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ABSTRACT: Many real-world problems can be formulated as an optimization problem and they have 

some constraints generally. To overcome these constraints, bio-inspired algorithms are adapted to 

constrained optimization using constraint handling methods and some modifications. In this study, a 

new approach is developed to solve constrained optimization problems with elephant herding 

optimization algorithm which is a newly-emerging optimization technique. Besides the basic EHO, two 

EHO variants (EHO-NoB and GL-EHO) are adapted to constrained optimization with this approach. The 

well-known thirteen constrained benchmark functions are used to analysis the performances of 

algorithms. Experimental results show that the GL-EHO has a better performance than the basic EHO 

and other algorithms. In addition, the results of GL-EHO are comparable level with the result of another 

EHO variant in the literature. 
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Kısıtlı Optimizasyon Problemleri için Fil Sürüsü Optimizasyonu Tabanlı Yeni Bir Yaklaşım 

 

ÖZ: Birçok gerçek dünya problemi bir optimizasyon problemi olarak formüle edilebilir ve genel olarak 

bazı kısıtlamalara sahiptirler. Bu kısıtlamaların üstesinden gelmek için, kısıtlama yöntemleri ve bazı 

modifikasyonlar kullanarak doğa esinli algoritmalar kısıtlı optimizasyona uyarlanmıştır. Bu çalışmada, 

yeni ortaya çıkan bir optimizasyon tekniği olan fil sürü optimizasyonu algoritması ile kısıtlı 

optimizasyon problemlerini çözmek için yeni bir yaklaşım geliştirilmiştir. Temel EHO'nun yanı sıra, iki 

EHO varyantı (EHO-NoB ve GL-EHO) bu yaklaşımla kısıtlı optimizasyona uyarlanmıştır. İyi bilinen on 

üç kısıtlı test fonksiyonu, algoritmaların performanslarını analiz etmek için kullanılmıştır. Deneysel 

sonuçlar, GL-EHO'nun temel EHO ve diğer algoritmalardan daha iyi bir performansa sahip olduğunu 

göstermektedir. Ayrıca, GL-EHO sonuçları literatürdeki başka bir EHO varyantının sonucuyla 

karşılaştırılabilir düzeydedir. 

 

Anahtar Kelimeler: Deb kuralları, Fil sürü optimizasyonu, Kısıtlı optimizasyon 

 

INTRODUCTION  

Due the fact that many real-world problems can be formulated as an optimization problem, the 

popularity of optimization have increased day by day (Ivana Strumberger et al., 2018). Different types of 

optimization such as combinatorial (Hakli and Uguz, 2017) and continuous (Farnad et al., 2018; Kiran, 

2015), single (Asafuddoula et al., 2014) and multi-objective (Jiao et al., 2017; Luo et al., 2018), 

unconstrained (Sharma et al., 2017) and constrained are applied in accordance with characteristic of 

problems.  

To solve optimization problems within the reasonable time, many bio-inspired algorithms have been 

proposed in last two decade (Hakli, 2018). These algorithms are directly implemented for unconstrained 
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optimization problems using objective function. When applying to constrained optimization, constraint 

handling methods are required for these algorithms to control and consider the violations. In the 

literature, various constraint handling methods are used to overcome the constraints, and many bio-

inspired algorithms are adapted to solve constrained optimization problem. Babalik et al. proposed a 

modification of tree-seed algorithm for constrained optimization, and they used Deb’s rules as constraint 

handling method (Babalik et al., 2018). To balance constraints and objective function, teaching-learning 

based optimization was improved for the constrained optimization (B.-C. Wang et al., 2018). Xu et al. 

proposed a new constrained optimization algorithm combined an adaptive trial vector generation 

strategy based differential evolution (DE) algorithm to solve constrained problems (Xu et al., 2018). In 

addition, a cluster-replacement-based feasibility rule was developed to alleviate the greediness of the 

feasibility rule. To effectively handle constraints, genetic algorithm was hybridized with the rough set 

theory and the penalty function was used as constraint handling (Lin, 2013). Moreover, many bio-

inspired algorithms were applied to constrained optimization problem such as bacterial-inspired 

algorithm (Niu et al., 2015), elephant herding optimization (Ivana Strumberger et al., 2018), particle 

swarm optimization (Garg, 2016), grey wolf optimization algorithm (Kohli and Arora, 2017) etc. For the 

detailed explanation on constraints and other constraint handling methods, please see (Mezura-Montes 

and Coello, 2011). 

