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ON SUBSEQUENTIALLY CONVERGENT SEQUENCES

SEFA ANIL SEZER AND IBRAHIM QANAK

ABSTRACT. In thisstudy we obtain some sufficient conditions under which sub-
sequential convergence of a sequence of real numbers follows from its bound-
edness. Eventually, we obtain crucial information about the subsequential
behavior of sequences.

1. INTRODUCTION

It is well known that convergence of a sequence {s,} of real numbers implies its
boundedness, yet the converse is not necessarily true is clear from the example of
{sin(n7/2)}. Since boundedness is a necessary condition for convergence of {s,},
we put the following question: Under which conditions we get information on the
convergence behavior of bounded sequences. In the case where {s,,} is monotonic
and bounded, we have its convergence. On the other hand, Bolzano-Weierstrass
theorem states that every bounded sequence has at least one accumulation point.
However, there are some bounded sequences such as {sin(logn)} whose accumula-
tion points lie on a finite interval and all points in this interval are accumulation
points of the sequence. In this case we just have convergence of some subsequences
of {s,}. Motivated by this idea, Stanojevi¢ [10] defined a new kind of convergence
as follows.

Definition 1. A sequence {s,} is said to be subsequentially convergent if there
exists a finite interval I such that all accumulation points of the sequence {s,} are
in I and every point of I is an accumulation point of {s,}.

Throughout this paper, we adopt the following familiar conventions:

(i) an = o(b,) means a, /b, — 0 as n — oo,
(ii) an = O(by,) means |a,| < Hb,, for sufficiently large n, where H is a positive
constant,
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(iii) a, ~ b, means a,/b, — 1 as n — co.

Note that every convergent sequence is subsequentially convergent. Further, it
is obvious that subsequential convergence implies boundedness. But the converse
is not always valid, provided by the example {(—1)"}. The first theorem which
reveals that the converse is valid under certain conditions was obtained by Dik [3]
as stated below.

Theorem 2. If {s,} is a bounded sequence such that As,, = o(1) as n — oo, then
{sn} is subsequentially convergent.

Using Theorem [2| we can easily show that s, = {sin(logn)} is subsequentially
convergent. Indeed, since {s,} is bounded and
|As,| = |[Asin(logn)] = |sin(logn) — sin(log(n — 1))|
< |logn —log(n — 1) =o(1), n — oo,
{sn} is subsequentially convergent by Theorem
Subsequential convergence was studied in a number of papers such as Canak
and Totur [II, 2], Dik [3], Dik et al. [4] and Sezer and Canak [§]. In this paper we

investigate conditions under which subsequential convergence of {s, } follows from
its boundedness.

2. PRELIMINARIES

In this section, we present some fundamental definitions, identities and lemmas
which will be needed in the sequel.
The logarithmic mean of {s,} is defined by

"1
t(s) Zkﬂ where énZmevlogn, n=012... (1)
k=0

Definition 3. A sequence {s,} is said to be summable to a finite number L by

the logarithmic mean method (£,1) if lim, (1)( ) = L. In this case, we write
sp — &(4,1).

The difference between a sequence s,, and its logarithmic mean t( )( ), that is
known as the logarithmic Kronecker identity (see [9]) is given by

—t(s) = o) (As) (2)
where ’Un (As Zﬁk 1Asy, and As,, = s, — $,—1 with s_; = 0.

Since identity . can be rewritten as

n (0) A
_ .,(0) A Uk ( 8)
Sp =10, (As +]§:1 716_’_1)&71 + S0, (3)
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{véo)(As)} is said to be a logarithmic generator sequence of {s,}.
For every nonnegative integer r, we introduce tm( ) and v,@(As) by

1 &=tV (s)
) = T2 ke T
Sn ,7=20
and ( b
" (As
o (As) =4 Ty Z Kl SRt
7(L0)(AS) ,r=0
respectively.

The classical logarithmic control modulo of the oscillatory behavior of {s,} is
given by
w9 (s) = apnAsy, ~ nlognAs,, (4)
where o, = (n + 1)¢,,_1. The general logarithmic control modulo of the oscillatory
behavior of {s,,} of integer order r > 1 is recursively defined by

W (s) = w7V (s) = 1D (WD (s)). (5)
For every nonnegative integer r, we have
(anA)Tsn = (anA)Til(anAsn) = oznA((anA)Tflsn),
where (anA)Osn = s, and (anA)l

The next lemma provides a different representation of {wgf) (s)}.

