Available online: August 9, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 1473-1481 (2019) DOI: 10.31801/cfsuasmas.540620 ISSN 1303-5991 E-ISSN 2618-6470 http://communications.science.ankara.edu.tr/index.php?series=A1

ON SUBSEQUENTIALLY CONVERGENT SEQUENCES

SEFA ANIL SEZER AND İBRAHİM ÇANAK

ABSTRACT. In this study we obtain some sufficient conditions under which subsequential convergence of a sequence of real numbers follows from its boundedness. Eventually, we obtain crucial information about the subsequential behavior of sequences.

1. INTRODUCTION

It is well known that convergence of a sequence $\{s_n\}$ of real numbers implies its boundedness, yet the converse is not necessarily true is clear from the example of $\{\sin(n\pi/2)\}$. Since boundedness is a necessary condition for convergence of $\{s_n\}$, we put the following question: Under which conditions we get information on the convergence behavior of bounded sequences. In the case where $\{s_n\}$ is monotonic and bounded, we have its convergence. On the other hand, Bolzano-Weierstrass theorem states that every bounded sequences such as $\{\sin(\log n)\}$ whose accumulation points lie on a finite interval and all points in this interval are accumulation points of the sequence. In this case we just have convergence of some subsequences of $\{s_n\}$. Motivated by this idea, Stanojević [10] defined a new kind of convergence as follows.

Definition 1. A sequence $\{s_n\}$ is said to be subsequentially convergent if there exists a finite interval I such that all accumulation points of the sequence $\{s_n\}$ are in I and every point of I is an accumulation point of $\{s_n\}$.

Throughout this paper, we adopt the following familiar conventions:

- (i) $a_n = o(b_n)$ means $a_n/b_n \to 0$ as $n \to \infty$,
- (ii) $a_n = O(b_n)$ means $|a_n| \le Hb_n$ for sufficiently large *n*, where *H* is a positive constant,

Submitted via 2nd International Conference of Mathematical Sciences (ICMS 2018).

©2019 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: July 31, 2018; Accepted: January 15, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05; Secondary 40E05.

Key words and phrases. Subsequential convergence, slowly oscillating sequences, logarithmic summability.

(iii) $a_n \sim b_n$ means $a_n/b_n \to 1$ as $n \to \infty$.

Note that every convergent sequence is subsequentially convergent. Further, it is obvious that subsequential convergence implies boundedness. But the converse is not always valid, provided by the example $\{(-1)^n\}$. The first theorem which reveals that the converse is valid under certain conditions was obtained by Dik [3] as stated below.

Theorem 2. If $\{s_n\}$ is a bounded sequence such that $\Delta s_n = o(1)$ as $n \to \infty$, then $\{s_n\}$ is subsequentially convergent.

Using Theorem 2 we can easily show that $s_n = {\sin(\log n)}$ is subsequentially convergent. Indeed, since $\{s_n\}$ is bounded and

$$\begin{aligned} |\Delta s_n| &= |\Delta \sin(\log n)| &= |\sin(\log n) - \sin(\log(n-1))| \\ &\leq |\log n - \log(n-1)| = o(1), \ n \to \infty, \end{aligned}$$

 $\{s_n\}$ is subsequentially convergent by Theorem 2.

Subsequential convergence was studied in a number of papers such as Çanak and Totur [1, 2], Dik [3], Dik et al. [4] and Sezer and Çanak [8]. In this paper we investigate conditions under which subsequential convergence of $\{s_n\}$ follows from its boundedness.

2. Preliminaries

In this section, we present some fundamental definitions, identities and lemmas which will be needed in the sequel.

The logarithmic mean of $\{s_n\}$ is defined by

$$t_n^{(1)}(s) = \frac{1}{\ell_n} \sum_{k=0}^n \frac{s_k}{k+1}, \quad where \quad \ell_n = \sum_{k=0}^n \frac{1}{k+1} \sim \log n, \quad n = 0, 1, 2, \dots .$$
(1)

Definition 3. A sequence $\{s_n\}$ is said to be summable to a finite number L by the logarithmic mean method $(\ell, 1)$ if $\lim_{n\to\infty} t_n^{(1)}(s) = L$. In this case, we write $s_n \to \xi(\ell, 1)$.

