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1. Introduction

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation and terminology not defined here
follow those in [1]. Let G be a graph of order n with e edges. We use 6(G) and x(G) to denote the minimum degree and the chromatic
number of G, respectively. The independence number, denoted @ = o.(G), is defined as the size of the largest independent set in G. The
eigenvalues f11(G) > 1 (G) > ... > ty(G) of the adjacency matrix A(G) of G are called the eigenvalues of G. We use ST(G) (resp. S™(G))
to denote the sum of the squares of the positive (resp. negative) eigenvalues of G. Notice that ST(G) + S5~ (G) = 2¢(G) for a graph G. The
energy, denoted Eng(G), of G is defined as ¥, |u;(G)| (see [2]). A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all
the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P
contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. In this note, we will present the energy conditions
for Hamiltonian and traceable graphs. The results are as follows.

Theorem 1.1. Let G be a k-connected (k > 2) graph with n > 3 vertices and e edges. If

Eng(G)>2\/2e(x1)(nkl)
- X b

then G is Hamiltonian.

Theorem 1.2. Let G be a k-connected graph with n > 3 vertices and e edges. If

Eng(G) > 2\/26(% —n—k-2)

X

then G is traceable or K 3.
2. Lemmas

In order to prove Theorem 1.1, we need the following results as our lemmas. Lemma 2.1 below is Theorem 2.3 on Pages 484 in [3].

Lemma 2.1. Let G be a graph. Then

> 1+ max i S;
x— S_-‘S+ .
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Lemma 2.2 below is Theorem 3.14 on Pages 88 and 89 in [4].

Lemma 2.2. Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and equal to zero are p, g, and r,
respectively, then

a <r+min{p, ¢},

where « is the independence number of G.

3. Proofs
Next, we will present proofs for Theorems 1.1 and 1.2. Some ideas from [5] are used in our proofs.

Proof of Theorem 1.1. Let G be a graph satisfying the conditions in Theorem 1.1. Suppose, to the contrary, that G is not Hamiltonian. If
n =3, G must be Hamiltonian since G is k-connected (k > 2). From now on, we assume that n > 4. Since G is k-connected (k > 2), G has a
cycle. Choose a longest cycle C in G and give an orientation on C. Since G is not Hamiltonian, there exists a vertex ug € V(G) — V(C). By
Menger’s theorem, we can find s (s > k) pairwise disjoint (except for ug) paths Py, P, ..., P between ug and V(C). Let v; be the end vertex
of P, on C, where 1 <i <. Without loss of generality, we assume that the appearance of v, vy, ..., v agrees with the orientation of C. We
use v?‘ to denote the successor of v; along the orientation of C, where 1 <i <. Since C is a longest cycle in G, we have that viJr # Vit
where 1 <i < s and the index s+ 1 is regarded as 1. Moreover, § := {uo,v]*,v;r, ...,v{ } is independent (otherwise G would have cycles

which are longer than C). Then ot > s+ 1 > k+ 1.

Let 4y > Up > ... > Up be the p positive eigenvalues of G and let l, 411 > ;g2 > ... > Uy be the g negative eigenvalues of G. Then
n—(p+q) is the number of eigenvalues of G which are equal to zero. Since Y7 p; + Xy g1 Mi = trace of A=0, Y lwl= i gt Ml
Thus we have that

P n
Eng(G)=2Y |wl=2 Y |ul.
i=1 i=n—q+1
From Lemma 2.1, we have that
St St 2e S S 2e

Sl o S BTAL - .
Xt e = st T s XS e T Ty T s

Therefore we further have that

2e(x—1) 5
X

)

SM.

X

From Cauchy-Schwarz inequality, we have that

Eng(G) & P 2e(x—1)p
— i < = SJr < —_—,
5 [2:1 i < pi:Z i VpSt < P

Similarly, we have that

st <

Eng(G " ‘ 2e(x —1
é;( ) Y lwl< e Y w=Ves< 2ex=Na,
i=n—q+1 i=n—q+1 X
Therefore we get that
Eng(G) Eng(G
Eng(G) = ‘5;( )4 gz( )
2e(x —1 2e(x —1 2e(x —1
# L )pw ZE )q:\/ LDy

From Lemma 2.2, we have that & <n— (p+¢q)+min{ p,q} <n—p—q+p=n—qganda <n—(p+q)+min{p,q} <n—p—qg+g=n—p.
Thus p < n— a and ¢ < n— o. Therefore we have that

2\/26(}( Din—k=1) _pgy <o, [2= D0 )

4 4

S2\/ze(;¢—1)(n—s—1) SZ\/Ze(x—l)(n—k—l).

4 4
From the above proofs, we have that
St —§ — 26(75*1)7

X
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M =Hy = = HUp; Un—g+1 = Hn—g42 = -+ = Un,
p=qg=n—a,a=s+1=k+1.

Thus p‘ul2 =8t =85 =qu?. Since p = g, ll12 = 2. Hence Uy = —U,. Since G is connected and p1; = —,,, G is a bipartite graph. From
Perron-Frobenius theorem, we have that (; > L. Since Uy = tp = --- = l,, we must have p = 1. Now o = n— p = n— 1, which implies
that G cannot be 2-connected, a contradiction.

Therefore the proof of Theorem 1 is complete. (]

Proof of Theorem 1.2. Let G be a graph satisfying the conditions in Theorem 1.2. Suppose, to the contrary, that G is not traceable. If
n =3, G must be traceable since G is k-connected (k > 1). From now on, we assume that n > 4. Choose a longest path P in G and give an
orientation on P. Let x and y be the two end vertices of P. Since G is not traceable, there exists a vertex uy € V(G) — V (P). By Menger’s
theorem, we can find s (s > k) pairwise disjoint (except for ug) paths Py, P, ..., Ps between ug and V (P). Let v; be the end vertex of P; on P,
where 1 <i <. Without loss of generality, we assume that the appearance of vy, v», ..., V5 agrees with the orientation of P. Since P is a
longest path in G, x # v; and y # v;, for each i with 1 < i <'s, otherwise G would have paths which are longer than P. We use v;r to denote
the successor of v; along the orientation of P, where 1 <i <s. Since P is a longest path in G, we have that v;L # Vi1, where 1 <i<s—1.
Moreover, S := {ug, vfﬂvz+ ,..,v§,x} is independent (otherwise G would have paths which are longer than P). Then o > s +2 > k+2.

Using the arguments similar to the ones in Proof of Theorem 1.1, we have that

2\/26(%— 1))(Cn_k—z) < Eng(G) <2 2e(x —1)(n—a)

X

Sz\/Ze(x—l)(n—s—Z) Sz\/2e(x—l)(n—k—2)‘
X x

Therefore we have that
St —g — 29(75*1)7
X

Hl:ﬂ2:"':.up7.unfq+l:Nn7q+2:"':Hn7l7:q:n_a>a:5+2:k+2~

Thus p,u12 =8t =85 =qu?. Since p =g, ulz = 2. Hence y; = —M,. Since G is connected and p1; = —,,, G is a bipartite graph. From
Perron-Frobenius theorem, we have that 4y > . Since 4y = flp = --- = U, we musthave p=1. Nowax =n—p=n—1.So Gis Ky ;1
withn > 4. Sincenow k =1and n—1 = o = k+ 2, we have that G is K] 3.

Therefore the proof of Theorem 1.2 is complete.
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