Example 2.3. Let E be a closed subspace of a real separable Hilbert space H. Let P : H → E and
P̃ : H → E⊥ be the orthogonal projections, respectively. If J : H → H is a linear homeomorphism, then
F := J(P − P̃ ) is of class (S+)JP . However, it is not of class (S+)J if dimE⊥ =∞.

As in [4], we adopt an elliptic super-regularization method to develop a degree theory for set-valued
operators of class (S+)JP , which is proposed in [1] in the single-valued case.

Let H be a real separable Hilbert space. Suppose that L : D(L) ⊂ H → H is a closed densely defined
linear operator with closed range ImL. Then its adjoint L∗ : D(L∗) ⊂ H → H is also a closed densely
defined linear operator with closed range ImL∗ and we have the orthogonal decompositions

H = KerL⊕ ImL∗ = KerL∗ ⊕ ImL.

Let P : H → KerL, P̃ : H → ImL∗, Q : H → KerL∗, and Q̃ : H → ImL denote the orthogonal projections,
respectively. Let J : H → H be a linear homeomorphism such that

J(KerL) = KerL∗.

Let Ψ : KerL → KerL be a compact self-adjoint linear injection. Suppose that N : G → K(H) is a
bounded upper semicontinuous operator of class (S+)JP , where G is any bounded open set in H. To each
F = P̃ − [KQ̃(J−1)∗ − P ]J∗N , we associate a family of operators

Fλ = I − [KQ̃(J−1)∗ − λΨ2P ]J∗N for λ > 0.

Then each Fλ : G→ K(H) is a set-valued operator of Leray-Schauder type. Here K(H) denotes the collection
of nonempty compact convex values. For the Leray-Schauder degree for these set-valued operators, see [13].

We introduce a topological degree for a semilinear class involving nonlinear set-valued operators of class
(S+)JP .

Definition 2.4. Let L,K,N, J,Ψ be indicated as above and let G be a bounded open set in H. If h /∈
(L−N)(∂G ∩D(L)), then a degree is defined as an integer-valued function as follows:

deg (L−N,G, h) = lim
λ→∞

dLS(Fλ, G, hλ),

where hλ = KQ̃h− λΨ2PJ∗h. Here dLS denotes the Leray-Schauder degree.

We state some of basic properties of the above degree which follow from the corresponding properties of
the Leray-Schauder degree.

Theorem 2.5. Let L and N be as in Definition 2.4. Suppose that G is any bounded open set in H and
h 6∈ (L−N)(∂G ∩D(L)). Then the above degree has the following properties:

(a) (Existence) If deg (L − N,G, h) 6= 0, then the semilinear inclusion h ∈ Lu − Nu has at least one
solution in G ∩D(L).

(b) (Additivity) If G1 and G2 are disjoint open subsets of G such that h /∈ (L − N)[G\(G1 ∪ G2)], then
we have

deg (L−N,G, h) = deg (L−N,G1, h) + deg (L−N,G2, h).

(c) (Homotopy invariance) Suppose that N : [0, 1]×G→ K(H) is a bounded upper semicontinuous homo-
topy of class (S+)JP . If h : [0, 1]→ H is a continuous curve in H such that

h(t) /∈ Lu−N(t, u) for all (t, u) ∈ [0, 1]× (∂G ∩D(L)),

then the value of deg (L−N(t, ·), G, h(t)) is constant for all t ∈ [0, 1].
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The basic idea for the following result is the Borsuk’s antipodal theorem stated in [16, Theorem 16.B],
for instance. It will be a key tool for proving main theorems on semilinear inclusions.

Lemma 2.6. Let B : H → H be a bounded linear operator of class (S+)JP such that L− B is injective. If
h ∈ (L−B)(G ∩D(L)), where G is any bounded open set in H, then we have

deg (L−B,G, h) 6= 0.