Sy = apAs,.

Lemma 4. (Sezer and Canak, [9]) For every integer r > 1, the assertion

w(r) (s) = (anA) Tvﬁ[“*” (As)

n

s valid.

Definition 5. A sequence {s,} is called slowly oscillating with respect to summa-
bility (¢,1) if

lim limsu max |Sp — s, =0 6
A1 n_)oopn<k<[n>\]| k= snl (6)

or equivalently
lim limsup max |s, — sx| =0, (7)
A—=1" nooco [RM<k<n

where [n] denotes the integer part of n*.

Note that if the two-sided condition nlognAs, = O(1) is satisfied, then ()
holds.

There are subsequentially convergent sequences which are not slowly oscillating
with respect to summability (¢,1), and vice versa. For instance, {log(logn}) is
subsequentially convergent but not slowly oscillating with respect to summability
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(¢,1), conversely, the sequence {sin (ZZ:1 10% k) } is slowly oscillating with respect

to summability (£,1) but not subsequentially convergent.
The following lemma indicates that slow oscillation of {s,} is a Tauberian con-
dition for (¢,1) summability.

Lemma 6. If {s,} is (¢,1) summable to L and slowly oscillating with respect to
summability (¢,1), then it converges to the same value.

3. MAIN RESULTS
In this section we present our main theorems.

Theorem 7. If {s,} is bounded and {As,} is slowly oscillating with respect to
summability (¢,1), then {s,} is subsequentially convergent.

Proof. Considering identity 7 we have
(0) (As)
Qp
Since {sn} be bounded, then so is {’Uy(LO)(AS)}. By identity and slow oscillation

of {As,}, {Av,&o) (As)} is slowly oscillating with respect to summability (¢,1). Also,
since

As, = + Avl(As). (8)

© . U 89) )
Avy(As) 1 k+2 1 vy’ (As)
== — 0
0 Z e A D A R

{Aw(lO)(As)} is (¢,1) summable to 0. Hence, we obtain Avr(lo)(As) = o(1) by using
Lemma @ Also, by , As, = o(1). Therefore, proof of Theorem (7| follows from
Theorem 21 O

Remark 8. Notice that the following conditions are some of the classical Tauberian
conditions for the (£,1) summability which imply slow oscillation of {Asy,}:

(i) {sn} is slowly oscillating with respect to summability (¢,1), (Kwee, [6])

(i) wi'(s) = O(1), (Kwee, [i])

(iii) wh(s) = o(1), (Ishiguro, [5])

(iv) {Uno)(As)} is slowly oscillating with respect to summability (¢,1), (Sezer
and Canak, [9])

(v) v (As) = o(1) (Kwee, [7])

In the next theorems, we propose new conditions imposed on the general loga-
rithmic control modulo of the oscillatory behavior of {s,}.

Theorem 9. If {s,} is bounded and {A( (1)( "))} is slowly oscillating with
respect to summability (¢,1) for some nonnegative integer r, then {s,} is subse-
quentially convergent.
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Proof. Suppose s, = O(1). We see by using that v\ (As) = D (w®(s)) =
O(1). From the identity
t) (W (s)) = 12 (W V(s)) = 1) (W (),
we get tgll)(w(l)(s)) = O(1). Continuing in the same fashion, we obtain
1) (w(s)) = O(1)

for all integer r > 0, which is equivalent to

(an ) o (As) = O(1). 9)

Hence, we observe

(AW (5) = D (A(end)r0l)(As)))
1S (D), (As) — (k1) (As)
by = kot 1
(xA), 0" (As) o
_ 1 - k+2 1 (and),on” (As)
4, kzo E+1 + l, n+2 -0

as n — oo. Combining the hypothesis of Theorem [9] and Lemma [f] yields
AP (w(s))) = A((and) o)) (As)) = o(1). (10)
Considering identity
Wi (s) =t (M () = WD (s),
we have

(anA)rvgf) (As)

Ay

A((O‘nA)Tflvv(zT_l) (As)) =

Now, using @D and , we have
A(@nd)r—107 D (As)) = o(1). (11)
In the light of and , if we continue in the same manner, then we get
AvO(As) = o(1).

