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Abstract

We show that a zero-symmetric near-ring N is left regular if and only if N is regular and
isomorphic to a subdirect product of integral near-rings, where each component is either an
Anshel-Clay near-ring or a trivial integral near-ring. We also show that a zero-symmetric
near-ring is regular without nonzero nilpotent elements if and only if the multiplicative
semigroup of N is a union of disjoint groups.

1. Introduction

A (right) near-ring is an algebraic system (N,+, ·) such that (1) (N,+) is a (not necessarily abelian) group, (2) (N, ·) is a semigroup and
(3) the multiplication · is right distributive over the addition + . From (3) we obtain that 0x = 0 for all x ∈ N. The near-ring of constant
functions on a group (G,+) shows that in general x0 6= 0 in a near-ring. N is called zero-symmetric, if x0 = 0 for all x ∈ N. A near-ring N is
called regular, if for all x ∈ N there
exists an element y ∈ N such that x = xyx. N is called left (right) regular, if for all x ∈ N there exists y ∈ N such that x = yx2 (x = x2y). N is
called integral, if N has no nonzero divisors of zero. A zero-symmetric integral near-ring N is called trivial, if xy = x for all x,y ∈ N,y 6= 0.
The set N−{0} shall be denoted by N∗. For this and other terminology we refer to [1]. In the next section we define Anshel-Clay near-rings
and characterize them in the class of nontrivial integral near-rings. Then we show that a zero-symmetric near-ring N is left regular, if and
only if N is regular and isomorphic to a subdirect product of near-rings, which are either trivial integral near-rings or Anshel-Clay near-rings.
We also prove for an arbitrary zero-symmetric near-ring N that the multiplicative semigroup (N, ·) is a union of disjoint groups, if and only N
is regular without nonzero nilpotent elements.

2. Left regular near-rings

Definition 2.1. [2] A near-ring N is called Anshel-Clay near-ring (ACN), if N∗ is a disjoint union of subsets Ai, i ∈ I, where I is an index set,
such that the following conditions hold:

1. |Ai| ≥ 2 for all i ∈ I.
2. (Ai, ·) is a group with neutral element 1i for all i ∈ I.
3. For all i, j ∈ I, the mapping x 7→ 1 jx for x ∈ Ai is a group isomorphism from (Ai, ·) onto (A j, ·).
4. Each 1i, i ∈ I, is a right identity of N.

As we shall see in the next result, condition 3 follows from the other conditions, so when we say that N is an ACN, we mean that N
satisfies conditions 1,2,4. Anshel-Clay near-rings have been defined in [2], but they occured implicitely in previous papers on planar and
strongly uniform near-rings, see for example [3], [4], [5] and [6]. In [2] and in [7] these near-rings have been used to coordinatise certain
noncommutative spaces.

Theorem 2.2. Let N be an ACN. Then

1. Ai = {n ∈ N∗ | 1in = n}
2. Ai = 1iN∗

3. For all i, j ∈ I,hi j : Ai→ A j,hi j(x) := 1 jx for x ∈ Ai is a group isomorphism.
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Proof. 1. Since 1i is the identity of the group Ai,Ai ⊆ {n ∈ N∗|1in = n}. Conversely, let n ∈ N∗ such that 1in = n. Since N∗ =
⋃

j∈I A j,

n ∈ A j for some j ∈ I. Suppose that i 6= j and let n−1 denote the inverse of n in A j. Then 1 j = nn−1 = (1in)n−1 = 1i(nn−1) = 1i1 j = 1i,
since 1 j is a right identity of N. Thus 1i = 1 j, a contradiction, since i 6= j implies Ai∩A j =∅. It follows that {n ∈ N∗|1in = n} ⊆ Ai.
2. From 1. we have that Ai ⊆ 1iN∗. Conversely, if n = 1im ∈ 1iN∗, then 1in = 1i(1im) = 12