In particular, if J : H → H is a linear homeomorphism such that L−αJ is injective for some positive scalar
α, then

deg (L− αJ,Br(0), 0) 6= 0 for any positive number r.

3. Semilinear inclusions

In this section, we are concerned with the solvability of semilinear inclusions in the nonresonance and
resonance cases, based on the degree theory in the previous section.

Let H be a real separable Hilbert space. Suppose that L : D(L) ⊂ H → H is a closed densely defined
linear operator with closed range and that K : ImL→ ImL∗ ∩D(L), being the inverse of the restriction of
L to ImL∗ ∩D(L), is compact. Let P : H → KerL, P̃ : H → ImL∗, Q : H → KerL∗, and Q̃ : H → ImL
be the orthogonal projections, respectively. Let J : H → H be a linear homeomorphism. Set

AJ := { ρ ∈ R | ‖Lu‖2 ≥ ρ〈Lu, Ju〉 for all u ∈ D(L)}.

It is easily seen that

AJ =
{
ρ ∈ R |

∥∥∥Lu− ρ

2
Ju
∥∥∥ ≥ ∥∥∥ρ

2
Ju
∥∥∥ for all u ∈ D(L)

}
. (3.1)

It is known in [9] that the set AJ is a closed interval containing 0, and if J(KerL) ⊂ KerL∗ then 0 is an
interior point of AJ .

First, we prove the existence of a solution for semilinear inclusions in the nonresonance case. For related
results, see [1, 9, 12].

Theorem 3.1. Let L,K and P be as above. Suppose that J : H → H is a linear homeomorphism such that

J(KerL) = KerL∗, (3.2)

and that N : H → K(H) is a bounded upper semicontinuous operator. Suppose that there are numbers
ρ ∈ (0, supAJ ], µ ∈ [0, ρ/2), and α ∈ [0, 1) such that∥∥∥a− ρ

2
Ju
∥∥∥ ≤ µ‖Ju‖+O(‖u‖α) for u ∈ H, ‖u‖ → ∞, and a ∈ Nu. (3.3)

If the operator N is JP -pseudomonotone, then for every h ∈ H, the semilinear inclusion

h ∈ Lu−Nu

has a solution in D(L).

Proof. Let h be any element of H. For t ∈ [0, 1), we consider the equation

th ∈ Lu− (1− t)ρ
2
Ju− tNu. (3.4)

Since ρ ∈ AJ implies that the linear operator L− (ρ/2)J is injective, (3.4) has only the trivial solution when
t = 0. We first show that the set of solutions of (3.4)

S =
{
u ∈ D(L) | th ∈ Lu− (1− t)ρ

2
Ju− tNu for some t ∈ [0, 1)

}
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is bounded in H. Assume the contrary, then there are sequences (un) in D(L) and (tn) in [0, 1) with
‖un‖ → ∞ such that

tnh = Lun − (1− tn)
ρ

2
Jun − tnan for all n ∈ N,

where an ∈ Nun. For all n ∈ N, we have by (3.1) and hypothesis (3.3)

ρ

2
‖Jun‖ ≤

∥∥∥Lun − ρ

2
Jun

∥∥∥
≤
∥∥∥an − ρ

2
Jun + h

∥∥∥
≤ µ‖Jun‖+ ‖h‖+O(‖un‖α)

and hence (ρ
2
− µ

)
‖un‖ ≤ ‖h‖+O(‖un‖α),

which is impossible, because of µ < ρ/2. Now we can choose a positive number R such that

th /∈ Lu− (1− t)ρ
2
Ju− tNu for all (t, u) ∈ [0, 1)×D(L) with ‖u‖ ≥ R. (3.5)

For each fixed t ∈ (0, 1), we define Φt : [0, 1]×BR(0)→ K(H) by

Φt(λ, u) := (1− λt)ρ
2
Ju+ λtNu for (λ, u) ∈ [0, 1]×BR(0).

