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Abstract

The problem of the mean-square optimal linear estimation of linear functionals which
depend on the unknown values of a multidimensional continuous time stationary stochastic
process from observations of the process with a stationary noise is considered. Formulas
for calculating the mean-square errors and the spectral characteristics of the optimal linear
estimates of the functionals are derived under the condition of spectral certainty, where
spectral densities of the signal and the noise processes are exactly known. The minimax
(robust) method of estimation is applied in the case of spectral uncertainty, where spectral
densities of the processes are not known exactly, while some sets of admissible spectral
densities are given. Formulas that determine the least favorable spectral densities and
minimax spectral characteristics of the optimal estimates are derived for some special sets
of admissible spectral densities.

1. Introduction

The problem of estimation of the unknown values of stochastic processes is of constant interest in the theory and applications of stochastic
processes. The formulation of the interpolation, extrapolation and filtering problems for stationary stochastic sequences with known spectral
densities and reducing the estimation problems to the corresponding problems of the theory of functions belongs to Kolmogorov [1]. Effective
methods of solution of the estimation problems for stationary stochastic processes were developed by Wiener [2] and Yaglom [3, 4]. Further
results are presented in the books by Rozanov [5], Hannan [6], Box et. al [7], Brockwell and Davis [8].
The crucial assumption of most of the methods developed for estimating the unobserved values of stochastic processes is that the spectral
densities of the involved stochastic processes are exactly known. However, in practice, complete information on the spectral densities is
impossible in most cases. In this situation, one finds the parametric or nonparametric estimate of the unknown spectral density and then apply
one of the traditional estimation methods provided that the selected density is the true one. This procedure can result in significant increasing
of the value of the error of estimate as Vastola and Poor [9] have demonstrated with the help of some examples. To avoid this effect one can
search estimates which are optimal for all densities from a certain class of admissible spectral densities. These estimates are called minimax
since they minimize the maximum value of the errors of estimates. The paper by Grenander [10] was the first one where this approach
to extrapolation problem for stationary processes was proposed. Several models of spectral uncertainty and minimax-robust methods of
data processing can be found in the survey paper by Kassam and Poor [11]. In the papers by Franke [12], [13] Franke and Poor [14] the
minimax extrapolation and filtering problems for stationary sequences were investigated with the help of convex optimization methods.
This approach makes it possible to find equations that determine the least favorable spectral densities for different classes of densities. In
the papers by Moklyachuk [15, 16] the extrapolation, interpolation and filtering problems for functionals which depend on the unknown
values of stationary processes and sequences are investigated. The estimation problems for functionals which depend on the unknown values
of multidimensional stationary stochastic processes is the aim of the investigation by Moklyachuk and Masyutka [17, 18]. In their book
Moklyachuk and Golichenko [19] presented results of investigation of the interpolation, extrapolation and filtering problems for periodically
correlated stochastic sequences. In the papers by Luz and Moklyachuk [20], Luz2016 results of an investigation of the estimation problems
for functionals which depend on the unknown values of stochastic sequences with stationary increments are described. Prediction problem
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for stationary sequences with missing observations is investigated in papers by Bondon [21, 22], Cheng, Miamee and Pourahmadi [23],
Cheng and Pourahmadi [24], Kasahara, Pourahmadi and Inoue [25], Pourahmadi, Inoue and Kasahara [26], Pelagatti [27]. In papers by
Moklyachuk and Sidei [28] - [31] an approach is developed to an investigation of the interpolation, extrapolation and filtering problems for
stationary stochastic processes with missing observations.
In this article, we deal with the problem of the mean-square optimal linear estimation of the functional

A~ξ =
∫
Rs

~a(t)>~ξ (−t)dt,

which depends on the unknown values of a multidimensional stationary stochastic process ~ξ (t) from observations of the process ~ξ (t)+~η(t)

at points t ∈ R−\S, S =
s⋃

l=1
[−Ml −Nl ,−Ml ], Rs = [0,∞)\S+, S+ =

s⋃
l=1

[Ml , Ml +Nl ]. The case of spectral certainty, as well as the case of

spectral uncertainty, are considered. Formulas for calculating the spectral characteristic and the mean-square error of the optimal linear
estimate of the functional are derived under the condition of spectral uncertainty, where the spectral densities of the processes are exactly
known. In the case of spectral uncertainty, where the spectral densities are not exactly known while a set of admissible spectral densities is
given, the minimax method is applied. Formulas for determination the least favorable spectral densities and the minimax-robust spectral
characteristics of the optimal estimates of the functional are proposed for some specific classes of admissible spectral densities.