i m = 1im = n, hence from 1. 1iN∗ ⊆ Ai.
3. Let x,y ∈ Ai. Since 1 j is a right identity of N,hi j(xy) = 1 jxy = 1 jx1 jy = h(x)h(y), so hi j is a group homomorphism. Now suppose that
1 jx = 1 jy, for some elements x,y ∈ Ai. Then 1i(1 jx) = 1i(1 jy). Since 1i1 j = 1i, we obtain 1ix = 1iy. By 1. it follows that x = y, so hi j is
injective. If x is an arbitrary element of A j, then 1ix ∈ Ai by 2., hence hi j(1ix) = 1 j(1ix) = (1 j1i)x = 1 jx = x, which shows that hi j is an
isomorphism.

A near-field is a near-ring with identity, where every nonzero element is invertible.

Theorem 2.3. 1. Every ACN is a zero-symmetric, nontrivial integral near-ring.
2. Let N be an ACN. Then N is a near-field, if and only if N has an identity, if and only if I is a one element set.

Proof. 1. If x0 6= 0 for some x ∈ N, then x0 ∈ Ai for some i ∈ I, since N∗ =
⋃

i∈I Ai. From (x0)2 = x(0x)0 = x0 we obtain x0 = 1i. Thus
1in = (x0)n = x(0n) = x0 = 1i for all n ∈ N∗. By 2. of Theorem 2.2, it follows that Ai = 1iN∗ = {1i}, which contradicts condition 1 in the
definition of an ACN. It follows that N is zero-symmetric. Now suppose xy = 0 for some elements x,y ∈ N. If y 6= 0, then y ∈ Ai for some
i ∈ I. If y−1 is the inverse of y in Ai, then 0 = 0y−1 = (xy)y−1 = x(yy−1) = x1i = x, thus N is integral. If N is a trivial integral near-ring,
then xy = x for all y 6= 0, hence Ai = 1iN∗ = {1i} for all i ∈ I, a contradiction.
2. If N is an ACN with identity 1, then 1 = 1i for all i ∈ I, since each 1i is a right identity of N. Thus N is a near-field.

Next we characterize which nontrivial integral near-rings are Anshel-Clay near-rings.

Theorem 2.4. For a zero-symmetric, nontrivial integral near-ring N, the
following are equivalent:

1. N is an ACN
2. ∀n ∈ N∗ : Nn = N
3. N is left regular
4. N is regular

Proof. Let N be an ACN and let n ∈ N∗. Then n ∈ Ai for some i ∈ I. Since 1i is a right identity of N, N = N1i = Nn−1n ⊆ Nn, hence
Nn = N. Next, suppose Nx = N for all x ∈ N,x 6= 0. Then Nx2 = (Nx)x = Nx = N, for all x 6= 0, hence there exists an element y ∈ N, such
that x = yx2, thus N is left regular. That 3. implies 4. has been shown in [8], Proposition 1. Finally we show that 4. implies 1. If 0 6= e ∈ N is
idempotent, then for all n ∈ N we have (ne−n)e = ne2−ne = ne−ne = 0. Since N is integral it follows that ne = n, hence each idempotent
is a right identity of N. Now suppose that N is regular and let n ∈ N. Then there exists an element x ∈ N such that n = nxn. Then nx is
idempotent, hence n = n(nx) = n2x. It follows that N is regular and right regular. By [9], Theorem 4.3, N∗ =

⋃
i∈I Ai, where Ai is a group

with identity 1i for i ∈ I and Ai∩A j =∅ if i 6= j. As we have seen before, each 1i is a right identity of N. Now we can show like in Theorem
2.2, No. 3, that hi j : Ai→ A j, hi j(x) = 1 jx for x ∈ Ai is a group isomorphism. If Ai = {1i} for all i ∈ I, then (N∗, ·) is a band since each
1i, i ∈ I, is a right identity of N. Since this contradicts our assumption that N is a nontrivial integral near-ring, it follows that |Ai| ≥ 2 for all
i ∈ I, hence N is an ACN.