The difference between a sequence s_n and its logarithmic mean $t_n^{(1)}(s)$, that is known as the logarithmic Kronecker identity (see [9]) is given by

$$s_n - t_n^{(1)}(s) = v_n^{(0)}(\Delta s)$$
 (2)

where $v_n^{(0)}(\Delta s) = \frac{1}{\ell_n} \sum_{k=1}^n \ell_{k-1} \Delta s_k$ and $\Delta s_n = s_n - s_{n-1}$ with $s_{-1} = 0$.

Since identity (2) can be rewritten as

$$s_n = v_n^{(0)}(\Delta s) + \sum_{k=1}^n \frac{v_k^{(0)}(\Delta s)}{(k+1)\ell_{k-1}} + s_0,$$
(3)

 $\{v_n^{(0)}(\Delta s)\}$ is said to be a logarithmic generator sequence of $\{s_n\}$.

For every nonnegative integer r, we introduce $t_n^{(r)}(s)$ and $v_n^{(r)}(\Delta s)$ by

$$t_n^{(r)}(s) = \begin{cases} \frac{1}{\ell_n} \sum_{k=0}^n \frac{t_k^{(r-1)}(s)}{k+1} & , r \ge 1\\ s_n & , r = 0 \end{cases}$$

and

$$v_n^{(r)}(\Delta s) = \begin{cases} \frac{1}{\ell_n} \sum_{k=0}^n \frac{v_k^{(r-1)}(\Delta s)}{k+1} & , r \ge 1\\ v_n^{(0)}(\Delta s) & , r = 0 \end{cases}$$

respectively.

The classical logarithmic control modulo of the oscillatory behavior of $\{s_n\}$ is given by

$$\omega_n^{(0)}(s) = \alpha_n \Delta s_n \sim n \log n \Delta s_n, \tag{4}$$

where $\alpha_n = (n+1)\ell_{n-1}$. The general logarithmic control modulo of the oscillatory behavior of $\{s_n\}$ of integer order $r \ge 1$ is recursively defined by

$$\omega_n^{(r)}(s) = \omega_n^{(r-1)}(s) - t_n^{(1)}(\omega^{(r-1)}(s)).$$
(5)

For every nonnegative integer r, we have

$$(\alpha_n \Delta)_r s_n = (\alpha_n \Delta)_{r-1} (\alpha_n \Delta s_n) = \alpha_n \Delta ((\alpha_n \Delta)_{r-1} s_n),$$

where $(\alpha_n \Delta)_0 s_n = s_n$ and $(\alpha_n \Delta)_1 s_n = \alpha_n \Delta s_n$.

The next lemma provides a different representation of $\{\omega_n^{(r)}(s)\}$.

Lemma 4. (Sezer and Çanak, [9]) For every integer $r \ge 1$, the assertion

$$\omega_n^{(r)}(s) = (\alpha_n \Delta)_r v_n^{(r-1)}(\Delta s)$$

is valid.

Definition 5. A sequence $\{s_n\}$ is called slowly oscillating with respect to summability $(\ell, 1)$ if

$$\lim_{\lambda \to 1^+} \limsup_{n \to \infty} \max_{n < k \le [n^{\lambda}]} |s_k - s_n| = 0 \tag{6}$$

or equivalently

$$\lim_{\lambda \to 1^{-}} \limsup_{n \to \infty} \max_{[n^{\lambda}] \le k < n} |s_n - s_k| = 0, \tag{7}$$

where $[n^{\lambda}]$ denotes the integer part of n^{λ} .

Note that if the two-sided condition $n \log n \Delta s_n = O(1)$ is satisfied, then (6) holds.