2. Hilbert space projection method of filtering

Let ~ξ (t) = {ξk(t)}T
k=1 , t ∈R, and ~η(t) = {ηk(t)}T

k=1 , t ∈R, be uncorrelated mean square continuous multidimensional stationary stochastic
processes with zero first moments, E~ξ (t) =~0, E~η(t) =~0, absolutely continuous spectral functions and spectral density matrices which
satisfy the minimality condition∫

∞

−∞

(b(λ ))>(F(λ )+G(λ ))−1b(λ )dλ < ∞, (2.1)

where b(λ ) =
s
∑

l=1

−Ml∫
−Ml−Nl

~α(t)eitλ dt is a nontrivial function of the exponential type. Under this condition the error-free estimate of the

process ~ξ (t)+~η(t) is impossible (see, for example, Rozanov [5]).
Suppose that we have observations of the process ~ξ (t)+~η(t) at points t ∈ R−\S, where

S =
s⋃

l=1

[−Ml −Nl ,−Ml ], Rs = [0,∞)\S+, S+ =
s⋃

l=1

[Ml , Ml +Nl ]

.
The main purpose of this article is to find the mean-square optimal linear estimate of the functional

A~ξ =
∫
Rs

~a(t)>~ξ (−t)dt,

which depends on the unknown values of the process ~ξ (t).
We will assume that the function~a(t) satisfies the condition

T

∑
k=1

∫
Rs

|ak(t)|dt < ∞. (2.2)

This condition ensures that the functional As
~ξ has a finite second moment.

It follows from the spectral decompositions of the processes ~ξ (t) and ~η(t) (see Gikhman and Skorokhod [32])

~ξ (t) =
∞∫
−∞

eitλ Zξ (dλ ), ~η(t) =
∞∫
−∞

eitλ Zη (dλ ),

where Zξ (dλ ) and Zη (dλ ) are vector valued orthogonal stochastic measures, that the functional A~ξ can be represented in the form

A~ξ =

∞∫
−∞

(A(λ ))>Zξ (dλ ), A(λ ) =
∫
Rs

~a(t)e−itλ dt.

Consider the Hilbert space H = L2(Ω,F ,P) generated by random variables ξ with zero mathematical expectations, Eξ = 0, finite variations,
E|ξ |2 < ∞, and inner product (ξ ,η) = Eξ η . Denote by Hs(ξ +η) the closed linear subspace generated by elements {ξk(t)+ηk(t) : t ∈
R−\S,k = 1,T} in the Hilbert space H = L2(Ω,F ,P).
Let L2(F +G) be the Hilbert space of complex-valued functions~a(λ ) = {ak(λ )}T

k=1 such that

∫
∞

−∞

~a(λ )>(F(λ )+G(λ ))~a(λ )dλ =
∫

∞

−∞

T

∑
k,l=1

ak(λ )al(λ )( fkl(λ )+gkl(λ ))dλ < ∞.



26 Universal Journal of Mathematics and Applications

Denote by Ls
2(F +G) the subspace of L2(F +G) generated by functions

eitλ
δk, δk = {δkl}T

l=1 , k = 1,T , t ∈ R−\S.

Denote by Âs
~ξ the optimal linear estimate of the functional As

~ξ from observations of the process ~ξ (t)+~η(t) and denote by ∆(F,G) =

E
∣∣∣As

~ξ − Âs
~ξ
∣∣∣2 the mean-square error of the estimate Âs

~ξ .

The mean-square optimal linear estimate Âs
~ξ of the functional As

~ξ is of the form

Â~ξ =

∞∫
−∞

(h(λ ))>(Zξ (dλ )+Zη (dλ )),

where h(λ ) = {hk(λ ))}T
k=1 ∈ Ls

2(F +G) is the spectral characteristic of the estimate, and the mean-square error ∆(h;F,G) of the estimate is
determined by formula

∆(h;F,G) = E
∣∣∣A~ξ − Â~ξ

∣∣∣2 = 1
2π

∞∫
−∞

(A(λ )−h(λ ))>F(λ )(A(λ )−h(λ ))dλ +
1

2π

∞∫
−∞

(h(λ ))>G(λ )h(λ )dλ .

Since we suppose that the spectral densities of the stationary processes ~ξ (t) and ~η(t) are known, we can apply the method of orthogonal
projections in the Hilbert spaces proposed by A. N. Kolmogorov [1] in order to find the optimal estimate. According to this method, the
optimal linear estimation of the functional A~ξ is a projection of the element A~ξ of the space H on the subspace Hs(ξ +η). The estimate is
determined by two conditions:

1)Â~ξ ∈ Hs(ξ +η),

2)A~ξ − Â~ξ⊥Hs(ξ +η).