Then it is obvious that Φt is a bounded upper semicontinuous homotopy of class (S+)JP . Theorem 2.5 and
Lemma 2.6 imply, in view of (3.5), that

deg
(
L− (1− t)ρ

2
J − tN,BR(0), th

)
= deg

(
L− ρ

2
J,BR(0), 0

)
6= 0.

This implies that, for a sequence (tn) in (0, 1) with tn → 1, there exists a corresponding sequence (un) in
BR(0) ∩D(L) such that

tnh = Lun − (1− tn)
ρ

2
Jun − tnan,

where an ∈ Nun. Without loss of generality, we may suppose that un ⇀ u and an ⇀ a for some u, a ∈ H.
Since J(KerL) = (ImL)⊥ by (3.2) and Lun − an → h, we have

lim
n→∞

〈an, JP (un − u)〉 = 0.

Since P̃ un = KQ̃Lun and K is compact, we see that P̃ un → P̃ u. Hence it follows from N ∈ (PM)JP that
a ∈ Nu. Since the graph of L is weakly closed and Lun ⇀ a+ h, we obtain that

u ∈ D(L) and h ∈ Lu−Nu.

This completes the proof.

Next, we deal with the solvability of the semilinear inclusion under an h-dependent resonance type
condition when µ = ρ/2. For some results, we refer to [1, 9, 12].

Theorem 3.2. Let L,K, J and P be the same as in Theorem 3.1. Suppose that N : H → K(H) is a JP -
pseudomonotone bounded upper semicontinuous operator and that there exist numbers ρ ∈ (0, supAJ) and
α ∈ [0, 1) such that ∥∥∥a− ρ

2
Ju
∥∥∥ ≤ ρ

2
‖Ju‖+O(‖u‖α) for u ∈ H, ‖u‖ → ∞, and a ∈ Nu. (3.6)



In-Sook Kim, Results in Nonlinear Anal. 2 (2019), 25–35 31

Let h ∈ H be given. Suppose that for any sequence (un) in D(L) such that ‖un‖ → ∞ and ‖Lun‖ = o(‖un‖)
for n→∞, there is an n0 ∈ N such that

〈an + h, JPun〉 ≥ 0 for all n ≥ n0 and all an ∈ Nun. (3.7)

Then the semilinear inclusion
h ∈ Lu−Nu

has a solution in D(L).

Proof. It suffices to show that the solution set{
u ∈ D(L) | th ∈ Lu− (1− t)ρ

2
Ju− tNu for some t ∈ (0, 1)

}
is bounded in H. The rest of proof performs in an analogous way to that of Theorem 3.1.

To deal with periodic problems, we present a more explicit form of Theorem 3.1.

Theorem 3.3. Let L and K be as above. Let N : H → H be the Nemytskii operator induced by a real-valued
function g : Ω× R→ R, where Ω is a bounded domain in Rp, such that

(g1) g satisfies the Carathéodory condition, that is, g(·, s) is measurable on Ω for all s ∈ R and g(x, ·) is
continuous on R for almost all x ∈ Ω;

(g2) g satisfies the growth condition, that is, there exist a nonnegative function k ∈ H and a positive constant
c such that

|g(x, s)| ≤ k(x) + c|s| for almost all x ∈ Ω and all s ∈ R;

(g3) g(x, s) is nondecreasing in s, that is,

(g(x, s)− g(x, η)) (s− η) ≥ 0 for almost all x ∈ Ω and all s, η ∈ R.

Suppose that there are numbers ρ ∈ (0, supAI ], µ ∈ [0, ρ/2), and β ∈ [0,∞) such that∣∣∣g(x, s)− ρ

2
s
∣∣∣ ≤ µ|s|+ β for almost all x ∈ Ω and all s ∈ R.

Then the semilinear equation
Lu−Nu = h

has a solution in D(L) for every h ∈ H.