+ A((anA)r”r(zT) (As))

Therefore, taking the identity

(0)
As, = un’(As) + AvO(As)

n

into account together with the assumption s, = O(1), we conclude As,, = o(1).
This completes the proof. O

Remark 10. The following results are noteworthy.
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(i) If {tsll) (W) ()} is slowly oscillating with respect to summability (£,1), then
so is {A(t m(w(r)( )))} of its backward difference.

(ii) Set r = 0 in {t )( (" (s))}.  Then slow oscillation of {v,(lo)(As)}:
{tg)(w(o)( )} is sufficient for subsequential convergence of a bounded se-

quence.

(i) Two-sided condition nlognAvr(LO)(As) O(1) implies slow oscillation of
{0 (As)}.
Theorem 11. Let {s,} be a bounded sequence and {A,} be a sequence satisfying
|Ak|
=0(1 1. 12
g St (1),p> (12)
If

W () = O(An) (13)

for some nonnegative integer r, then {s,} is subsequentially convergent.

Proof. By (12 ., we see that {Z =0 @ 45 } is slowly oscillating with respect to sum-
mability (¢,1). Indeed,

k EoyA [n*] 4]
max < max = 73
n<k< n>‘] Z (e7 n<k§[n>‘]j:72L+1 (o7 jﬂZH-l (] + 1)£j—1
g
< 3 | 4]
= 5 2 G
1 1
1 [g 1\ [g 1
< — — 14
b jent1? +1 jent1? +1
1 1 n
(Cpr) — )7 ()7 [ 1 [Z] AP
(C)s (L) \ b g+ 1

where % + % = 1. Taking the limit supremum as n — oo of both sides of the last
inequality

Ly
limsup max Z =L

n—oo n<k<[n?]

1 1 [n?] %
bipxy — én q én’\ P ) - |P
< lim sup <( [”(]E ); ) (([K )])1 )hmsup L E &



ON SUBSEQUENTIALLY CONVERGENT SEQUENCES 1479

1 1 [n*]
. f[nx]—én a . E[nk] P 1 |A47"p
= i () () man | 1S A

n n—oo n’\] =0
Hence, from (12 we get
"4 -~
limsup max i<W =1Ds e H 14
n—>oop n<k<[n*] j2+1 Qa; - ( ) ( )
for H > 0. Now, letting A — 17 in (14]) gives
k
o A; . 1.1
lim limsup max —1 < lim (A—1)«A»H =0.
A—=1t posoo n<k<[n?] L~ a A—1+
Jj=n+1
Since slow oscillation of {Z?:o 2—;} implies ‘3—: = o(1), it follows from

W;r)(s) = O‘nA((anA)rflvg)_l)(As)) =0(A,)

that
A((anl)y—10y "D (As)) = o1). (15)
By the boundedness of {s,}, we also have
tM (W™ (s)) = O(1) for each integer m > 0. (16)
Considering for m =r — 1, we have
t (W (s)) = (anl)p—1vf "V (As) = O(1). (17)

Now, construct identity below using the definition of general logarithmic control
modulo

anA)r,le“_l)(As)

A((nd),s0§ 2 (As)) = ¢ T A((@nd),_io§ D (As)).

Qp
Thus, by and , we have
A((anA), 30D (A8)) = o(1), (18)
Taking and into account and proceeding likewise, we accomplish
Av (As) = o(1). (19)
Then, since
vﬁbo)(As)
As, = == + AvW(As)
o
and {s,} is bounded, we find As,, = o(1), which completes the proof. O

Remark 12. Considering special cases of Theorem we obtain the following
corollaries.
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(i) Take A, =1 for all integer n > 0. Then and reduce to wgf)(s) =
o(1).
(ii) Take A, = anAt(l)(w(T)(s)) then by the condition

(67 UJ(

we get subsequentzal convergence of a bounded sequence {s,} using Remark
since (20)) necessitate that {t%l)(w(r)(s))} is slowly oscillating with re-
spect to summability (£,1).
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