An idempotent e of a near-ring N is called right semi-central in N, if eN = eNe. It is easy to show that e is right semi-central in N if and only
if en = ene for all n ∈ N. N is called right semi-central, if every idempotent e of N is right semi-central in N (see [10]). Let N be an integral
near-ring and i,n ∈ N. i is called a left identity of n, if in = n. Note that if n 6= 0 has a left identity i, then i is uniquely determined, since
i1n = n = i2n implies (i1− i2)n = 0, hence i1 = i2.

Theorem 2.5. For a zero-symmetric regular near-ring N the following are
equivalent:

1. N has no nonzero nilpotent elements.
2. N is right semi-central.
3. N is isomorphic to a subdirect product of Anshel-Clay near-rings and trivial integral near-rings.
4. N is left regular.

Proof. That 1. implies 2. has been shown in [10], Cor. 7. Conversely, suppose that there exists an element n ∈ N,n 6= 0,n2 = 0. Since N is
regular, n = nxn for some x ∈ N. Then e := nx is idempotent and n = en = ene, since e is semi-central by assumption, so n = ne = n2x = 0,
a contradiction, which shows the equivalence of 1. and 2. Next we show that 1. implies 3. By [11], N is isomorphic to a subdirect product of
integral near-rings Ni, i ∈ I. Since N is regular, each Ni is also regular. Therefore, if Ni is a nontrivial integral near-ring, then Ni is an ACN
by Theorem 2.4. Since each ACN is integral by Theorem 2.3 it follows that 3. implies 1. Since 4. implies 1. is clear, it remains to show
that 3. implies 4. Suppose that N is isomorphic to a subdirect product of near-rings Ni, i ∈ I, where each Ni is an ACN or a trivial integral
near-ring. Let n ∈ N. We have to show that there exists an element x ∈ N such that n = xn2. Since N is regular, there exists y ∈ N such that
n = nyn. N is isomorphic to a subdirect product of the near-rings Ni, so n = (ni)i∈I , y = (yi)i∈I , for some ni,yi ∈ Ni, i ∈ I. Then ni = niyini
and ei := niyi is an idempotent for all i ∈ I. Since (ni−niei)ei = 0i and each Ni is integral, we obtain ni = niei = n2

i yi. Let x := ny2. Then for
all i ∈ I, n2

i xi = ni(n2
i yi)yi = n2

i yi = ni and nixini = (n2
i yi)(yini) = niyini = ni, hence n2x = n = nxn. Now fix an element i ∈ I and suppose

that Ni is an ACN. Then there exists an index set Ji such that Ni = {0i}∪
⋃

j∈Ji
A j, using the terminology of Definition 2.1 Suppose ni 6= 0.

Since ni = nixini, nixi is a left identity for ni. There exists an element j ∈ Ji, such that ni ∈ A j. But then 1 j is also a left identity for ni, hence
by the uniqueness of the left identity, nixi = 1 j. Note that xi is also an element of A j. This follows from Theorem 2.2, since ni ∈ A j and
1 jxi = 1 jniy2

i = (1 jni)y2
i = niy2

i = xi. Therefore we obtain that xini = 1 j = nixi, hence n2
i xi = ni = nixini = xin2

i . This equation also holds if
ni = 0, so it holds for all i ∈ I, where Ni is an ACN. Since the previous equation is obviously true for all those i ∈ I, where Ni is a trivial
integral near-ring, we conclude that n2x = n = xn2. Thus N is left regular.
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In [12], the equivalence of 1. and 4. has been shown with a different proof. From Theorem 2.5 and [9], Theorem 4.3 we also obtain

Theorem 2.6. For a zero-symmetric near-ring N, the following are equivalent:

1. N is regular without nonzero nilpotent elements.
2. The multiplicative semigroup of N is a union of disjoint groups.
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