Akif Özbay^{1*}, Aysun Gözütok²

¹Gazi University, Faculty of Science, Department of Physics, Ankara, Turkey ²Selçuk University, Faculty of Science, Department of Physics, Konya, Turkey ^{*}aozbay@gazi.edu.tr

> Received: 06 December 2018 Accepted: 18 January 2019 DOI: 10.18466/cbayarfbe.492861

Abstract

This paper contains the molecular parameters, vibrational properties and some theoretical calculations of 1,8-diaminooctane. Bond angles, bond lengths, vibrational properties, dipole moments, frontier molecular orbitals and molecular electrostatic potential of 1,8-diaminooctane were performed with using density functional theory calculations with B3LYP/6-311++G(d,p) level of theory. Vibrational properties were interpreted with the by using scaled quantum mechanical force field. This study enables us to figure out the vibrational and structural properties and some electronic properties of the 1,8-diaminooctane by means of the theoretical and experimental studied methods.

Keywords: 1,8-diaminooctane, density functional theory, theoretical calculations, molecular electrostatic potential.

1. Introduction

This molecule concerns of the monoalkylamines which are organic compounds including a primary aliphatic amine group. An alkane- α and ω -diamine in which the two amino groups are separated by eight methylene groups [1]. The 1,8-diaminooctane is used as cross link effects while the synthesis of various molecular carbon nanotubes and macrocycle molecules [2]. Aliphatic diamines are important compounds that are widely used in coordination chemistry, biochemistry and polymer chemistry. This molecule has a fundamental carbon chain structure. So, it is used like synthesis molecule. This molecule is used as the ligand in the formation of Hofmann type host-guest compounds. Molecular formula of 1,8-diaminooctane is $C_8H_{20}N_2$ and be found in solid phase.

FT-IR spectra of 1,8-diaminooctane was reported by Kasap and Özbay [3]. In that study, this molecule had been purchased from Sigma-Aldrich and used without further purification. IR spectra of 1,8-diaminooctane had been recorded 400-4000 cm⁻¹ with Perkin-Elmer Spectrum One FT-IR spectrometer.

In our study, the molecular structure (bond angles, bond lengths, dipole moments) and vibrational frequencies of 1,8-diaminooctane have been calculated by density functional theory (DFT) with B3LYP method and 6-311++G(d,p) level of theory.

2. Materials and Methods

In this study, 1,8-diaminooctane molecule was drawn in three dimensions using the molecular drawing program GaussView 3.0 [4]. The geometrical parameters of this structure were automatically entered as input data in the Gaussian 03W package program [5]. Then, 1,8diaminooctane molecule were optimized by means of the B3LYP/6-311++G(d,p) level of theory. Bond angles, bond lengths and vibrational frequencies of 1,8diaminooctane molecule have been calculated DFT/B3LYP with 6-311++G(d,p). The vibrational frequencies of the optimized geometry were corrected by multiplying with scaling factors [6] for comparing the experimental values. The optimized geometrical structure of the title molecule is shown in Figure 1.

Figure 1. Molecular structure and atomic numbering of 1,8-diaminooctane.

Since there is not published experimental data on the bond lengths and bond angles of the 1,8-diaminooctane, the calculated geometrical parameters of this molecule were compared with the experimental values of the geometrical parameters of the 1,6-diaminohexane molecule as similar molecule performed by Meng and

Lin [7].

The potential energy distribution (PED) was calculated via using the scaled quantum mechanics (SQM) program [8] and the fundamental vibrational modes were assigned with their PED values.

Addition to these properties, HOMO-LUMO energy gap and MEP have been calculated by DFT/B3LYP with same basis set.

3. Results and Discussion

Geometrical parameters

The experimental values and the calculated geometrical parameters of 1,8-diaminooctane were compared in Table 1.

In the B3LYP/6-311++G(d,p) level of theory, the N-C-C (116.49°) bond angle is greater than the C-C-C (113.65°) , H-N-H (104.78°) and H-C-H (106.21°) . In general, the N-C-C bond angles are greater than the C-C-C, H-C-H and H-N-H bond angles. This is also consistent with the experimental results.

In the B3LYP/6-311++G(d,p) level of theory, the C-C (1.54 Å) bond length is greater than the N-C (1.48 Å), C-H (1.10 Å) and N-H (1.03 Å). In general, the C-C bond lengths are greater than the N-C, C-H and N-H bond lengths. This is also consistent with the experimental results.

Our calculated the geometrical parameters were found to be very compatible with compared experimental the geometrical parameters.

Table 1. Experimental and calculated parameters of 1,8diaminooctane.