Under the second condition, the spectral characteristic h(λ ) of the optimal linear estimate Â~ξ satisfies the relation

1
2π

∞∫
−∞

[
(A(λ ))>F(λ )− (h(λ ))>(F(λ )+G(λ )))

]
e−itλ dλ = 0, t ∈ R−\S. (2.3)

Consider the function (C(λ ))> = (A(λ ))>F(λ )− (h(λ ))>(F(λ )+G(λ )) and its Fourier transform

~c(t) =
1

2π

∞∫
−∞

C(λ )e−itλ dλ , t ∈ R.

It follows from relation (2.3), that the function c(t) can be nonzero only on the set U = S∪ [0,∞). Hence, the function C(λ ) is of the form

C(λ ) =
s

∑
l=1

−Ml∫
−Ml−Nl

~c(t)eitλ dt +
∞∫

0

~c(t)eitλ dt,

and the spectral characteristic of the estimate Â~ξ is of the form

(h(λ ))> = (A(λ ))>F(λ )(F(λ )+G(λ ))−1− (C(λ ))>(F(λ )+G(λ ))−1.

It follows from the first condition, Â~ξ ∈ Hs(ξ +η), which determines the estimate of the functional A~ξ , that for any t ∈U the following
relation holds true

∞∫
−∞

(
(A(λ ))>F(λ )(F(λ )+G(λ ))−1− (C(λ ))>(F(λ )+G(λ ))−1

)
e−itλ dλ = 0. (2.4)

Let us define the following operators in the space L2(U)

(Bx)(t) =
1

2π

s

∑
l=1

−Ml∫
−Ml−Nl

(~x(u))>
∞∫
−∞

(F(λ )+G(λ ))−1eiλ (u−t)dλdu+
1

2π

∞∫
0

(~x(u))>
∞∫
−∞

(F(λ )+G(λ ))−1eiλ (u−t)dλdu,

(Rx)(t) =
1

2π

s

∑
l=1

−Ml∫
−Ml−Nl

(~x(u))>
∞∫
−∞

F(λ )(F(λ )+G(λ ))−1eiλ (u+t)dλdu+
1

2π

∞∫
0

(~x(u))>
∞∫
−∞

F(λ )(F(λ )+G(λ ))−1eiλ (u−t)dλdu,

(Qx)(t) =
1

2π

s

∑
l=1

−Ml∫
−Ml−Nl

(~x(u))>
∞∫
−∞

F(λ )(F(λ )+G(λ ))−1G(λ )eiλ (u−t)dλdu+

+
1

2π

∞∫
0

(~x(u))>
∞∫
−∞

F(λ )(F(λ )+G(λ ))−1G(λ )eiλ (u−t)dλdu,
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~x(t) ∈ L2(U), t ∈U.

The equality (2.4) can be represented in the form

∞∫
−∞

∫
Rs

~a(u)>F(λ )(F(λ )+G(λ ))−1ei(u−t)dudλ −
∞∫
−∞

 s

∑
l=1

−Ml∫
−Ml−Nl

~c(t)>(F(λ )+G(λ ))−1ei(u−t)λ du

dλ

−
∞∫
−∞

∞∫
0

~c(t)>(F(λ )+G(λ ))−1ei(u−t)λ dudλ = 0, t ∈U. (2.5)

Let~a(t) be a function such that

~a(t) =~0, t ∈ S, ~a(t) =~a(t), t ∈ Rs ~a(t) =~0, t ∈ S+.

Making use of the introduces above notations, we can represent equality (2.5) in terms of linear operators in the space L2(U)

(Ra)(t) = (Bc)(t), t ∈U.

Assume that the operator B is invertible (see paper by Salehi [33] for more details). Then the function~c(t) can be found and it is calculated
by the formula

~c(t) = (B−1Ra)(t), t ∈U.

The spectral characteristic h(λ ) of the estimate Â~ξ is calculated by the formula

(h(λ ))> = (A(λ ))>F(λ )(F(λ )+G(λ ))−1− (C(λ ))>(F(λ )+G(λ ))−1,

C(λ ) =
s

∑
l=1

−Ml∫
−Ml−Nl

(B−1Ra)(t)eitλ dt +
∞∫

0

(B−1Ra)(t)eitλ dt.
(2.6)

The mean-square error of the estimate Â~ξ is calculated by the formula

∆(h;F,G) =
1

2π

∞∫
−∞

((A(λ ))>G(λ )+(C(λ ))>)(F(λ )+G(λ ))−1F(λ )(F(λ )+G(λ ))−1((A(λ ))>G(λ )+(C(λ ))>)∗dλ+

