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Abstract. We define and study an equivalence relation in the class Tr(SVs)

of translationally slowly varying positive real sequences and its relations with
selection principles and game theory. We also prove a game-theoretic result

for translationally rapidly varying sequences.

1. Introduction

Throughout the paper N will denote the set of natural numbers, R the set of real
numbers, S the set of sequences of positive real numbers.

The theory of regular variation, including in particular slow variation, was ini-
tiated in 1930 by J. Karamata [8]. Nowadays this branch of asymptotic analysis of
divergent processes is known as Karamata’s theory of regular variation. Another
kind of variation, called rapid variation, was introduced and first studied in 1970 by
de Haan [7]. These two theories are developed for functions and sequences and have
various applications in several mathematical disciplines: number theory, differen-
tial and difference equations, probability theory, q-calculus, and so on. For more
information about the theory of regular variation and the theory of rapid variation
we refer the reader to the book [1]. In this article we are interested in two classes
of sequences related to slow and rapid variations.

We recall first the definitions of slowly and rapidly varying sequences.

Definition 1.1. ([1, 2, 12]) A sequence c = (cn)n∈N ∈ S is slowly varying (re-
spectively, rapidly varying) if for each λ > 0 (respectively, λ > 1) the following is
satisfied:

lim
n→∞

c[λn]

cn
= 1, (1.1)

(respectively,

lim
n→∞

c[λn]

cn
=∞), (1.2)

where for x ∈ R, [x] denotes the greatest integer part of x.
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The classes of slowly varying and rapidly varying sequences are denoted by SVs

and Rs,∞, respectively.
In what follows we work with the following two classes of sequences.

Definition 1.2. ([3, 11]) A sequence c = (cn)n∈N ∈ S is translationally slowly
varying (respectively, translationally rapidly varying) if for each λ ≥ 1 the following
asymptotic condition is satisfied:

lim
n→∞

c[n+λ]

cn
= 1 (1.3)

(respectively,

lim
n→∞

c[n+λ]

cn
=∞). (1.4)

Tr(SVs) denotes the class of translationally slowly varying sequences, and Tr(Rs,∞)
denotes the class of translationally rapidly varying sequences (see [2, 3, 4, 5]).

Observe that Rs,∞ ∩ Tr(SVs) 6= ∅, Rs,∞ \ Tr(SVs) 6= ∅, Tr(SVs) \ Rs,∞ 6= ∅, and
Tr(Rs,∞) ⊂ Rs,∞.

In this paper we define and study a new equivalence relation in the class Tr(SVs),
in particular its relations with selection principles and game theory. We also provide
a game-theoretic result concerning the class Tr(Rs,∞).

2. Results

We begin this section with definitions of concepts we use in this article.

Definition 2.1. Sequences c = (cn)n∈N and d = (dn)n∈N from S are mutually
translationally slowly equivalent, denoted by

cn
ts∼ dn, as n→∞,

if

lim
n→∞

c[n+λ]

dn
= 1 and lim

n→∞

d[n+λ]

cn
= 1 (2.1)

hold for each λ ≥ 1.

Definition 2.2. Sequences c = (cn)n∈N and d = (dn)n∈N from S are mutually
translationally rapidly equivalent, denoted by

cn
tr∼ dn, as n→∞,

if

lim
n→∞

c[n+λ]

dn
=∞ and lim

n→∞

d[n+λ]

cn
=∞ (2.2)

hold for each λ ≥ 1.

Theorem 2.1. Let sequences c = (cn)n∈N and d = (dn)n∈N be elements from S. If

cn
ts∼ dn, as n→∞, then c ∈ Tr(SVs) and d ∈ Tr(SVs).

Proof. For λ ≥ 1 we have

lim
n→∞

c[n+λ]

cn
= lim
n→∞

(
cn+1

cn

)[λ]

if the limit on the right side exists. Further, since cn
ts∼ dn, we have

lim
n→∞

cn+2

cn
= lim
n→∞

(
cn+2

dn+1
· dn+1

cn

)
= lim
n→∞

cn+2

dn+1
· lim
n→∞

dn+1

cn
= 1.
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Therefore

1 = lim
n→∞

(
cn+2

cn+1
· cn+1

cn

)
= lim
k→∞

(
ck+1

ck

)2

,

hence
lim
n→∞

cn+1

cn
= 1.

This means that

lim
n→∞

c[n+λ]

cn
= 1 for each λ ≥ 1 ,

i.e. c ∈ Tr(SVs).
Similarly we prove d ∈ Tr(SVs). �

In a similar way, by suitable modifications in the proof, we prove the following
result.

Theorem 2.2. Let c = (cn)n∈N and d = (dn)n∈N be sequences in S. If cn
tr∼ dn,

as n→∞, then c ∈ Tr(Rs,∞) and d ∈ Tr(Rs,∞).

