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Abstract: The position vector of a regular curve in Euclideann-spaceEn can be written as a linear combination of its parallel transport
vectors. In the present study, we characterize such curves in terms of their curvature functions. Further, we obtain some results of
constant ratio,T-constant andN-constant type curves inEn.
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1 Introduction

Rectifying curves in Euclidean 3-spaceE3 were introduced by B. Y. Chen in [5] as space curves whose position vectors

(denoted also byx) lie in their rectifying planes, spanned by the tangent and the binormal normal vector fieldsT(s) and

N2(s) of the curve. In the same paper, B. Y. Chen gave a simple characterization of rectifying curves.

In [11], Ilarslan and Nesovic considered the rectifying curve in Euclidean 4-spaceE4. They characterized the rectifying

curves given by the equation

x(s) = λ (s)T(s)+ µ(s)N2(s)+υ(s)N3(s), (1)

for some differentiable functionsλ (s), µ(s) and υ(s). Also in [8], the authors characterized the rectifying curves in

n-dimensional Euclidean space.

For a regular curvex(s), the position vectorx can be decomposed into its tangential and normal componentsat each

point, i.e.,x= xT + xN. A curvex(s) with κ1(s) > 0 is said to be ofconstant ratioif the ratio
∥

∥xT
∥

∥ :
∥

∥xN
∥

∥ is constant on

x(I) where
∥

∥xT
∥

∥ and
∥

∥xN
∥

∥ denote the length ofxT andxN, respectively [4]. Clearly a curvex in E
n is of constant ratio if

and only ifxT = 0 or
∥

∥xT
∥

∥ : ‖x‖ is constant. The distance functionρ = ‖x‖ satisfies‖gradρ‖= c for some constantc if

and only if we have
∥

∥xT
∥

∥ = c‖x‖. In particular, if‖gradρ‖ = c, thenc ∈ [0,1]. In the same paper, B. Y. Chen gave a

classification of constant ratio curves in Euclidean space.

A curve inEn is calledT-constant(resp.N-constant) if the tangential componentxT (resp. the normal componentxN) of

its position vectorx is of constant length [6]. Recently the present authors study with the constant ratio curves in

Euclidean 4-spaceE4 in [3]. For more details see also [2,?,?].

The Frenet frame is constructed for the curve of 3−time continuously differentiable non-degenerate curves.But,

curvature may vanish at some points on the curve. That is, second derivative of the curve may be zero. In this situation,
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we need an alternative frame inE3. Therefore in [1], Bishop defined a new frame for a curve and he called it Bishop

frame which is well defined even if the curve’s second derivative vanishes in 3−dimensional Euclidean space. In

Euclideann−spaceEn, we have the same problem, that is, one of thei−th (1< i < n) derivative of the curve may vanish.

In [13], the authors gave parallel transport frame of a curve inn−dimensional Euclidean space.

In the present study, we consider a curve in Euclideann-spaceEn as a curve whose position vector can be written as a

linear combination of its parallel transport frame. Then its position vector satisfies the parametric equation

x(s) = m0(s)T(s)+m1(s)M1(s)+ ...+mi(s)Mi(s)+ ...+mn−1(s)Mn−1(s), (2)

for some differentiable functions,mi(s), 0 ≤ i ≤ n− 1, where{T,M1, ...,Mn−1} is its parallel transport frame. We

characterize such curves in terms of their curvature functionski(s), 0 ≤ i ≤ n−1 and give the necessary and sufficient

conditions for such curves to become contant ratio,T-constant andN-constant curves inEn.

2 Basic notations and known results

Analogous as for a space curve, for an arclength parameterized curvex : I ⊂ R → E
n that is n times continuously

differentiable, one can construct a Frenet frame,T,N1, ..Ni , ..Nn−1 that satisfies the equations (see, [9]):

T ′(s) = κ1(s)N1(s),

N′
1(s) =−κ1(s)T(s)+κ2(s)N2(s),

N′
2(s) =−κ2(s)N1(s)+κ3(s)N3(s), (3)

N′
i (s) =−κi(s)Ni−1(s)+κi+1(s)Ni+1(s),

N′
n−1(s) =−κn−1(s)Nn−2(s).

If the curvex is not arclength parameterized, then the right-hand sides of the equations (3) must be multiplied by the

speedv of x.