+
1

2π

∞∫
−∞

((A(λ ))>F(λ )− (C(λ ))>)(F(λ )+G(λ ))−1G(λ )(F(λ )+G(λ ))−1((A(λ ))>G(λ )+(C(λ ))>)∗dλ =

= 〈(Ra)(t),(B−1Ra)(t)〉+ 〈(Qa)(t),~a(t)〉, (2.7)

where

〈~a(t),~b(t)〉=
s

∑
l=1

−Ml∫
−Ml−Nl

ak(t)bk(t)dt +
∞∫

0

ak(t)bk(t)dt

is the inner product in the space L2(U).
The obtained results can be summarized in the form of theorem.

Theorem 2.1. Let ~ξ (t) and~η(t) be uncorrelated multidimensional stationary stochastic processes with the spectral densities F(λ ) and G(λ )
which satisfy the minimality condition (2.1). Let condition (2.2) be satisfied and let the operator B be invertible. The spectral characteristic
h(λ ) and the mean-square error ∆(h;F,G) of the optimal linear estimate of the functional A~ξ which depends on the unknown values of the
process ~ξ (t) based on observations of the process ~ξ (t)+~η(t), t ∈ R−\S are calculated by formulas (2.6), (2.7).

3. Minimax-robust method of filtering

In the previous sections, we deal with the filtering problem under the condition that we know spectral densities of the processes. In this
case, we derived formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates of the introduced
functionals. In the case of spectral uncertainty, where full information on spectral densities is impossible while it is known that spectral
densities belong to some specified classes of admissible densities, the minimax method of filtering is reasonable. This method gives us a
procedure of finding estimates which minimize the maximum values of the mean-square errors of the estimates for all spectral densities from
the given class of admissible spectral densities. For the description of the minimax method, we propose the following definitions (see book
by Moklyachuk and Masytka [18] for more details).

Definition 3.1. For a given class of spectral densities D = DF ×DG the spectral densities F0(λ ) ∈ DF , G0(λ ) ∈ DG are called least
favorable in class D for the optimal linear filtering of the functional A~ξ if the following relation holds true

∆

(
F0,G0

)
= ∆

(
h
(

F0,G0
)

;F0,G0
)
= max

(F,G)∈DF×DG

∆(h(F,G) ;F,G) .
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Definition 3.2. For a given class of spectral densities D = DF ×DG the spectral characteristic h0(λ ) of the optimal linear filtering of the
functional A~ξ is called minimax-robust if there are satisfied conditions

h0(λ ) ∈ HD =
⋂

(F,G)∈DF×DG

Ls
2(F +G),

min
h∈HD

max
(F,G)∈D

∆(h;F,G) = max
(F,G)∈D

∆

(
h0;F,G

)
.

From the introduced definitions and formulas derived above, we can obtain the following statement.

Lemma 3.3. Spectral densities F0(λ ) ∈ DF , G0(λ ) ∈ DG satisfying the minimality condition (2.1) are the least favorable in the class
D = DF ×DG for the optimal linear filtering of the functional A~ξ , if the Fourier coefficients of the functions

(F0(λ )+G0(λ ))−1, F0(λ )(F0(λ )+G0(λ ))−1, F0(λ )(F0(λ )+G0(λ ))−1G0(λ )

determine operators B0,R0,Q0, which give a solution of the constrained optimization problem

max
(F,G)∈DF×DG

(〈(Ra)(t),(B−1Ra)(t)〉+ 〈(Qa)(t),~a(t)〉) = 〈(R0a)(t),((B0)−1R0a)(t)〉+ 〈(Q0a)(t),~a(t)〉. (3.1)

The minimax spectral characteristic h0 = h(F0,G0) is determined by formula (2.6) if h(F0,G0) ∈ HD.

For more detailed analysis of properties of the least favorable spectral densities and the minimax-robust spectral characteristics we observe
that the least favorable spectral densities F0(λ ), G0(λ ) and the minimax spectral characteristic h0 = h(F0,G0) form a saddle point of the
function ∆(h;F,G) on the set HD×D. The saddle point inequalities

∆

(
h0;F,G

)
≤ ∆

(
h0;F0,G0

)
≤ ∆

(
h;F0,G0

)
, ∀h ∈ HD,∀F ∈ DF ,∀G ∈ DG,

hold true if h0 = h(F0,G0), h(F0,G0) ∈ HD, where (F0,G0) is a solution of the constrained optimization problem

sup
(F,G)∈DF×DG

∆

(
h(F0,G0);F,G

)
= ∆

(
h(F0,G0);F0,G0

)
. (3.2)