There are subsequentially convergent sequences which are not slowly oscillating with respect to summability $(\ell, 1)$, and vice versa. For instance, $\{\log(\log n\})$ is subsequentially convergent but not slowly oscillating with respect to summability

 $(\ell, 1)$, conversely, the sequence $\left\{ \sin\left(\sum_{k=1}^{n} \frac{\log k}{k}\right) \right\}$ is slowly oscillating with respect to summability $(\ell, 1)$ but not subsequentially convergent.

The following lemma indicates that slow oscillation of $\{s_n\}$ is a Tauberian condition for $(\ell, 1)$ summability.

Lemma 6. If $\{s_n\}$ is $(\ell, 1)$ summable to L and slowly oscillating with respect to summability $(\ell, 1)$, then it converges to the same value.

3. Main Results

In this section we present our main theorems.

Theorem 7. If $\{s_n\}$ is bounded and $\{\Delta s_n\}$ is slowly oscillating with respect to summability $(\ell, 1)$, then $\{s_n\}$ is subsequentially convergent.

Proof. Considering identity (2), we have

$$\Delta s_n = \frac{v_n^{(0)}(\Delta s)}{\alpha_n} + \Delta v_n^{(0)}(\Delta s).$$
(8)

Since $\{s_n\}$ be bounded, then so is $\{v_n^{(0)}(\Delta s)\}$. By identity (8) and slow oscillation of $\{\Delta s_n\}$, $\{\Delta v_n^{(0)}(\Delta s)\}$ is slowly oscillating with respect to summability $(\ell, 1)$. Also, since

$$\frac{1}{\ell_n} \sum_{k=0}^n \frac{\Delta v_k^{(0)}(\Delta s)}{k+1} = \frac{1}{\ell_n} \sum_{k=0}^n \frac{\frac{v_k^{(0)}(\Delta s)}{k+2}}{k+1} + \frac{1}{\ell_n} \frac{v_n^{(0)}(\Delta s)}{n+2} \to 0 \text{ as } n \to \infty,$$

 $\{\Delta v_n^{(0)}(\Delta s)\}$ is $(\ell, 1)$ summable to 0. Hence, we obtain $\Delta v_n^{(0)}(\Delta s) = o(1)$ by using Lemma 6. Also, by (8), $\Delta s_n = o(1)$. Therefore, proof of Theorem 7 follows from Theorem 2.

Remark 8. Notice that the following conditions are some of the classical Tauberian conditions for the $(\ell, 1)$ summability which imply slow oscillation of $\{\Delta s_n\}$:

- (i) $\{s_n\}$ is slowly oscillating with respect to summability $(\ell, 1)$, (Kwee, [6])
- (ii) $\omega_n^{(0)}(s) = O(1)$, (Kwee, [6])
- (iii) $\omega_n^{(0)}(s) = o(1)$, (Ishiguro, [5])
- (iv) $\{v_n^{(0)}(\Delta s)\}$ is slowly oscillating with respect to summability $(\ell, 1)$, (Sezer and Çanak, [9])
- (v) $v_n^{(0)}(\Delta s) = o(1)$ (Kwee, [7])

In the next theorems, we propose new conditions imposed on the general logarithmic control modulo of the oscillatory behavior of $\{s_n\}$.

Theorem 9. If $\{s_n\}$ is bounded and $\{\Delta(t_n^{(1)}(\omega^{(r)}(s)))\}$ is slowly oscillating with respect to summability $(\ell, 1)$ for some nonnegative integer r, then $\{s_n\}$ is subsequentially convergent.

Proof. Suppose $s_n = O(1)$. We see by using (2) that $v_n^{(0)}(\Delta s) = t_n^{(1)}(\omega^{(0)}(s)) = O(1)$. From the identity

$$t_n^{(1)}(\omega^{(0)}(s)) - t_n^{(2)}(\omega^{(0)}(s)) = t_n^{(1)}(\omega^{(1)}(s)),$$

we get $t_n^{(1)}(\omega^{(1)}(s)) = O(1)$. Continuing in the same fashion, we obtain

$$t_n^{(1)}(\omega^{(r)}(s)) = O(1)$$

for all integer $r \ge 0$, which is equivalent to

$$(\alpha_n \Delta)_r v_n^{(r)}(\Delta s) = O(1).$$
(9)