The functionsκi for i ∈ {1,2, ...,n−1} are the curvatures of the curve. Allκi are positive fori ∈ {1,2, ...,n−2}.

Further, letx be a unit speed curve in Euclideann−spaceEn with the tangent vectorT(s). One can choose any

convenient arbitrary basis which consists of relatively parallel vector fieldsM1(s),M2(s), ...,Mn−1(s) which are

perpendicular toT(s) at each point. The parallel transport frame equations are (see [13])


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
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






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, (4)

whereki are principle curvature functions according to parallel transport frame of the curvex.

3 Characterization of curves according to parallel transport frame in E
n

In the present section, we consider unit speed curves with Bishop curvatureski(s) for i ∈ {1,2, ...,n−1}. By definition,

the position vector of the curve (also defined byx) satisfies the vectorial equation (2) for some differentiable functions
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mi(s), 0≤ i ≤ n−1. By taking the derivative of (2) with respect to arclength parameters and using the parallel transport

frame equations (4), we obtain

x′(s) = (m′
0(s)+ k1(s)m1(s)+ ...+ ki(s)mi(s)+ ...+ kn−1(s)mn−1(s))T(s)+

n−1

∑
i=1

(m′
i(s)− ki(s)m0(s))Mi(s). (5)

It follows that

m′
0+ k1m1+ ...+ kimi + ...+ kn−1mn−1 = 1,

m′
1− k1m0 = 0, (6)

m′
i − kim0 = 0, (2≤ i ≤ n−1).

Theorem 1.Let x: I ⊂ R→ E
n be a unit speed curve inEn with the vectorial equation (2). If x has constant curvatures

(ki =constant), then the position vector x is given by the curvature functions

m0(s) = c1cosλs+ c2sinλs,

m1(s) = k1

(

c1sinλs− c2cosλs
λ

)

+ c3, (7)

mi(s) = ki

(

c1sinλs− c2cosλs
λ

)

+ ci+2, (2≤ i ≤ n−1),

where ci ,(1≤ i ≤ n+1) are integral constants andλ =
√

k2
1+ ...+ k2

n−1 is a real constant.

Proof.Let x has constant curvatures (ki =constant), then by the use of the equations (6), we get

m′′
0 =−(k2

1+ ...+ k2
n−1)m0. (8)

One can show that the equation (8) has a non-trivial solution

m0 = c1cos
√

k2
1+ ...+ k2

n−1s+ c2sin
√

k2
1+ ...+ k2

n−1s.

Further, substituting this solution into (6) and integrating these equations, we get the result.

3.1 T-constant curves

Definition 1. Let x: I ⊂R→ E
n be a unit speed curve inEn. If

∥

∥xT
∥

∥ is constant, then x is called a T-constant curve. For

a T-constant curve x, either
∥

∥xT
∥

∥= 0 or
∥

∥xT
∥

∥= λ for some non-zero smooth functionλ (see,[6]). Further, a T -constant

curve x is called first kind if
∥

∥xT
∥

∥= 0, otherwise second kind [10].

Theorem 2.Let x : I ⊂ R → E
n be a curve with nonzero curvatures ki (i = 1, ...,n−1) according to parallel transport

frame in Euclidean n−spaceEn. Then x lies on a sphere if and only if

n−1

∑
i=1

ciki(s) = 1,

where ci (i = 1, ...,n−1) are non-zero constants.

Proof.Let x be a curve on a sphere with the centerP and radiusr, then〈x−P,x−P〉= r2. Differentiating this equation,

we obtain that〈T,x−P〉= 0. We can writex−P= c1M1+ ..+ciMi + ..+cn−1Mn−1 for some functionsci (i = 1, ..,n−1)
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and wherec′1 = 〈x−P,M1〉
′ = 〈T,M1〉+ 〈k1T,x−P〉= 0. Hence,c1 is a constant function. Similarly, we can easily say

that all of the functionsci (i = 1, ..,n−1) are constants. Then differentiating the equation〈T,x−P〉, we get

〈−(k1M1+ ...+ kn−1Mn−1),x−P〉+ 〈T,T〉= 0.

Consequently, the curvatureski (i = 1, ..,n−1) of the curve have the linear relation

−
n−1

∑
i=1

ciki +1= 0.