Bond Lengths (Å)	B3LYP/6-311++G(d,p)	Experimental ^[7]
N-H	1.03	0.90
C-H	1.10	0.97
N-C	1.48	1.48
C-C	1.54	1.51
Bond Angles (°)		
H-C-H	106.21	107.59
H-N-H	104.78	107.69
N-C-C	116.49	114.71
C-C-C	113.65	112.01

1,8-diaminooctane molecule has 30 atoms in which the C and N atoms are planar and the H atoms are out of plane. This molecule belongs to the point group C_{2h} . Since this molecule is a non-linear molecule, it has 84 normal vibrational modes.

Vibrational Assignment

The vibrational frequencies and IR vibrational intensity are given in Table 2. The experimental and calculated FT-IR and FT-Raman spectra for 1,8-diaminooctane are given in Figures 2-4. Also, the corresponding data are given in Table 2.

Figure 2. Experimental FT-IR spectra of 1,8-diaminooctane.

Figure 3. Theoretical FT-IR spectra of 1,8-diaminooctane.

Figure 4. Experimental and theoretical FT-Raman spectra of 1,8-diaminooctane.

Table 2. The vibration frequencies of 1,8-diaminooctane molecule.

	Freq ^a .	I_{IR}^b	FT-IR ^[3]	PED (%)	
ν_1	34	0.137			
v_2	49	0.081			
ν_3	62	0.658			
v_4	82	0.281			
V5	108	2.070			
V6	130	0.528			
ν7	134	0.485			
V 8	152	0.304			
V9	165	0.071			
ν_{10}	210	0.854			
v_{11}	230	7.822			
V12	254	9.932			
V13	260	19.49			

Celal Bayar University Journal of Science Volume 15, Issue 1, 2019, p 119-123 Doi: 10.18466/cbayarfbe.492861

A	Özbav
л.	Ozbay

V14	368	4 383		
V 14	393	0.601		
V16	475	0.247		
V17	498	2.918		
V18	515	6.845		
V19	709	1.826		
V20	715	0.027		
V21	732	0.715		
V22	765	5.648		
V23	797	47.03		
V24	802	81.22		
V25	836	9.548	860 m, br	δ _{HCH} (37%)
V26	904	0.755		
V27	930	2.610		
V28	954	1.229	951 vw	δнсн(53%)
V29	975	2.719		
V30	987	1.514		
V31	998	6.143	1005 vw	$\delta_{CCC}(27\%) + \delta_{HNH}(10\%) + \delta_{HCH}(10\%)$
V32	1023	0.280		
V33	1028	0.515		
V34	1031	0.283		
V35	1040	3.126		
V36	1047	11.54	1052 vw	$\delta_{CCH}(13\%) + \delta_{HNH}(13\%)$
V37	1068	2.193	1075 vw	δ _{CCH} (20%)+δ _{HNH} (18%)
V38	1109	1.554	1089 vw	$\delta_{CCC}(40\%) + \delta_{HNH}(13\%) + \delta_{HCH}(10\%)$
V39	1174	0.160		
V40	1190	0.432		
ν_{41}	1212	0.101	1218 vw	δ _{CCH} (48%)
v_{42}	1231	0.105		
V43	1252	0.181		
V44	1270	0.519		
V45	1282	0.233		
V46	1291	0.122		
V 47	1296	0.042		
v_{48}	1299	0.242	1305 vw	$\delta_{\text{HCH}}(30\%) + \delta_{\text{HNH}}(18\%)$
V49	1325	0.572	1338 vw	$\delta_{\text{HCH}}(26\%) + \delta_{\text{HNH}}(21\%)$
V50	1342	0.229		
V51	1348	3.970		
V52	1353	0.379	10.5	a (anti) a (anti)
V53	1356	1.059	1367 VW	днсн(25%)+днхн(18/%)

V5	4 1380	6.998	1390 w, sh	δнсн(36%)
V5	5 1434	0.107		
V5	6 1437	0.020	1440 vw	δ _{HCH} (40%)
V5	7 1439	0.005		
V5	8 1442	0.048		
V5	9 1449	0.272		
ν6	0 1457	0.083		
V 6	1 1464	3.048	1466 s	δнсн(32%)+δнNH(28%
ν_6	₂ 1471	1.840	1487 m	δ _{HCH} (42%)+δ _{HNH} (21%
V6	3 1604	14.86	1584 s	δ _{HCH} (57%)
v_6	4 1609	11.58		
v_6	5 2841	31.22	2856 vs	v _{CH} (65%)
V6	6 2892	1.911		
V6	7 2893	0.368		
V6	8 2896	4.347		
V6	9 2897	0.423		
ν7	0 2901	0.201		
ν7	1 2908	39.41		
V7	₂ 2910	9.590		
V7	3 2913	3.190		
ν7	4 2919	35.355		
ν7	5 2920	3.950	2926 vs	v _{CH} (87%)
V7	₆ 2932	5.181		
ν7	7 2936	12.24		
ν7	8 2947	5.435		
V7	9 2958	0.661		
V8	0 2960	100.0		
v_8	1 3376	0.627		
ν_8	2 3380	0.365		
V8	3 3452	0.231	3321 s	v _{NH} (79%)
V8	₄ 3456	0.309	3381 s	v _{NH} (79%)