Elephant herding optimization (EHO) algorithm, one of the newly-proposed method, simulates the 

social behavior of the elephants (G. G. Wang et al., 2015). Although the literature about the EHO 

algorithm is not so wide due to fact that it is a newly proposed algorithm, it was used to solve various 

problems such as multi-level image thresholding (Tuba et al., 2017), unmanned aerial vehicle path 

planning (Alihodzic et al., 2017), static drone placement (I. Strumberger et al., 2017), load frequency 

control (Sambariya and Fagna, 2017). In this study, a new approach which based EHO algorithm is 

proposed for constrained optimization. In addition, the new approach is implemented to not only basic 

EHO algorithm but also two EHO variants. One of these variants contains a simple modification on the 

basic EHO, other one was proposed in my previous study (Hakli, 2018). Three experiments are 

performed using thirteen constrained benchmark problems in this study. Firstly, the performance of 

three variants of EHO is evaluated to determine the best one. Secondly, the best of EHO variants is 

compared with the other algorithms. Third experiment contains a comparison between the best EHO 

variant in this study and another variant based on EHO in the literature. 

The remainder of this paper is divided as follows. The following part contains the basic explanation 

of constrained optimization. The next part describes the adaptation of EHO variants to constrained 

optimization using Deb’s rule. Then, experimental results are reported and evaluated. Finally the paper 

is concluded in the last part. 

CONSTRAINED OPTIMIZATION 

There are some constraints in many of optimization problems and constrained optimization can be 

defined as follows (Babalik et al., 2018): 

 

( )

( ) 0 1,2,3,...,

( ) 0 1,2,3,...,

i

i

optimize f x

subject to

g x i q

h x j p

 

 

 
           

(1) 

 

where f(x) is objective function of problem, g(x) represents inequality constraint and h(x) is equality 

constraint. q and p are respectively number of inequality constrains and equality constraints. Equality 

constraints shrink feasible search space, so this is getting difficult to find the optimal solutions for 
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optimization techniques. To overcome this issue, equality constraints can be converted to inequality 

constraints (Ivana Strumberger et al., 2018): 

 

( ) 1,2,3,...,jh x j p      (2) 

 

 represents small violation tolerance. In the constrained optimization, validate of the found 

solution depends on the violation of constraints (Babalik et al., 2018). Therefore, violation of constraints 

is important as much as fitness value obtained from objective function. 

ADAPTATION OF EHO VARIANTS FOR CONSTRAINED OPTIMIZATION 

In the basic EHO algorithm, an elephant in the population represents a candidate solution and the 

whole population is divided the clans. The best elephant in the clan is determining as a matriarch. The 

basic EHO contains two main process : clan updating operator and separating operator. The new 

positions of elephants are updated by Eq. (3) except the matriarch in the clan. Due to no position update 

using Eq.(3) for the matriarch, Eq.(4) is used the updating new position of matriarch. 

, ,( )j j j

new ci ci best ci ciX X X X r      
(3) 

, ,

j

new ci center ciX X   
(4) 

where ,

j

new ciX  is the new position of 
j

ciX . 
j

ciX represents the position of elephant j in clan ci, ,best ciX  

is the position of the matriarch in clan ci for Eq.(3). α is a scale factor and r is a random number in the 

range [0,1]. In the Eq. (4) , ,center ciX  is mean position of clan ci and β is a factor in the range [0,1]. When 

the male elephants reach the puberty, they will leave their clans and their position is randomly 

determined in the search space with Eq.(5). 

 

, min max min( 1)worst ciX X X X rand      (5) 

 

where ,worst ciX represents the worst elephant in the clan ci.  minX and maxX are  minimum and 

maximum bound in the search space. 

The pseudo code of the basic EHO to solve the constrained optimization problem is given in Figure 

1. By protecting the general structure of basic EHO, the adaptation of EHO algorithm is implemented 

with Deb’s rule to constrained optimization. Due to ease of implementation and an effective mechanism 

for the constrained optimization, the Deb’s rules are used as a constraint handling method in this study.  