Hence, we observe

$$\begin{aligned} t_n^{(1)}(\Delta(t^{(1)}(\omega^{(r)}(s)))) &= t_n^{(1)}(\Delta((\alpha_n \Delta)_r v_n^{(r)}(\Delta s))) \\ &= \frac{1}{\ell_n} \sum_{k=0}^n \frac{(\alpha_k \Delta)_r v_k^{(r)}(\Delta s) - (\alpha_{k-1} \Delta)_r v_{k-1}^{(r)}(\Delta s)}{k+1} \\ &= \frac{1}{\ell_n} \sum_{k=0}^n \frac{(\alpha_k \Delta)_r v_k^{(r)}(\Delta s)}{k+1} + \frac{1}{\ell_n} \frac{(\alpha_n \Delta)_r v_n^{(r)}(\Delta s)}{n+2} \to 0 \end{aligned}$$

as $n \to \infty$. Combining the hypothesis of Theorem 9 and Lemma 6 yields

$$\Delta(t_n^{(1)}(\omega^{(r)}(s))) = \Delta((\alpha_n \Delta)_r v_n^{(r)}(\Delta s)) = o(1).$$
(10)

Considering identity

$$\omega_n^{(r)}(s) - t_n^{(1)}(\omega^{(r)}(s)) = \omega_n^{(r+1)}(s),$$

we have

$$\Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)) = \frac{(\alpha_n \Delta)_r v_n^{(r)}(\Delta s)}{\alpha_n} + \Delta((\alpha_n \Delta)_r v_n^{(r)}(\Delta s)).$$

Now, using (9) and (10), we have

$$\Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)) = o(1).$$
(11)

In the light of (10) and (11), if we continue in the same manner, then we get

$$\Delta v_n^{(0)}(\Delta s) = o(1).$$

Therefore, taking the identity

$$\Delta s_n = \frac{v_n^{(0)}(\Delta s)}{\alpha_n} + \Delta v_n^{(0)}(\Delta s)$$

into account together with the assumption $s_n = O(1)$, we conclude $\Delta s_n = o(1)$. This completes the proof.

Remark 10. The following results are noteworthy.

- (i) If $\{t_n^{(1)}(\omega^{(r)}(s))\}$ is slowly oscillating with respect to summability $(\ell, 1)$, then so is $\{\Delta(t_n^{(1)}(\omega^{(r)}(s)))\}$ of its backward difference.
- (ii) Set r = 0 in $\{t_n^{(1)}(\omega^{(r)}(s))\}$. Then slow oscillation of $\{v_n^{(0)}(\Delta s)\} = \{t_n^{(1)}(\omega^{(0)}(s))\}$ is sufficient for subsequential convergence of a bounded sequence.
- (iii) Two-sided condition $n \log n \Delta v_n^{(0)}(\Delta s) = O(1)$ implies slow oscillation of $\{v_n^{(0)}(\Delta s)\}.$

Theorem 11. Let $\{s_n\}$ be a bounded sequence and $\{A_n\}$ be a sequence satisfying

$$\frac{1}{\ell_n} \sum_{k=0}^n \frac{|A_k|^p}{k+1} = O(1), p > 1.$$
(12)

 $I\!f$

$$\omega_n^{(r)}(s) = O(A_n) \tag{13}$$

for some nonnegative integer r, then $\{s_n\}$ is subsequentially convergent.

Proof. By (12), we see that $\left\{\sum_{j=0}^{n} \frac{A_j}{\alpha_j}\right\}$ is slowly oscillating with respect to sumability $(\ell, 1)$. Indeed,