Theorem 2.3. Relation
ts∼ is an equivalence relation on Tr(SVs).

Proof. 1. (Reflexivity) Let c ∈ Tr(SVs). Then limn→∞
c[n+λ]

cn
= 1 for each λ ≥ 1,

that is cn
ts∼ cn as n→∞, and so reflexivity holds.

2.(Symmetry) It follows from the definition of relation
ts∼.

3. (Transitivity) Let c = (cn)n∈N, d = (dn)n∈N and e = (en)n∈N be elements

from Tr(SVs) such that cn
ts∼ dn, n→∞, and dn

ts∼ en, n→∞. Then we have

lim
n→∞

cn+2

en
= lim

n→∞

cn+2

dn+1
· lim
n→∞

dn+1

en
= 1.

We conclude

1 = lim
n→∞

(
cn+2

en+1
· en+1

en

)
.

Because of e ∈ Tr(SVs), we obtain

lim
n→∞

cn+1

en
= 1.

It follows from here that for each λ ≥ 1 it holds

lim
n→∞

c[n+λ]

en
= 1.

In a similar way one proves

lim
n→∞

e[n+λ]

cn
= 1, λ ≥ 1,

which means cn
ts∼ en. �

Remark. Let a sequence c = (cn)n∈N belong to the class Tr(SVs) and let d =

(dn)n∈N ∈ S be such that cn
ts∼ dn. Then

lim
n→∞

cn
dn

= lim
n→∞

(
cn
cn+1

· cn+1

dn

)
= 1

and we conclude that sequences c and d are strongly asymptotically equivalent (see,
for instance. [1, 6]), i.e. limn→∞

cn
dn

= 1.
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Recall the definition of selection principles, which we need in what follows (see
[9, 10]).

Definition 2.3. Let A and B be subfamilies of the set S. The symbol αi(A,B),
i ∈ {2, 3, 4}, denotes the following selection hypotheses: for each sequence (An)n∈N
of elements from A there is an element B ∈ B such that:

(1) α2(A,B): the set Im(An) ∩ Im(B) is infinite for each n ∈ N;
(2) α3(A,B): the set Im(An) ∩ Im(B) is infinite for infinitely many n ∈ N;
(3) α4(A,B): the set Im(An) ∩ Im(B) is nonempty for infinitely many n ∈ N,

where Im denotes the image of the corresponding sequence.

The following infinitely long game is related to α2 (see [9, 10]).

Definition 2.4. Let A and B be nonempty subfamilies of S. The symbol Gα2
(A,B)

denotes the following infinitely long game for two players, I and II, who play a round
for each natural number n. In the first round I chooses an arbitrary element A1 =
(A1,j)j∈N from A, and II chooses a subsequence yr1 = (A1,r1(j))j∈N of the sequence

A1. At the kth round, k ≥ 2, I chooses an arbitrary element Ak = (Ak,j)j∈N from
A and II chooses a subsequence yrk = (Ak,rk(j))j∈N of the sequence Ak, such that
Im(rk(j)) ∩ Im(rp(j)) = ∅ is satisfied, for each p ≤ k − 1. II wins a play

A1, yr1 ; . . . ;Ak, yrk ; . . .

if and only if all elements from Y =
⋃
k∈N

⋃
j∈NAk, rk(j), with respect to second

index, form a subsequence y = (ym)m∈N ∈ B.
A strategy σ for the player II is a coding strategy if II remembers only the most

recent move by I and by II before deciding how to play the next move.

Observe, that if II has a winning strategy in the game Gα2
(A,B), then the

selection principle α2(A,B) is true. Also, α2(A,B)⇒ α3(A,B)⇒ α4(A,B).

Let c = (cn)n∈N ∈ S. Then we define

[c]ts = {d = (dn)n∈N ∈ S : cn
ts∼ dn, n→∞} (2.3)

as the equivalence class of c in Tr(SVs).

Theorem 2.4. For a fixed element c ∈ Tr(SVs), the player II has a winning coding
strategy in the game Gα2([c]ts, [c]ts),

Proof. (1st round): Let σ be the strategy of the player II. The player I chooses a
sequence x1 = (x1,n)n∈N ∈ [c]ts arbitrary. Then the player II chooses the subse-
quence σ(x1) = (x1,k1(n))n∈N of the sequence x1, where Im(k1) is the set of natural
numbers greater of or equal to n1 ∈ N which are divisible by 2 and not divisible by
22, and 1− 1

2 ≤
cn
xm,n

≤ 1 + 1
2 holds for each n ≥ n1.