In the Deb’s rule, there are rules on the selection between two solutions (Babalik et al., 2018; Deb, 2000): 

1. When preferring between feasible and infeasible solution, feasible solution is directly selected. 

2. If two solutions are feasible, better solution based in accordance with fitness value is selected. 

3. If two solutions are infeasible, the solution with less violation is selected. 

 

When the whole population is sorting, not only fitness values but also violations are considered. To 

apply the Deb’s rule, the population is sorting in accordance with violation values of elephants firstly, 

and then fitness values. Thus, if the violation values of two elephants are equal or zero, they are ranked 

according to their fitness value. If not equal, the elephant which has a higher violation value is worse 

than the elephant which has a lower violation value on the ranking. 

 



H.HAKLI 

 
408 

 
Figure 1. The pseudo code of the basic EHO to solve constrained optimization problem 

 

Due to the taking directly mean position of clan using a random number for updating the new 

position, Eq. (4) may causes the poor fit solution and inconsistency (Hakli, 2018; Parashar et al., 2017). As 

a cumulative effect, it undermines the process of finding the global best solution (Meena et al., 2018). 

Considering the discussion on the disadvantage of the Eq.(4), it is ignored in the new variant and this 

variant is named EHO-NoB. In my previous study (Hakli, 2018), a new EHO variant was proposed by 

balancing global and local search (GL-EHO). In the GL-EHO, the new search mechanism which is 

inspired by particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) and artificial bee colony 

(ABC) (Karaboga, 2005) is used instead of the Eq.(3) in the basic EHO. These two EHO variants are 

adapted to constrained optimization as shown in Figure 1 except for the indicated changes. 

EXPERIMENTAL RESULTS 

The performance of algorithms is evaluated and investigated on the well-known 13 constrained 

optimization benchmark problems (Koziel and Michalewicz, 1999; Mezura-Montes and Coello, 2011; 

Runarsson and Yao, 2000). These problems are detailed in Appendix-A, and also you can find the details 

of these functions as a supplementary data in the Babalik et al.’s study (Babalik et al., 2018). G02, G03, 

G08 and G12 are maximization, and the other eights are minimization problems. In the experiments are 

performed in this study, the population size is 50, the number of elephant in each clan is set 10 and α is 

0.5 for all EHO variants. For the basic EHO, β is determined as 0.1. The acceleration coefficients c1 and c2 

are equal to each other and they are set 1.5 for the GL-EHO. To provide fair comparison, the maximum 

number of function evaluations is set 2.4E+5 as in other studies (Babalik et al., 2018; Ivana Strumberger 

et al., 2018), and the algorithms are run 30 times for each function.  

The Experiments of EHO Variants 

The experimental results of EHO variants for constrained optimization problem are given in Table 1. 

Table 1 contains the mean and standard deviation results of 30 runs for three EHO variants. In addition, 
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the optimum results of the problems are seen in Table 1. The best mean results obtained by algorithms 

for the benchmark problems are written as boldface. 

 

Table 1. Experimental results of EHO variants for constrained optimization problems 

Problem Min./Max. Optimal   EHO EHO-NoB GL-EHO 

G01 Min. -15,000 
Mean -1,088 -14,500 -15,000 

Std.Dev. 2,285 0,974 0,000 

G02 Max. 0,803619 
Mean 0,2522 0,4490 0,6405 

Std.Dev. 0,018 0,020 0,069 

G03 Max. 1,000 
Mean 0,6560 0,4864 0,9026 

Std.Dev. 0,088 0,250 0,360 

G04 Min. -30665,539 
Mean 30333,809 -30304,074 -30665,540 

Std.Dev. 56,196 105,429 0,000 

G05 Min. 5126,498 
Mean 5373,189 5182,527 5502,522 

Std.Dev. 174,591 69,539 406,900 

G06 Min. -6961,814 
Mean -6943,713 -6227,937 -6961,814 

Std.Dev. 9,322 288,753 0,000 

G07 Min. 24,306 
Mean 446,6258 83,0228 36,9279 

Std.Dev. 204,988 112,134 34,476 

G08 Max. 0,095825 
Mean 0,095376 0,095825 0,095825 

Std.Dev. 0,000 0,000 0,000 

G09 Min. 680,63 
Mean 927,874 709,6519 681,7680 

Std.Dev. 60,689 24,345 0,854 

G10 Min. 7049,25 
Mean 10236,025 8162,372 8374,642 

Std.Dev. 677,597 1240,831 1481,337 

G11 Min. 0,75 
Mean 0,7400 0,7399 0,7399 

Std.Dev. 0,000 0,000 0,000 

G12 Max. 1,000 
Mean 1,000 1,000 1,000 

Std.Dev. 0,000 0,000 0,000 

G13 Min. 0,05395 
Mean 1,3335 1,0946 0,4043 

Std.Dev. 1,056 0,858 0,213 

 