The linear functional ∆
(
h
(
F0,G0) ;F,G

)
is calculated by the formula

∆

(
h
(

F0,G0
)

;F,G
)
=

=
1

2π

∫
∞

−∞

((A(λ ))>G0(λ )+(C0(λ ))>)(F0(λ )+G0(λ ))−1F(λ )(F0(λ )+G0(λ ))−1((A(λ ))>G0(λ )+(C0(λ ))>)∗dλ+

+
1

2π

∫
∞

−∞

((A(λ ))>F0(λ )− (C0(λ ))>)(F0(λ )+G0(λ ))−1G(λ )(F0(λ )+G0(λ ))−1((A(λ ))>G0(λ )− (C0(λ ))>)∗dλ ,

C0(λ ) =
s

∑
l=1

−Ml∫
−Ml−Nl

((B0)−1R0a)(t)eitλ dt +
∞∫

0

((B0)−1R0a)(t)eitλ dt.

The constrained optimization problem (3.2) is equivalent to the unconstrained optimization problem (see book by Pshenichnyj [34])

∆D(F,G) =−∆(h(F0,G0);F,G)+δ ((F,G) |DF ×DG )→ inf, (3.3)

where δ ((F,G) |DF ×DG ) is the indicator function of the set D = DF ×DG. Solution of the problem (3.3) is characterized by the condition
0 ∈ ∂∆D(F0,G0), where ∂∆D(F0,G0) is the subdifferential of the convex functional ∆D(F,G) at point (F0,G0), namely, the set of all
continuous linear functionals Λ on L1×L1 satisfying the inequality ∆D(F,G)−∆D(F0,G0)≥ Λ(F,G)−Λ(F0,G0). This condition makes
it possible to find the least favourable spectral densities in some special classes of spectral densities D (see books by Ioffe and Tihomirov
[35], Pshenichnyj [34], Rockafellar [36]).
Note, that the form of the functional ∆(h(F0,G0);F,G) is convenient for application of the Lagrange method of indefinite multipliers for
finding solution of the problem (3.2). Making use the method of Lagrange multipliers and the form of subdifferentials of the indicator
functions we describe relations that determine least favourable spectral densities in some special classes of spectral densities (see books by
Moklyachuk [37, 15], Moklyachuk and Masyutka [18] for additional details).

4. Least favorable spectral densities in the class D = D0×D1δ

Consider the problem of minimax filtering of the functional A~ξ in the case where spectral densities of the processes belong to the following
classes of admissible spectral densities D = D0×D1δ ,

D1
0 =

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

TrF(λ )dλ = p
}
,

D1
1δ

=

{
G(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

|Tr(G(λ )−G1(λ ))|dλ ≤ δ

}
;
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D2
0 =

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

fkk(λ )dλ = pk,k = 1,T
}
,

D2
1δ

=

{
G(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

∣∣∣gkk(λ )−g1
kk(λ )

∣∣∣dλ ≤ δk,k = 1,T
}

;

D3
0 =

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

〈B1,F(λ )〉dλ = p
}
,

D3
1δ

=

{
G(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

|〈B2,G(λ )−G1(λ )〉|dλ ≤ δ

}
,

D4
0 =

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

F(λ )dλ = P
}
,

D4
1δ

=

{
G(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

∣∣∣gi j(λ )−g1
i j(λ )

∣∣∣dλ ≤ δ
j

i , i, j = 1,T
}
,

where G1(λ ) is a known and fixed spectral density matrix, δ , p,δk, pk,k = 1,T , δ
j

i , i, j = 1,T , are given numbers, P,B1,B2 are given positive
definite Hermitian matrices.
The classes D1δ describe the “δ -neighborhood” models in the space L1 of a given bounded spectral density matrix G1(λ ).
From the condition 0 ∈ ∂∆D(F0,G0) we find the following equations which determine the least favourable spectral densities for these given
sets of admissible spectral densities.
For the first pair D1

0×D1
1δ

we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = α
2(F0(λ )+G0(λ ))2, (4.1)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = β
2
γ(λ )(F0(λ )+G0(λ ))2, (4.2)

1
2π

∫
∞

−∞

∣∣∣Tr(G0(λ )−G1(λ ))
∣∣∣dλ = δ , (4.3)

where α2,β 2 are Lagrange multipliers, |γ(λ )| ≤ 1 and

γ(λ ) = sign (Tr(G0(λ )−G1(λ ))) if Tr(G0(λ )−G1(λ )) 6= 0.