Conversely, we suppose that

−(c1k1+ ...+ cn−1kn−1)+1= 0.

If the centerP denoted byP= x− c1M1− ..− ciMi − ..− cn−1Mn−1, then differentiating the last equation, we haveP′ =

T − (c1k1+ ...+ cn−1kn−1)T = 0. Thus, the centerP of the sphere is constant. Similarly, we show thatr2 = 〈x−P,x−P〉

is constant. As a result of these, the curvex lies on a sphere with centerP and radiusr.

Corollary 1. Let x: I ⊂ R→ E
n be a unit speed curve given with the parametrization (2) in E

n. Then x is a T-constant

curve of first kind if and only if x lies on a sphere.

Proof.Let x be aT-constant curve of first kind, then from thei−th equalities (i = 1..n−1) in (6), we getm′
i = 0 (i =

1, ...,n−1). Further substitutingmi = ci into the first equation, we get
n−1
∑

i=1
ciki = 1. From Theorem 2, we get the result.

Theorem 3.Let x: I ⊂ R→ E
n be a unit speed curve inEn

. x is a T-constant curve of second kind if and only if

n−1

∑
i=1

ki(s)
∫

ki(s)ds=
1

m0

holds.

Proof.Let x be aT-constant curve of second kind, then from (6), we get

n−1

∑
i=1

kimi = 1. (9)

Further, integrating thei−th equalities (i = 2...n−1) in (6) and substituting these values into (9), we get the result.

Corollary 2. Let x : I ⊂ R → E
n be a unit speed curve inEn. If x is a T-constant curve of second kind, the curvature

functions mi of the curve x satisfy the equation

2m0s+ c=
n−1

∑
i=1

m2
i , (10)

where c is an integral constant.

Proof.Let x be aT-constant curve of second kind, from thei−th equalities (i = 2...n−1) in (6), we get

ki =
m

′

i

m0
,(i = 1...n−1).
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Substituting these values into the first equation in (6), we obtain the differential equation

n−1

∑
i=1

mim
′
i = m0,

which has the solution (10).

Theorem 4.Let x: I ⊂ R→ E
n be a T-constant curve of second kind. Then the distance function ρ = ‖x‖ satisfies

ρ =±
√

2λs+ c (11)

for some real constants c andλ = m0.

Proof.Differentiating the squared distance functionρ2 = 〈x(s),x(s)〉 and using (2), we getρρ ′ = m0. If x is aT-constant

curve of second kind, then by definition the curvature functionm0(s) of x is constant. It is easy to show that this differential

equation has a nontrivial solution (11).

3.2 N-constant curves

Definition 2. Let x: I ⊂ R→ E
n be a unit speed curve inEn. If

∥

∥xN
∥

∥ is constant, then x is called a N-constant curve. For

a N-constant curve x, either
∥

∥xN
∥

∥= 0 or
∥

∥xN
∥

∥= µ for some non-zero smooth functionµ (see, [6]). Further, a N-constant

curve x is called first kind if
∥

∥xN
∥

∥= 0. otherwise second kind [10].

Hence, for aN-constant curvex in E
n

∥

∥xN(s)
∥

∥

2
= m2

1(s)+m2
2(s)+ ...+m2

n−1(s) (12)

becomes a constant function. Therefore, by differentiation

m1m
′

1+m2m
′

2+ ...+mn−1m
′

n−1 = 0. (13)

For theN-constant curves of first kind, we give the following result.

Proposition 1.Let x: I ⊂R→ E
n be a unit speed curve inEn. x is a N-constant curve of first kind if and only if x(I) is an

open portion of a straight line.

Proof. Suppose thatx is aN-constant curve of first kind inEn, then the equality (12) holds. Further, ifx is of first kind,

then from (12) m1 = m2 = ... = mn−1 = 0 which implies thatk1 = k2 = ...= kn−1 = 0. Then the first Frenet curvature of

the curvex is zero. Hence,x is a part of a straight line.

Further, for theN-constant curves of second kind, we obtain the following results.