When examining the Table 1, GL-EHO has better or same performance than the other variants on the 

eight problems. The basic EHO obtains the better solution than the other algorithm for only G11 function 

and it generally falls behind the EHO-NoB in terms of solution quality.  This situation can be verified the 

discussion on the Eq.(4) of the basic EHO. The GL-EHO reaches optimal solution for G01, G04, G06, G08 

and G12 problems and it outperforms the basic EHO and EHO-NoB in accordance with the experimental 

results are given in Table 1. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. The convergence graphs of EHO variants 

To analysis the convergence performances of EHO variants, convergence graphs of the methods are 

given in the Figure 2. In the Figure 2, there are four convergence graphs for the G04 (a) ,G05 (b), G02 (c) 

and G08 (d) problems. GL-EHO has a superior convergence performance and it reaches the optimum 

before basic EHO and EHO-NoB as seen in Figure 2. Although the basic EHO converges quickly than the 

EHO-NoB, it undergoes stagnation (especially G02) and EHO-NoB catches or gets ahead the basic EHO 

towards the end of the iteration. 

A comparison of GL-EHO and other algorithms 

The GL-EHO is more successful than the basic EHO and EHO-NoB in accordance with the results in 

the first experiment, so it is selected for comparison with other algorithms to validate its performance. 

The GL-EHO is compared with ABC, PSO, genetic algorithm (GA) and differential evolution algorithm 

(DE) and the experimental results of these algorithms given in Table 2 are directly taken from (Babalik et 

al., 2018).  
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Table 2. A comparison of GL-EHO and other algorithms 

Problem Optimal 

 

ABC PSO GA DE GL-EHO 

G01 -15,0000 
Mean -15,0205 -10,5551 -14,2360 -14,2406 -15,0000 

Difference 0,0205 4,4449 0,7640 0,7594 0,0000 

G02 0,8036 
Mean 0,4795 0,4043 0,7886 0,6660 0,6405 

Difference 0,3241 0,3993 0,0150 0,1376 0,1631 

G03 1,0000 
Mean 3,0191 1,1675 0,9760 1,1694 0,9026 

Difference 2,0191 0,1675 -0,0240 0,1694 -0,0974 

G04 -30665,5390 
Mean -30610,974 -30661,740 -30590,455 -30665,540 -30665,540 

Difference 54,565 3,799 75,084 0,001 0,001 

G05 5126,4970 
Mean 5115,056 5298,284 N/A 5329,197 5502,522 

Difference 11,441 171,787 N/A 202,700 376,025 

G06 -6961,8140 
Mean -7579,630 -6961,819 -6872,204 -6765,482 -6961,814 

Difference 617,816 0,005 89,610 196,332 0,002 

G07 24,3060 
Mean 29,0956 28,7418 34,9800 24,3160 36,9279 

Difference 4,7896 4,4358 10,6740 0,0100 12,6219 

G08 0,0958 
Mean 6,5347 0,0847 0,0958 0,0958 0,0958 

Difference 6,4389 0,0111 0,0000 0,0000 0,0000 

G09 680,6300 
Mean 683,8941 680,7815 692,0640 680,6308 681,7680 

Difference 3,2641 0,1515 11,4340 0,0008 1,1380 

G10 7049,2500 
Mean 7259,028 8128,793 10003,225 7162,592 8374,642 

Difference 209,778 1079,543 2953,975 113,342 1325,392 

G11 0,7500 
Mean 0,7171 0,7626 0,7500 0,9545 0,7399 

Difference 0,0329 0,0126 0,0000 0,2045 0,0101 

G12 1,0000 
Mean 1,0001 1,0000 1,0000 1,0000 1,0000 

Difference 0,0001 0,0000 0,0000 0,0000 0,0000 

G13 0,0955 
Mean 0,0955 1,4228 N/A 0,9492 0,4043 

Difference 0,0000 1,3273 N/A 0,8537 0,3088 

Friedman Rank (Dif.) 3,46 3,12 3,35 2,58 2,50 

Corrected Rank 5 3 4 2 1 

 

The absolute difference values calculated by subtracting the mean values of the algorithms from the 

optimal values of the problems are presented in Table 2 so that the algorithms’ results can be evaluated 

clearly.  Friedman rank test are implemented using absolute difference values of algorithms. With respect 

to the Friedman test, GL-EHO is first rank between the methods. In addition, the DE is second rank and 

ABC is located in the last rank. 