For the second pair D2
0×D2

1δ
, we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = (F0(λ )+G0(λ ))
{

α
2
k δkl

}T

k,l=1
(F0(λ )+G0(λ )), (4.4)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = (F0(λ )+G0(λ ))
{

β
2
k γk(λ )δkl

}T

k,l=1
(F0(λ )+G0(λ )), (4.5)

1
2π

∫
∞

−∞

∣∣∣g0
kk(λ )−g1

kk(λ )
∣∣∣dλ = δk, k = 1,T , (4.6)

where α2
k ,β

2
k are Lagrange multipliers, δkl are Kronecker symbols, |γk(λ )| ≤ 1 and

γk(λ ) = sign (g0
kk(λ )−g1

kk(λ )) if g0
kk(λ )−g1

kk(λ ) 6= 0, k = 1,T .

For the third pair D3
0×D3

1δ
, we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = α
2(F0(λ )+G0(λ ))B>1 (F

0(λ )+G0(λ )), (4.7)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = β
2
γ
′(λ )(F0(λ )+G0(λ ))B>2 (F

0(λ )+G0(λ )), (4.8)

1
2π

∫
∞

−∞

∣∣∣〈B2,G0(λ )−G1(λ )
〉∣∣∣dλ = δ , (4.9)

where α2,β 2 are Lagrange multipliers, |γ ′(λ )| ≤ 1 and

γ
′(λ ) = sign

〈
B2,G0(λ )−G1(λ )

〉
if

〈
B2,G0(λ )−G1(λ )

〉
6= 0.

For the fourth pair D4
0×D4

1δ
, we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )− (C0(λ ))>) = (F0(λ )+G0(λ ))~α ·~α∗(F0(λ )+G0(λ )), (4.10)
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((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )+(C0(λ ))>) = (F0(λ )+G0(λ ))
{

βi jγi j(λ ))
}T

i, j=1 (F
0(λ )+G0(λ )), (4.11)

1
2π

∫
∞

−∞

∣∣∣g0
i j(λ )−g1

i j(λ )
∣∣∣dλ = δ

j
i , i, j = 1,T , (4.12)

where ~α,βi j are Lagrange multipliers,
∣∣γi j(λ )

∣∣≤ 1 and

γi j(λ ) =
g0

i j(λ )−g1
i j(λ )∣∣∣g0

i j(λ )−g1
i j(λ )

∣∣∣ if g0
i j(λ )−g1

i j(λ ) 6= 0, i, j = 1,T .

Thus, the following statement holds true.

Theorem 4.1. The least favorable spectral densities F0(λ ), G0(λ ) in the classes D0×D1δ for the optimal linear filtering of the functional
A~ξ are determined by relations (4.1) – (4.3) for the first pair D1

0×D1
1δ

of sets of admissible spectral densities; by relations (4.4) – (4.6) for
the second pair D2

0×D2
1δ

of sets of admissible spectral densities; by relations (4.7) – (4.9) for the third pair D3
0×D3

1δ
of sets of admissible

spectral densities; by relations (4.10) – (4.12) for the fourth pair D4
0×D4

1δ
of sets of admissible spectral densities; the minimality condition

(2.1), the constrained optimization problem (3.1) and restrictions on densities from the corresponding classes D0×D1δ . The minimax-robust
spectral characteristic of the optimal estimate of the functional A~ξ is determined by the formula (2.6).

Corollary 4.2. Assume that the spectral density G(λ ) is known. Let the function F0(λ )+G(λ ) satisfy the minimality condition (2.1).
The spectral density F0(λ ) is the least favorable in the classes Dk

0, k = 1,4 for the optimal linear filtering of the functional A~ξ if it
satisfies relations (4.1), (4.4), (4.7), (4.10), respectively, and the pair (F0(λ ),G(λ )) is a solution of the optimization problem (3.1). The
minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

Corollary 4.3. Assume that the spectral density F(λ ) is known. Let the function F(λ )+G0(λ ) satisfy the minimality condition (2.1). The
spectral density G0(λ ) is the least favorable in the classes Dk

1δ
, k = 1,4 for the optimal linear filtering of the functional A~ξ if it satisfies

relations (4.2) – (4.3), (4.5) – (4.6), (4.8) – (4.9), (4.11) – (4.12), respectively, and the pair (F(λ ),G0(λ )) is a solution of the optimization
problem (3.1). The minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

5. Least favorable spectral densities in the class D = D2δ ×Dε

Consider the problem of filtering of the functional A~ξ in the case where spectral densities of the processes belong to the class of admissible
spectral densities D2δ ×Dε ,

D1
2δ

=

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

|Tr(F(λ )−F1(λ ))|2 dλ ≤ δ

}
;