$$\begin{aligned} \max_{n < k \le [n^{\lambda}]} \left| \sum_{j=n+1}^{k} \frac{A_{j}}{\alpha_{j}} \right| &\leq \max_{n < k \le [n^{\lambda}]} \sum_{j=n+1}^{k} \left| \frac{A_{j}}{\alpha_{j}} \right| \le \sum_{j=n+1}^{[n^{\lambda}]} \frac{|A_{j}|}{(j+1)\ell_{j-1}} \\ &\leq \frac{1}{\ell_{n}} \sum_{j=n+1}^{[n^{\lambda}]} \frac{|A_{j}|}{(j+1)} \\ &\leq \frac{1}{\ell_{n}} \left(\sum_{j=n+1}^{[n^{\lambda}]} \frac{1}{j+1} \right)^{\frac{1}{q}} \left(\sum_{j=n+1}^{[n^{\lambda}]} \frac{1}{j+1} |A_{j}|^{p} \right)^{\frac{1}{p}} \\ &\leq \frac{(\ell_{[n^{\lambda}]} - \ell_{n})^{\frac{1}{q}}}{(\ell_{n})^{\frac{1}{q}}} \frac{(\ell_{[n^{\lambda}]})^{\frac{1}{p}}}{(\ell_{n})^{\frac{1}{p}}} \left(\frac{1}{\ell_{[n^{\lambda}]}} \sum_{j=0}^{[n^{\lambda}]} \frac{|A_{j}|^{p}}{j+1} \right)^{\frac{1}{p}} \end{aligned}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Taking the limit supremum as $n \to \infty$ of both sides of the last inequality

$$\limsup_{n \to \infty} \max_{n < k \le [n^{\lambda}]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right|$$

$$\leq \limsup_{n \to \infty} \left(\frac{\left(\ell_{[n^{\lambda}]} - \ell_n\right)^{\frac{1}{q}}}{\left(\ell_n\right)^{\frac{1}{q}}} \frac{\left(\ell_{[n^{\lambda}]}\right)^{\frac{1}{p}}}{\left(\ell_n\right)^{\frac{1}{p}}} \right) \limsup_{n \to \infty} \left(\frac{1}{\ell_{[n^{\lambda}]}} \sum_{j=0}^{[n^{\lambda}]} \frac{|A_j|^p}{j+1} \right)^{\frac{1}{p}}$$

$$= \lim_{n \to \infty} \left(\frac{\ell_{[n^{\lambda}]} - \ell_n}{\ell_n} \right)^{\frac{1}{q}} \lim_{n \to \infty} \left(\frac{\ell_{[n^{\lambda}]}}{\ell_n} \right)^{\frac{1}{p}} \limsup_{n \to \infty} \left(\frac{1}{\ell_{[n^{\lambda}]}} \sum_{j=0}^{[n^{\lambda}]} \frac{|A_j|^p}{j+1} \right)^{\frac{1}{p}}.$$

Hence, from (12) we get

$$\lim_{n \to \infty} \sup_{n < k \le [n^{\lambda}]} \left| \sum_{j=n+1}^{k} \frac{A_j}{\alpha_j} \right| \le (\lambda - 1)^{\frac{1}{q}} \lambda^{\frac{1}{p}} H$$
(14)

for H > 0. Now, letting $\lambda \to 1^+$ in (14) gives

$$\lim_{\lambda \to 1^+} \limsup_{n \to \infty} \max_{n < k \le [n^{\lambda}]} \left| \sum_{j=n+1}^k \frac{A_j}{\alpha_j} \right| \le \lim_{\lambda \to 1^+} (\lambda - 1)^{\frac{1}{q}} \lambda^{\frac{1}{p}} H = 0.$$

Since slow oscillation of $\left\{\sum_{j=0}^{n} \frac{A_j}{\alpha_j}\right\}$ implies $\frac{A_n}{\alpha_n} = o(1)$, it follows from

$$\omega_n^{(r)}(s) = \alpha_n \Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)) = O(A_n)$$

that

$$\Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)) = o(1).$$
(15)

By the boundedness of $\{s_n\}$, we also have

$$t_n^{(1)}(\omega^{(m)}(s)) = O(1) \text{ for each integer } m \ge 0.$$
(16)

Considering (16) for m = r - 1, we have

$$t_n^{(1)}(\omega^{(r-1)}(s)) = (\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s) = O(1).$$
(17)