A comparison of GL-EHO and other EHO variant on the constrained optimization 

Strumberger et.al proposed a hybridized EHO (HEHO) for constrained optimization and they used 

a different approach for adaptation to constrained optimization (Ivana Strumberger et al., 2018). The 

limit parameter in the ABC algorithm was added to HEHO and when the generating new solution, the 
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new solution was compared with the previous one in the HEHO algorithm. If the new solution is better 

than the current one in accordance with Deb’s rule, the previous solution was replaced with the new 

solution. Thus, the HEHO prevents the losing the better solutions. To investigate the performance of two 

different approaches based on EHO for constrained optimization, GL-EHO is compared with the HEHO 

in Table 3. 

 

Table 3. A comparison of GL-EHO and HEHO 

Problem Optimal 

 

HEHO GL-EHO 

G01 -15,000 
Mean -14,958 -15,000 

Std.Dev. 0,012 0,000 

G02 0,803619 
Mean 0,799125 0,6405 

Std.Dev. 0,026 0,069 

G03 1,000 
Mean 1,000 0,9026 

Std.Dev. 0,000 0,360 

G04 -30665,539 
Mean -30499,033 -30665,540 

Std.Dev. 16,302 0,000 

G05 5126,498 
Mean 5126,505 5502,522 

Std.Dev. 0,041 406,900 

G06 -6961,814 
Mean -6957,361 -6961,814 

Std.Dev. 1,005 0,000 

G07 24,306 
Mean 24,309 36,9279 

Std.Dev. 0,003 34,476 

G08 0,095825 
Mean 0,095825 0,095825 

Std.Dev. 0,000 0,000 

G09 680,63 
Mean 680,653 681,7680 

Std.Dev. 0,011 0,854 

G10 7049,25 
Mean 7152,895 8374,642 

Std.Dev. 95,239 1481,337 

G11 0,75 
Mean 0,751 0,7399 

Std.Dev. 0,001 0,000 

G12 1,000 
Mean 1,000 1,0000 

Std.Dev. 0,000 0,000 

G13 0,05395 
Mean 0,246 0,4043 

Std.Dev. 0,106 0,213 

 

As seen in the Table 3, while the GL-EHO has a better performance than the HEHO for G01, G04, 

G06 problems, it has a same performance with HEHO for G08 and G12. HEHO obtains the better result 

than the GL-EHO for the eight problems. Although the results of GL-EHO are comparable level with the 

results of HEHO, the HEHO approach is forefront on the constrained optimization by virtue of 

preventing the worse solutions. On the other hand, while the GL-EHO maintains the basic EHO 

characteristics except for the change of the search mechanism, the HEHO has more modifications on the 

basic EHO. 

CONCLUSION 

When solving the constrained optimization problems with the bio-inspired algorithms, these 

algorithms have been adapted to constrained optimization with some modifications using the constraint 
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handling methods. In this study, a new approach based on EHO algorithm was applied using Deb’s 

rules for constrained optimization. In addition, two EHO variants (EHO-NoB and GL-EHO) are adapted 

to constrained optimization with this new approach. The performances of these algorithms are 

evaluated on the well-known thirteen constrained optimization problems. The basic EHO has a weak 

performance due to the losing the diversification of population quickly. The GL-EHO outperforms the 

basic EHO and EHO-NoB by virtue of effective search mechanism. Moreover, GL-EHO has a better 

performance when comparing with other mostly known algorithms. The GL-EHO is compared with 

another EHO variant (HEHO) on the constrained optimization and its results are comparable level with 

the results of HEHO. Although, GL-EHO obtained the promising results by protecting the characteristic 

of basic EHO, it can be improved with some modifications or hybridized with other algorithms as a 

future work. 
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 Appendix A. Standard Constrained Optimization Problems 