Proof. The Nemytskii operator N : H → H defined by

Nu(x) := g(x, u(x)) for u ∈ H and x ∈ Ω

is clearly bounded, continuous, and monotone on H; see e.g., [17]. By hypothesis, we have∥∥∥Nu− ρ

2
u
∥∥∥ ≤ µ‖u‖+ ξ for all u ∈ H,

where ξ is some positive constant. Applying Theorem 3.1 with J = I and α = 0, the equation Lu−Nu = h
has a solution for every h ∈ H.
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As an application, we consider the following periodic problem

c1
∂u

∂x1
+ c2

∂u

∂x2
− g (x1, x2, u) = h(x1, x2), (3.8)

where c1, c2 ∈ {1,−1} are constants and g : R × R × R → R is 2π-periodic in each of the variables x1, x2,
and h is given.

We want to find solutions u which have the same type of periodicity in the variables x1, x2, that is,

u(x1 + 2π, x2) = u(x1, x2) = u(x1, x2 + 2π).

To solve problem (3.8), we will consider the corresponding semilinear equation in the sense of Theorem
3.3. The differential operator u 7→ c1∂u/∂x1 + c2∂u/∂x2 has an abstract realization which will be denoted
by L. In the following, let Lc denote the complexification of the operator L and σ(Lc) denote the spectrum
of Lc, respectively.

Let Ω = (0, 2π) × (0, 2π) and let H = L2(Ω) be the real Hilbert space. Let (ϕmn)(m,n)∈Z×Z be an
orthonormal basis for the space H, where

ϕmn(x1, x2) =
1

2π
ei(mx1+nx2).

Every element u ∈ H can be represented in the form:

u =
∑

(m,n)∈Z×Z

umn ϕmn with umn = 〈u, ϕmn〉.

Let L : D(L) ⊂ H → H be a linear operator defined by

Lu :=
∑

(m,n)∈Z×Z

i(mc1 + nc2)umn ϕmn,

where
D(L) = {u ∈ H |

∑
(m,n)∈Z×Z

|(mc1 + nc2)umn|2 <∞}.

Then it is known in [10] that L is a closed densely defined linear operator such that L∗ = −L, dimKerL =∞,
and σ(Lc) ⊂ iR. If L̂ denotes the restriction of L to ImL∩D(L), then the inverse L̂−1 : ImL→ ImL∩D(L)
given by

L̂−1u :=
∑

(m,n)∈Γ

[i(mc1 + nc2)]−1umn ϕmn,

where Γ = {(m,n) ∈ Z × Z |mc1 + nc2 6= 0}, is compact, on observing that the spectrum of (L̂−1)c has
no limit point except 0 and Ker (L̂−1 − λI) is finite dimensional for any nonzero λ ∈ σ((L̂−1)c). A similar
argument about the compactness can be found in [11].

Suppose that g : R×R×R→ R is 2π-periodic in each of the first and second variables that satisfies all
the assumptions on g in Theorem 3.3 with Ω = (0, 2π)× (0, 2π). Let N : H → H be the Nemytskii operator
induced by the function g. We say that a point u ∈ H is a weak solution of problem (3.8) if the following
relation holds for all v ∈ C1:

〈u,−c1vx1 − c2vx2〉 − 〈Nu, v〉 = 〈h, v〉,

where C1 denotes the space of continuously differentiable functions v : Ω → R such that v(x1 + 2π, x2) =
v(x1, x2) = v(x1, x2 + 2π).

It can equivalently be written as Lu −Nu = h with u ∈ D(L). In view of Theorem 3.3, given periodic
problem (3.8) has a weak solution.
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4. Semilinear systems

In this section, we first observe under which conditions the operators are of class (S+)JP or JP -
pseudomonotone and then establish a nonresonance existence result for semilinear systems.

Let H1, H2 be real separable Hilbert spaces. Then H = H1 ×H2 is the Hilbert space with inner product
defined by

〈u, v〉 = 〈u1, v1〉+ 〈u2, v2〉 for u = (u1, u2), v = (v1, v2) ∈ H1 ×H2.