Now, construct identity below using the definition of general logarithmic control modulo

$$\Delta((\alpha_n \Delta)_{r-2} v_n^{(r-2)}(\Delta s)) = \frac{(\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)}{\alpha_n} + \Delta((\alpha_n \Delta)_{r-1} v_n^{(r-1)}(\Delta s)).$$

Thus, by (15) and (17), we have

$$\Delta((\alpha_n \Delta)_{r-2} v_n^{(r-2)}(\Delta s)) = o(1).$$
(18)

Taking (15) and (18) into account and proceeding likewise, we accomplish

$$\Delta v_n^{(0)}(\Delta s) = o(1). \tag{19}$$

Then, since

$$\Delta s_n = \frac{v_n^{(0)}(\Delta s)}{\alpha_n} + \Delta v_n^{(0)}(\Delta s)$$

and $\{s_n\}$ is bounded, we find $\Delta s_n = o(1)$, which completes the proof.

Remark 12. Considering special cases of Theorem 11, we obtain the following corollaries.

- (i) Take $A_n = 1$ for all integer $n \ge 0$. Then (12) and (13) reduce to $\omega_n^{(r)}(s) = O(1)$.
- (ii) Take $A_n = \alpha_n \Delta t_n^{(1)}(\omega^{(r)}(s))$, then by the condition

$$\frac{1}{\ell_n} \sum_{k=0}^n \frac{|\alpha_k \Delta t_k(\omega^{(r)}(s))|^p}{k+1} = O(1), \ p > 1,$$
(20)

we get subsequential convergence of a bounded sequence $\{s_n\}$ using Remark 10, since (20) necessitate that $\{t_n^{(1)}(\omega^{(r)}(s))\}$ is slowly oscillating with respect to summability $(\ell, 1)$.

Acknowledgment

This paper is presented at the 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July 2018-06 August 2018, Maltepe University, İstanbul, Turkey.

References

- Çanak, İ. and Totur, Ü., Some conditions for subsequential convergence and ordinary convergence, J. Comput. Anal. Appl. 14(3) (2012), 466-474.
- [2] Çanak, İ. and Totur, Ü., On subsequential convergence of bounded sequences, Miskolc Math. Notes. 16(2) (2015), 721-728.
- [3] Dik, F., Tauberian theorems for convergence and subsequential convergence with moderately oscillatory behavior, *Math. Morav.* 5 (2001), 19-56.
- [4] Dik, F., Dik, M. and Çanak, İ., Applications of subsequential Tauberian theory to classical Tauberian theory, Appl. Math. Lett. 20(8) (2007), 946-950.
- [5] Ishiguro, K., Tauberian theorems concerning the summability methods of logarithmic type, Proc. Japan Acad. 39 (1963), 156-159.
- [6] Kwee, B., A Tauberian theorem for the logarithmic method of summation, Proc. Cambridge Philos. Soc. 63 (1967), 401-405.
- [7] Kwee, B., Some Tauberian theorems for the logarithmic method of summability, Canad. J. Math. 20 (1968), 1324-1331.
- [8] Sezer, S. A. and Çanak, İ., Convergence and subsequential convergence of regularly generated sequences, *Miskolc Math. Notes.* 16(2) (2015), 1181-1189.
- [9] Sezer, S. A. and Çanak, İ., Tauberian theorems for the summability methods of logarithmic type, Bull. Malays. Math. Sci. Soc. 41(4) (2018), 1977-1994.
- [10] Stanojević, Č.V., Analysis of Divergence: Applications to the Tauberian theory in: Graduate Research Seminar, University of Missouri-Rolla, 1999.

Current address: SEFA ANIL SEZER: İstanbul Medeniyet University, Department of Mathematics, Turkey.

 $E\text{-}mail\ address: \texttt{sefaanil.sezer@medeniyet.edu.tr}$

ORCID Address: http://orcid.org/0000-0002-8053-9991 Current address: İBRAHİM ÇANAK: Ege University, Department of Mathematics, Turkey.

E-mail address: ibrahim.canak@ege.edu.tr

ORCID Address: http://orcid.org/0000-0002-1754-1685