Theorem 5.Let x: I ⊂ R→ E
n be a unit speed curve inEn and s be an arclength function . If x is a N-constant curve of

second kind, then x is a T-constant curve of first kind with theparametrization

x(s) = λ1M1(s)+λ2M2(s)+ ...+λn−1Mn−1(s), (14)

whereλi(i = 1, ...,n−1) are real constants or the curve has the parametrization

x(s) = (s+ c)T(s)+

(

∫

(s+ c)k1(s)ds

)

M1(s)+ ...+

(

∫

(s+ c)kn−1(s)ds

)

Mn−1(s),
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where c is real constant.

Proof.Let x be aN-constant curve of second kind inEn, then from (6) and (13), we getm0(k1m1+ ...kimi ...+kn−1mn−1) =

0. Hence, there are two possible cases;m0 = 0 or k1m1+ ...kimi ...+ kn−1mn−1 = 0. The first case with the equation (6)

implies thatmi = λi = const. Thus,x is aT-constant curve of first kind with the parametrization (14). For the second case

by the use of (6), we get

m0 = s+ c,

m1 =

∫

(s+ c)k1(s)ds,

mi =
∫

(s+ c)ki(s)ds, (2≤ i ≤ n−1),

which completes the proof of the theorem.

Theorem 6.Let x: I ⊂ R→ E
n be a N-constant curve of second kind. Then the distance function ρ = ‖x‖ satisfies

ρ =∓
√

s2+2bs+d (15)

for some constant functions b,d.

Proof.Differentiating the squared distance functionρ2 = 〈x(s),x(s)〉 and using (2), we getρρ ′ = m0. If x is aN-constant

curve of second kind, then from the previous Theoremm0(s) = s+b. It is easy to show that this differential equation has

a nontrivial solution (15).

3.3 Constant-ratio curves

Definition 3. Let x: I ⊂ R→ E
n be a unit speed regular curve inEn. Then the position vector x can be decomposed into

its tangential and normal components at each point:

x= xT + xN
.

If the ratio
∥

∥xT
∥

∥ :
∥

∥xN
∥

∥ is constant on x(I), then x is said to be of constant ratio, or equivalently
∥

∥xT
∥

∥ : ‖x‖= c=constant

[4].

For a unit speed regular curvex in E
n, the gradient of the distance functionρ = ‖x(s)‖ is given by

gradρ =
dρ
ds

T(s) =
< x(s),T(s)>

‖x(s)‖
T(s), (16)

whereT is the tangent vector field ofx. The following results characterize constant-ratio curves.

Theorem 7.[7] Let x : I ⊂ R→ E
n be a unit speed regular curve inEn. Then x is of constant ratio with

∥

∥xT
∥

∥ : ‖x‖= c if

and only if‖gradρ‖= c which is constant. In particular, for a curve of constant ratio, we have‖gradρ‖= c≤ 1.

As a consequence of (16), the following result were obtained.

Theorem 8.[7] Let x : I ⊂ R→ E
n be a unit speed regular curve inEn. Then‖gradρ‖= c holds for a constant c if and

only if one of the following three cases occurs.

(i) ‖gradρ‖= 0⇐⇒ x(I) is contained in a hypersphere centered at the origin.
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(ii) ‖gradρ‖= 1⇐⇒ x(I) is an open portion of a line through the origin.

(iii) ‖gradρ‖= c ⇐⇒ ρ = ‖x(s)‖= cs, for c∈ (0,1).

The following result provides some simple characterization of constant ratio curves inEn. Observe that, this result is also

valid in three and four dimensional cases (see, [2], [3]) .

Proposition 2.Let x: I ⊂ R→ E
n be a unit speed curve inEn. Then x is a constant-ratio curve if and only if

n−1

∑
i=1

(

ki(s)
∫

ski(s)ds

)

=
1− c2

c2

holds.

Proof.Let x be a curve of constant-ratio given with the arclength function s. Then, from the previous result, the distance

functionρ of x satisfies the equalityρ = ‖x(s)‖ = csfor some real constantc. Further, using (16), we get

‖gradρ‖=
< x(s),T(s)>

‖x(s)‖
= c.

Since,x is curve ofEn, then it satisfies the equality (2). Thus, we getm0 = c2s. Hence, substituting this value into (6) one

can get,

1− c2 = k1m1+ ...+ kimi + ...+ kn−1mn−1,

m1 = c2
∫

sk1(s)ds,

mi = c2
∫

ski(s)ds, (2≤ i ≤ n−1).

Consequently, we obtain the desired result.
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