Suppose that for k = 1, 2, Lk : D(Lk) ⊂ Hk → Hk is a closed densely defined linear operator with ImLk =
(KerL∗k)

⊥ and Kk : ImLk → ImL∗k, the inverse of the restriction of Lk to ImL∗k ∩ D(Lk), is compact. If
L : D(L) ⊂ H → H is defined by

Lu = (L1u1, L2u2) for u = (u1, u2) ∈ D(L),

then K : ImL→ ImL∗, the inverse of the restriction of L to ImL∗ ∩D(L), is compact, where

Ku = (K1u1,K2u2) for u = (u1, u2) ∈ ImL.

For k = 1, 2, let Pk : Hk → KerLk and Qk : Hk → KerL∗k be the orthogonal projections, and P̃k =
I − Pk, Q̃k = I − Qk. Then P : H → KerL and Q : H → KerL∗ are the orthogonal projections and
P̃ = I − P, Q̃ = I −Q, where

Pu = (P1u1, P2u2) and Qu = (Q1u1, Q2u2) for u = (u1, u2) ∈ H.

For k = 1, 2, let Jk : Hk → Hk be a linear homeomorphism such that

J1(KerL1) = KerL∗1 and J2(KerL2) = KerL∗2.

Then we have J(KerL) = KerL∗, where

Ju = (J1u1, J2u2) for u = (u1, u2) ∈ H.

Regarding semilinear systems, it is remarkable that any monotone type hypothesis on the second com-
ponent N2 is not required for N = (N1, N2) to be of class (S+)JP or JP -pseudomonotone.

Proposition 4.1. Let L = (L1, L2), J = (J1, J2), and P = (P1, P2) be as above such that dimKerL1 =
∞ and dimKerL2 < ∞. Suppose that N = (N1, N2) : H → 2H is bounded, where N1(v, z) = N1,1(v) +
N1,2(z), such that the following conditions are satisfied:

(a) N1,1 : H1 → 2H1 is of class (S+)J1P1;

(b) N1,2 : H2 → H1 is continuous;

(c) N2 : H → H2 is demicontinuous.

Then the operator N is of class (S+)JP .

Proof. Let (un) be any sequence in H and (an) any sequence in H with an ∈ Nun such that

un ⇀ u, P̃un → P̃ u, and lim sup
n→∞

〈an, JP (un − u)〉 ≤ 0. (4.1)

Let un = (vn, zn) and u = (v, z). Since dimKerL2 <∞ implies P2zn → P2z, we have

zn = P2zn + P̃2zn → P2z + P̃2z = z in H2.
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Hence it follows from condition (b) and (4.1) that

lim sup
n→∞

〈bn −N1,2(zn), J1P1(vn − v)〉 = lim sup
n→∞

〈bn, J1P1(vn − v)〉

= lim sup
n→∞

〈an, JP (un − u)〉

≤ 0,

where an = (bn, cn) ∈ Nun, that is, bn ∈ N1,1(vn)+N1,2(zn) and cn = N2(un). Since N1,1 is of class (S+)J1P1 ,
we get vn → v in H1 so that un = (vn, zn)→ (v, z) = u in H. Therefore, N is of class (S+)JP .

Remark 4.2. If N1,1 : H1 → H1 is strongly monotone, that is, there is a positive constant c such that

〈N1,1(v)−N1,1(v′), v − v′〉 ≥ c ‖v − v′‖2 for all v, v′ ∈ H1,

then it is of class (S+) and hence of class (S+)J1P1 . More generally, if there is a positive constant c such that

〈N1,1(v)−N1,1(v′), J1P1(v − v′)〉 ≥ c ‖P1(v − v′)‖2 for all v, v′ ∈ H1,

then it is of class (S+)J1P1 .