vs:very strong, m: medium, s:strong, w:weak, vw:very weak,v: stretching, \delta: in plane bending "Obtained from the wavenumbers calculated at DFT using scaling factor 0.967. b Relative absorption intensities normalized with the highest peak absorption equal to 100, STL-IR values were taken Ref [3]

FT-IR values were taken Ref. [3] Potential energy distribution (PED) calculated at the B3LYP/6-311++G(d,p) level of theory, Only contributions ≥10% are listed,

The NH stretching vibrations appear at 3500-3300 cm⁻¹ [9,10]. For 1,8-diaminooctane N-H stretching vibrations are observed at 3381 cm⁻¹ and 3321 cm⁻¹ experimentally (FT-IR spectra) [3] and assigned at 3456 cm⁻¹ and 3452 cm⁻¹ (DFT/B3LYP with 6-311++G(d,p)) according to our calculation. It can be seen that in Table 2, experimental and theoretical results are very consistent with each other.

The asymmetric and symmetric stretching modes of the CH₂ group usually occur in the region from 2800 to 3000 cm⁻¹[11]. In FT-IR spectra for 1,8-diaminooctane C-H stretching vibrations are observed at 2856 cm⁻¹ and 2926 cm⁻¹ experimentally [3]. These vibrations calculated at 2841 cm⁻¹ and 2920 cm⁻¹ by B3LYP/6-311++G(d,p) calculation (Table 2). The theoretical results are very good agreement with experimental ones.

The H-C-H in-plane bending vibrations characterize in the region 1300-1500 cm⁻¹[12]. Experimentally, the inplane H-C-H bending modes were measured at 1305, 1338, 1367, 1390, 1440, 1466, 1487 and 1584 cm⁻¹ in FT-IR spectra [3]. These vibrations calculated at 1299, 1325, 1356, 1380, 1437, 1464, 1471 and 1604 cm⁻¹ by means of B3LYP/6-311++G (d,p) (Table 2). It can be seen that in Table 2, experimental and theoretical results are very consistent with each other. The C-C-H in-plane bending vibrations appear in the region 1300-1000 cm⁻¹[12]. Experimentally, the in-plane C-C-H bending modes were measured at 1052, 1075, 1089 and 1218 cm⁻¹ in FT-IR spectra [3]. These vibrations calculated at 1047, 1068, 1109 and 1212 cm⁻¹ by means of B3LYP/6-311++G (d,p) (Table 2). It can be seen that in Table 2, experimental and theoretical results are very compatible.

All aromatic C-H stretching vibrations were found to be weak. This reason may be attributed to decrease in the dipole moment because of decrease the negative charge on the C atom [13]. This decrease is due to the withdrawing of electrons from the carbon atom of the molecule due to the reduction of inductive effect, resulting in an increase in the chain length of the molecule [13].

HOMO-LUMO analysis

The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and HOMO-LUMO energy gaps have been performed with using DFT at B3LYP/6-311++G(d,p) level. They are very important parameters in quantum chemistry. HOMO defines the ability to donate an electron and LUMO defines the ability to obtain an electron. The plots of HOMO, HOMO-1, LUMO, LUMO+1 for 1,8diaminooctane were given in Figure 5. The HOMO-LUMO energy gap (ΔE) value of 1,8-diaminooctane calculated as 6.18 eV. This value for Urea 6.72 eV in the

literature [14]. So, 1,8-diaminooctane is very soft molecule and very stable than Urea molecule.

Figure 5. Frontier molecular orbitals of 1,8-diaminooctane.

Besides, dipole moment values of 1,8-diaminooctane calculated by DFT and these values are given in Table 3.

Table 3. The dipole moment (field-independent basis,Debye) values of 1,8-diaminooctane.

μ_x	μ_y	μ_z	μ_{tot}
-1.21	1.62	1.07	2.29

MEPS of 1,8-diaminooctane

The molecular electrostatic potential (MEP) maps of 1,8diaminooctane's ground state are shown in Figure 6: Using the B3LYP/6-311++G(d,p) level of theory, the MEP maps were drawn. The MEP can be seen as reactivity maps on organic molecules, showing the most likely regions where point charges can approach the molecule. The MEP is used for researching reactivity regions. In MEP maps, red color shows negative, blue color shows positive areas. In Figure 6 right side picture, MEP in 1,8-diaminooctane is mainly over Nitrogen atoms.