(mth round, m > 2): The player I chooses a sequence xm = (xm,n)n∈N ∈ [c]ts.
Then the player II chooses the subsequence

σ(xm, (xm−1,km−1(n))n∈N) = (xm,km(n))n∈N

of the sequence xm, so that Im(km) is the set of natural numbers greater of or equal
to nm ∈ N, which are divisible by 2m, and not divisible by 2m+1, and 1 − 1

2m ≤
cn
xm,n

≤ 1 + 1
2m holds for each n ≥ nm.
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Consider now the set Y =
⋃
m∈N

⋃
n∈N xm,km(n) in S indexed by the second index

km(n). This set we can consider as the subsequence of the sequence y = (yi)i∈N
given by:

yi =

{
xm,km(n), if i = km(n) for some m,n ∈ N;
ci, otherwise.

By the construction y ∈ S. Also, the intersection of y and xm, m ∈ N, is an infinite
set.

Let us prove that ym
ts∼ cm, as m → ∞. Let ε > 0. Let m be the smallest

natural number such that 1
2m ≤ ε. For each k ∈ {1, 2, ...,m− 1} there is n∗k ∈ N, so

that 1 − ε ≤ ci
xk,n

≤ 1 + ε for each n ≥ n∗k. Set n∗ = max{n∗1, n∗2, . . . , n∗m−1}. For

each i ≥ n∗ we have 1− ε ≤ ci
yi
≤ 1 + ε. Therefore, limn→∞

ci
yi

= 1. It follows

lim
i→∞

ci+1

yi
= lim
i→∞

(
ci+1

ci
· ci
yi

)
= 1

because c ∈ Tr(SVs). In a similar way we prove

lim
i→∞

yi+1

ci
= 1.

One concludes that for each λ ≥ 1

lim
i→∞

y[i+λ]

ci
= lim
i→∞

c[i+λ]

yi
= 1

i.e. y = (yi)i∈N ∈ [c]ts. The theorem is proved. �

Corollary 2.5. The selection principle α2([c]ts, [c]ts) holds for each fixed element
c ∈ Tr(SVs). Consequently, α3([c]ts, [c]ts) and α4([c]ts, [c]ts) also hold.

We end the paper by proving a result about mutually translationally rapidly
equivalent sequences.

Let c = (cn)n∈N ∈ S. Then we define

[c]tr = {d = (dn)n∈N ∈ S : cn
tr∼ dn, n→∞}. (2.4)

Theorem 2.6. The player II has a winning coding strategy in the game Gα2
([c]tr, [c]tr),

for any fixed element c ∈ Tr(Rs,∞).

Proof. Let σ be the strategy of II.
(mth round, m ≥ 1): The player I chooses a sequence xm = (xm,n)n∈N ∈ [c]tr.

Then the player II chooses the subsequence

σ(xm, (xm−1,km−1(n))n∈N) = (xm,km(n))n∈N

of the sequence xm, so that Im(km) is the set of natural numbers greater of or
equal to nm, which are divisible with 2m, and not divisible with 2m+1, nm ∈ N,
and cn+1

xm,n
≥ 2m and

xm,n+1

cn
≥ 2m for each n ≥ nm. Let λ ≥ 1. Since c ∈ Tr(Rs,∞),

we have cn+1

cn
≥ 1 for sufficiently large n. Then

c[n+λ]

xm,n
=

c[n+λ]

c[n+λ]−1
·
c[n+λ]−1

c[n+λ]−2
· · · cn+1

xm,n
≥ 2m

for each n ≥ nm. Since xm,n
tr∼ cn, as n → ∞, we have xm ∈ Tr(Rs,∞) (Theorem

2.2). In a similar way we prove
xm,[n+λ]

cn
≥ 2m for all n ≥ nm.
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Form the set Y =
⋃
m∈N

⋃
n∈N xm,km(n) of positive real numbers indexed by the

second index. This set is a subsequence of the sequence y = (yi)i∈N defined by:

yi =

{
xm,km(n), if i = km(n) for some m,n ∈ N;
ci, otherwise.

Evidently, y ∈ S and the intersection of y and xm, m ∈ N, is an infinite set.

We prove ym
tr∼ cm, as m → ∞. Let M > 0. Choose the smallest m ∈ N such

that 2m > M . For each k ∈ {1, 2, ...,m − 1} there is n∗k ∈ N, so that
c[n+λ]

xk,n
≥ M

and
xk,[n+λ]

cn
≥ M for each λ ≥ 1 and each n ≥ n∗k. Let n∗ = max{n∗1, . . . , n∗m−1}.

Therefore, the inequalities
c[i+λ]
yi
≥M and

y[i+λ]
ci
≥M hold for each λ ≥ 1 and each

i ≥ n∗. As M was arbitrary, one concludes yi
tr∼ ci, as i → ∞. In other words,

y ∈ [c]tr. �

Corollary 2.7. The selection principle α2([c]tr, [c]tr) holds for each fixed element
c ∈ Tr(Rs,∞), and thus α3([c]tr, [c]tr) and α4([c]tr, [c]tr) hold.
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