D1
ε =

{
G(λ )

∣∣∣∣TrG(λ ) = (1− ε)TrG1(λ )+ εTrW (λ ),
1

2π

∫
∞

−∞

TrG(λ )dλ = q
}

;

D2
2δ

=

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

∣∣∣ fkk(λ )− f 1
kk(λ )

∣∣∣2 dλ ≤ δk,k = 1,T
}

;

D2
ε =

{
G(λ )

∣∣∣∣gkk(λ ) = (1− ε)g1
kk(λ )+ εwkk(λ ),

1
2π

∫
∞

−∞

gkk(λ )dλ = qk,k = 1,T
}

;

D3
2δ

=

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

|〈B1,F(λ )−F1(λ )〉|2 dλ ≤ δ

}
;

D3
ε =

{
G(λ )

∣∣∣∣〈B2,G(λ )〉= (1− ε)〈B2,G1(λ )〉+ ε 〈B2,W (λ )〉 , 1
2π

∫
∞

−∞

〈B2,G(λ )〉dλ = q
}

;

D4
2δ

=

{
F(λ )

∣∣∣∣ 1
2π

∫
∞

−∞

∣∣∣ fi j(λ )− f 1
i j(λ )

∣∣∣2 dλ ≤ δ
j

i , i, j = 1,T
}
,

D4
ε =

{
G(λ )

∣∣∣∣G(λ ) = (1− ε)G1(λ )+ εW (λ ),
1

2π

∫
∞

−∞

G(λ )dλ = Q
}
,

where F1(λ ),G1(λ ) are known and fixed spectral densities, W (λ ) is unknown spectral density, q,δ ,qk,δk,k = 1,T , δ
j

i , i, j = 1,T , are given
numbers, Q,B1,B2 are given positive definite Hermitian matrices.
The classes D2δ describe the “δ -neighborhood” models in the space L2 of the given bounded spectral density F1(λ ), the classes Dε describe
the “ε-contamination” models of spectral densities.
From the condition 0 ∈ ∂∆D(F0,G0) we find the following equations which determine the least favourable spectral densities for these given
sets of admissible spectral densities.
For the first pair D2δ ×D1

ε , we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = α
2Tr(F0(λ )−F1(λ ))(F0(λ )+G0(λ ))2, (5.1)



Universal Journal of Mathematics and Applications 31

1
2π

∫
∞

−∞

∣∣∣Tr(F0(λ )−F1(λ ))
∣∣∣2 dλ = δ , (5.2)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = (β 2 + γ(λ ))(F0(λ )+G0(λ ))2, (5.3)

where α2,β 2 are Lagrange multipliers, γ(λ )≤ 0 and γ(λ ) = 0 if TrF0(λ )> (1− ε)TrG1(λ ).
For the second pair D2

2δ
×D2

ε , we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>)= (F0(λ )+G0(λ ))
{

α
2
k ( f 0

kk(λ )− f 1
kk(λ ))δkl

}T

k,l=1
(F0(λ )+G0(λ )),

(5.4)

1
2π

∫
∞

−∞

∣∣∣ f 0
kk(λ )− f 1

kk(λ )
∣∣∣2 dλ = δk, k = 1,T , (5.5)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = (F0(λ )+G0(λ ))
{
(β 2

k + γk(λ ))δkl

}T

k,l=1
(F0(λ )+G0(λ )), (5.6)

where α2
k ,β

2
k are Lagrange multipliers, γk(λ )≤ 0 and γk(λ ) = 0 if g0

kk(λ )> (1− ε)g1
kk(λ ).

For the third pair D3
2δ
×D3

ε , we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = α
2
〈

B1,F0(λ )−F1(λ )
〉
(F0(λ )+G0(λ ))2, (5.7)

1
2π

∫
∞

−∞

∣∣∣〈B1,F0(λ )−F1(λ )
〉∣∣∣2 dλ = δ , (5.8)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = (β 2 + γ
′(λ ))(F0(λ )+G0(λ ))B>2 (F

0(λ )+G0(λ )), (5.9)

where α2,β 2 are Lagrange multipliers, γ ′(λ )≤ 0 and γ ′(λ ) = 0 if 〈B2,G0(λ )〉> (1− ε)〈B2,G1(λ )〉.
For the fourth pair D4

2δ
×D4

ε we have equations

((A(λ ))>G0(λ )+(C0(λ ))>)∗((A(λ ))>G0(λ )+(C0(λ ))>) = (F0(λ )+G0(λ ))
{

αi j( f 0
i j(λ )− f 1

i j(λ ))
}T

i, j=1
(F0(λ )+G0(λ )),

(5.10)

1
2π

∫
∞

−∞

∣∣∣ f 0
i j(λ )− f 1

i j(λ )
∣∣∣2 dλ = δ

j
i , i, j = 1,T , (5.11)

((A(λ ))>F0(λ )− (C0(λ ))>)∗((A(λ ))>F0(λ )− (C0(λ ))>) = (F0(λ )+G0(λ ))(~β ·~β ∗+Γ(λ ))(F0(λ )+G0(λ )), (5.12)

where ~β ,αi j are Lagrange multipliers, Γ(λ )≤ 0 and Γ3(λ ) = 0 if G0(λ )> (1− ε)G1(λ ).
Thus, the following statement holds true.