Figure 6. The MEP maps of 1,8-diaminooctane

4. Conclusion

In this work, the geometrical parameters, vibrational frequencies, dipole moments, HOMO-LUMO and MEP of 1,8-diaminooctane were performed with using Gaussian 03W program. In that all theoretical calculations, we used B3LYP/6-311++G(d,p) level of theory. The calculated geometrical structural and vibrational spectral data of 1,8-diaminooctane with DFT methods are good consistent with available experimental data.

Author's Contributions

Akif Özbay: Drafted and wrote the manuscript, performed the experiment and result analysis.

Aysun Gözütok: Assisted in analytical analysis on the structure, supervised the experiment's progress, result interpretation and helped in manuscript preparation.

Ethics

There are no ethical issues after the publication of this manuscript.

References

- 1. Chemical Entities of Biological Interest (ChEBI) UK, http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:73112 (accessed at 01.06. 2018).
- Sigma Aldrich Chemical Company, https://www.sigmaaldrich.com/catalog/product/aldrich/d22401?la ng=en®ion=TR (accessed at 01.06. 2018).
- Kasap, E, Özbay, A. 1997. Infrared spectroscopic study of the Hofmann -daon-type clathrates : M(1,8diaminooctane)Ni(CN)₄.G(M = Co, Ni or Cd; G = Aromatic Guest Molecules). Journal of Inclusion Phenomena and Molecular Recognition in Chemistry; 28: 335-347.
- Frisch, A, Dennington, RD, Keith, TA, Nielsen, AB, Holder, AJ. 2003. GaussView 3.0, Gaussian, Inc., Wallingford CT.
- 5. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria GE, Robb, MA, Cheeseman, JR, Zakrzewski, VG, Montgomery, JA, Stratmann, Jr RE, Burant, JC, Dapprich, S, Milliam, JM, Daniels, AD, Kudin, KN, Strain, MC, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, GA, Ayala, PY, Cui, Q, Morokuma, K, Malick, DK, Rabuck, AD, Raghavachari, K, Foresman, JB, Cioslowski, J, Ortiz, JV, Baboul, AG, Stefanov, BB, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, RL, Fox, DJ, Keith, T, Al-Laham, MA, Peng, CY, Nanayakkara, A, Challacombe, M, Gill, PMW, Johnson, B, Chen, W, Wong, MW, Andres, JL, Gonzalez, C, Head-Gordon, M, Replogle, ES, Pople, JA. Gaussian, Inc., Wallingford CT, 2004.

- Scaling factor, https://cccbdb.nist.gov/vibscalejust.asp (accessed at 01.06. 2018).
- Meng, XG, Lin, ZD. 2005. Catena- Poly[[tetraaquacadmium(II)μ-hexane-1,6-diamine-κ²N:N'] terephthalate dihydrate]. *Acta Crystallographica E*; 61: 263-264.
- 8. Pulay, P, Baker, J, Wolinski, K. 2013. Green Acres Road Suite A Fayettevile, Arkansas, 72703, USA.
- Spire, A, Barthes, M, Kellouai, H, De Nunzio G. 2000. Far-infrared spectra of acetanilide. *Physica D:Nonlinear Phenomena*; 137: 392 – 396.
- Panicker, CY, Varghese, HT, Thansani, T. 2009. Spectroscopic studies and Hartree-Fock ab initio calculations of a substituted amide of pyrazine-2-carboxylic acid-C₁₆H₁₈ClN₃O. *Turkish Journal of Chemistry*; 33: 633 – 646.
- **11.** Sajan, D, Binoy, J, Pradeep, B, Venkatakrishnan, K, Kartha, VB, Joe, IH, Jayakumar, VS. 2004. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*; 60: 173–180.
- **12.** Thilagavathi, G, Arivazhagan, M. 2010. Density functional theory calculation and vibrational spectroscopy study of 2-amino-4,6-dimethyl pyrimidine (ADMP). *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*; 79: 389 395.
- **13.** Shanmugam, R, Sathyanarayana, D. 1984. Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*; 40: 757 761.
- 14. Tesch, MF, Golnak, R, Ehrhard, F, Schön, D, Xiao, J, Atak K, Bande, A, Aziz, EF. 2016. Analysis of the Electronic structure of aqueous urea and its derivatives: a systematic soft X-Ray-TD-DFT approach. *Chemistry*; 22: 12040.