G01 Problem 

4 4 13
2

1 1 5

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6

min ( ) 5 5 5

( ) 2 2 10 0

( ) 2 2 10 0

( ) 2 2 10 0

( ) 8 0

( ) 8 0

( ) 8 0

( ) 2 0

( ) 2

d d d

d d d

f x x x x
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g x x x x x

g x x x x x

g x x x x x

g x x x

g x x x

g x x x

g x x x x
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   

   
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0

( ) 2 0

0, 1,2,...,13

1, 1,2,...,9,13

i

i

x x

g x x x x

x i

x i

  

    

 

 

        G01 

 

There are 13 decision variables and 9 constraint functions defined on the decision variables in G01 

problem. The global minimum is -15 while decision variables are (1,1,…,1,3,3,3,1). The search space is 

0 , 1,2,..., (1,1,...,1,100,100,100,1)i ix u i n and u    . 

 

G02 Problem 

 
subject to 

 

 
There are 20 decision variables and 2 constraint functions defined on the decision variables in G02 

problem. The global maximum is unknown, the best founded solution is 0.803619 (which, to the best of 

our knowledge, is better than any reported value), constraint is close to being active ( ). 

The search space is . 
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G03 Problem 

 
subject to 

 
 

There are 10 decision variables and a constraint function defined on the decision variables in G03 

problem. The global maximum is 1, while decision variables are (i=1,…,n). The search space is 

. 

 

G04 Problem 

 
subject to 

 

 

 

 

 

 
 

There are 5 decision variables and 6 constraint functions defined on the decision variables in G04 

problem. The global minimum is -30665.539 while decision variables are (78, 33, 29.995256025682, 45 and 

36.775812905788). The search space is 

, , , , . 

 

G05 Problem 

 
subject to 

 

 

 

 

 
 

There are 4 decision variables and 5 constraint functions defined on the decision variables in G05 

problem. The best known solution is 5126.4981 while decision variables are (679.9453, 1026.067, 

0.1188764, -0.3962336). The search space 

is , , , . 
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G06 Problem 

 
subject to 

 

 
 

There are 2 decision variables and 2 constraint functions defined on the decision variables in G06 

problem. The optimum solution is -6961.81388 while decision variables are (14.095, 0.84296). The search 

space is , . 

G07 Problem 

 
subject to 

 

 

 

 

 

 

 

 
 

There are 10 decision variables and 8 constraint functions defined on the decision variables in G07 

problem. The optimum solution is 24.3062091 while decision variables are (2.363683, 8.773926, 5.095984, 

0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, and 8.375927). The search space 

is ,  

 

G08 Problem 

 
subject to 

 

 
 

There are 2 decision variables and 2 constraint functions defined on the decision variables in G08 

problem. The optimum solution is 0.095825 while decision variables are (1.2279713, 4.2453733). The 

search space is ,  
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G09 Problem 

 
subject to 

 

 

 

 
 

There are 7 decision variables and 4 constraint functions defined on the decision variables in G09 

problem. The optimum solution is 680.6300573 while decision variables are (2.330499, 1.951372, -

0.4775414, 4.365726, -0.6244870, 1.038131, and 1.594227). The search space 

is ,  

G10 Problem 

 
subject to 

 

 

 

 

 

 
 

There are 8 decision variables and 6 constraint functions defined on the decision variables in G10 

problem. The optimum solution is 7049.3307 while decision variables are (579.3167, 1359.943, 5110.071, 

182.0174, 295.5985, 217.9799, 286.4162, and 395.5979). The search space 

is , , . 

G11 Problem 

 
subject to 

 
 

There are 2 decision variables and a constraint functions defined on the decision variables in G11 

problem. The optimum solution is 0.75 while decision variables are ( ). The search space 

is  and . 

G12 Problem 

 
subject to 
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There are 3 decision variables and a constraint functions defined on the decision variables in G12 

problem. The feasible region of the search space consists of disjointed spheres. A point ( ) is 

feasible if and only if there exist p, q, r such that the above inequality holds. The optimum solution is 1 

while decision variables are (5,5,5). The search space is  and  also p, q, r = 1, 2, 

…, 9. The solution lies within the feasible region. 

G13 Problem 

 
subject to 

 

 

 
 

There are 5 decision variables and 3 constraint functions defined on the decision variables in G13 

problem. The global minimum is 0.0539498 while decision variables are (-1.717143, 1.595709, 1.827247, -

0.7636413, -0.763645). The search space is , . 