Proposition 4.3. Let L = (L1, L2), J = (J1, J2), and P = (P1, P2) be as above such that dimKerL1 =
∞ and dimKerL2 < ∞. Suppose that N = (N1, N2) : H → 2H is bounded, where N1(v, z) = N1,1(v) +
N1,2(z), such that the following conditions are satisfied:

(a) N1,1 : H1 → 2H1 is J1P1-pseudomonotone;

(b) N1,2 : H2 → H1 is continuous;

(c) N2 : H → H2 is weakly continuous.

Then the operator N is JP -pseudomonotone.

We present a simple example of a JP -pseudomonotone operator which is not J-pseudomonotone.

Example 4.4. Let H = H1 × H2, L = (L1, L2), J = (J1, J2), and P = (P1, P2) be as above such that
dimKerL1 =∞ and dimKerL2 <∞. For u = (u1, u2) ∈ H1 ×H2, let

N1,1(u1) = J1(P1 − P̃1)u1, N1,2(u2) = u∗1, and N2(u1, u2) = P2u2,

where u∗1 is a fixed element in H1. Then N = (N1,1 +N1,2, N2) : H → H is JP -pseudomonotone. But it is
not J-pseudomonotone if dimE⊥1 = dimE⊥2 =∞, where E1 = KerL1 and E2 = KerL2.

Finally, we show the existence of a solution for semilinear systems in a more concrete situation by using
the nonresonance theorem for semilinear inclusions. For related results, see [1, 12].

Theorem 4.5. Let L = (L1, L2), J = (J1, J2), and P = (P1, P2) be as above such that

dimKerL1 =∞ and dimKerL2 <∞.

Suppose that N = (N1, N2) : H → K(H) is a bounded upper semicontinuous operator which satisfies the
conditions of Proposition 4.1 or Proposition 4.3. Moreover, suppose that there are numbers ρ ∈ (0, ρ∗],
µ1, µ2 ∈ [0, ρ/2), and α ∈ [0, 1), where ρ∗ = min {supAJ1 , supAJ2}, such that∥∥∥a1 −

ρ

2
J1u1

∥∥∥ ≤ µ1‖J1u1‖+O(‖u‖α),∥∥∥N2(u1, u2)− ρ

2
J2u2

∥∥∥ ≤ µ2‖J2u2‖+O(‖u‖α),
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for u = (u1, u2) ∈ H = H1 × H2, ‖u‖ → ∞, and a1 ∈ N1(u1, u2) = N1,1(u1) + N1,2(u2). Then for every
(h1, h2) ∈ H1 ×H2, the semilinear system{

L1u1 −N1,1(u1)−N1,2(u2) 3 h1

L2u2 −N2(u1, u2) = h2

has a solution in D(L1)×D(L2).

Proof. We may use an equivalent norm on the space H = H1 ×H2 given by

‖(u1, u2)‖1 := ‖u1‖+ ‖u2‖ for (u1, u2) ∈ H1 ×H2.

Proposition 4.1 or Proposition 4.3 implies that N is JP -pseudomonotone. Apply Theorem 3.1 with µ =
max{µ1, µ2}.

We close this section by taking into account possible candidates for N2 appearing in Proposition 4.1 or
Proposition 4.3.

Let Ω be a bounded domain in Rp and let H = L2(Ω) be the real Hilbert space. Let

g2(x, s, p) := α sin s+ βp,

where α, β are constants. Then g2 satisfies the Carathéodory condition and the growth condition. So the
Nemytskii operator N2 : H ×H → H induced by g2

N2(u, v)(x) := α sinu(x) + βv(x) for (u, v) ∈ H ×H and x ∈ Ω,

is bounded and continuous on H ×H. In particular, the Nemytskii operator

N2(u, v)(x) = βv(x) for (u, v) ∈ H ×H and x ∈ Ω,

is linear and bounded and hence weakly continuous, as required in Proposition 4.3.
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