Theorem 5.1. The least favorable spectral densities F0(λ ), G0(λ ) in the classes D2δ ×Dε for the optimal linear filtering of the functional
As
~ξ are determined by relations (5.1) – (5.3) for the first pair D1

2δ
×D1

ε of sets of admissible spectral densities; by relations (5.4) – (5.6) for
the second pair D2

2δ
×D2

ε of sets of admissible spectral densities; by relations (5.7) – (5.9) for the third pair D3
2δ
×D3

ε of sets of admissible
spectral densities; by relations (5.10) – (5.12) for the fourth pair D4

2δ
×D4

ε of sets of admissible spectral densities; the minimality condition
(2.1), the constrained optimization problem (3.1) and restrictions on densities from the corresponding classes D2δ ×Dε . The minimax-robust
spectral characteristic of the optimal estimate of the functional As

~ξ is determined by the formula (2.6).

Corollary 5.2. Assume that the spectral density G(λ ) is known. Let the function F0(λ )+G(λ ) satisfy the minimality condition (2.1). The
spectral density F0(λ ) is the least favorable in the classes Dk

2δ
, k = 1,4 for the optimal linear filtering of the functional A~ξ if it satisfies

relations (5.1) – (5.2), (5.4) – (5.5), (5.7) – (5.8), (5.10) – (5.11), respectively, and the pair (F0(λ ),G(λ )) is a solution of the optimization
problem (3.1). The minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).

Corollary 5.3. Assume that the spectral density F(λ ) is known. Let the function F(λ )+G0(λ ) satisfy the minimality condition (2.1).
The spectral density G0(λ ) is the least favorable in the classes Dk

ε , k = 1,4 for the optimal linear filtering of the functional A~ξ if it
satisfies relations (5.3), (5.6), (5.9), (5.12), respectively, and the pair (F(λ ),G0(λ )) is a solution of the optimization problem (3.1). The
minimax-robust spectral characteristic of the optimal estimate of the functional A~ξ is determined by formula (2.6).
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6. Conclusion

In the article, we propose methods of the mean-square optimal linear filtering of functionals which depend on the unknown values of the
multidimensional stationary stochastic process based on observations of the process with an additive stationary stochastic noise process. The
case of spectral certainty, as well as the case of spectral uncertainty, are considered. In the case of spectral certainty, where the spectral
density matrices of the stationary processes are exactly known, we apply a method based on orthogonal projections in a Hilbert space and
derive formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates of the functionals. In the case
of spectral uncertainty, where the spectral density matrices of the stationary processes are not exactly known while some sets of admissible
spectral density matrices are given, we apply the minimax-robust method of estimation. This method allows us to find estimates that minimize
the maximum values of the mean-square errors of estimates for all spectral density matrices from a given class of admissible spectral
density matrices and derive relations which determine the least favourable spectral density matrices. These least favourable spectral density
matrices are solutions of the optimization problem ∆D(F,G) =−∆(h(F0,G0);F,G)+δ ((F,G) |DF ×DG )→ inf, which is characterized by
the condition 0 ∈ ∂∆D(F0,G0), where ∂∆D(F0,G0) is the subdifferential of the convex functional ∆D(F,G) at point (F0,G0). The form
of the functional ∆(h(F0,G0);F,G) is convenient for application of the Lagrange method of indefinite multipliers for finding a solution
to the optimization problem. The complexity of the problem is determined by the complexity of calculation of the subdifferential of the
convex functional ∆D(F,G). Making use of the method of Lagrange multipliers and the form of subdifferentials of the indicator functions we
describe relations that determine the least favourable spectral densities in some special classes of spectral densities. These are: classes D0
of densities with the moment restrictions, classes D1δ which describe the “δ -neighborhood” models in the space L1 of a given bounded
spectral density, classes D2δ which describe the “δ -neighborhood” models in the space L2 of a given bounded spectral density, classes Dε

which describes the “ε-contamination” models of spectral densities.
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