

Sakarya University Journal of Science

ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University | http://www.saujs.sakarya.edu.tr/

Title: Coefficient İnequalities For Janowski Type Close-To-Convex Functions Associated With Ruscheweyh Derivative Operator

Authors: Öznur Özkan Kılıç Recieved: 2019-01-10 00:00:00

Accepted: 2019-01-28 00:00:00

Article Type: Research Article Volume: 23 Issue: 5 Month: October Year: 2019 Pages: 714-717

How to cite Öznur Özkan Kılıç; (2019), Coefficient İnequalities For Janowski Type Close-To-Convex Functions Associated With Ruscheweyh Derivative Operator. Sakarya University Journal of Science, 23(5), 714-717, DOI: 10.16984/saufenbilder.511321 Access link http://www.saujs.sakarya.edu.tr/issue/44066/511321

Sakarya University Journal of Science 23(5), 714-717, 2019

Coefficient Inequalities for Janowski Type Close-to-Convex Functions Associated with Ruscheweyh Derivative Operator

Öznur Özkan Kılıç^{*1}

ABSTRACT

The aim of this paper is to introduce a new subclasses of the Janowski type close-to-convex functions defined by Ruscheweyh derivative operator and obtain coefficient bounds belonging to this class.

Keywords: Univalent Function, Subordination, Close-to-Convex Function, Ruscheweyh Derivative Operator

1. INTRODUCTION

Let ${\boldsymbol{\mathcal{A}}}$ denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk

$$\Delta = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Let S denote the subclasses of A which are univalent in Δ .

An analytic function f is subordinate to an analytic function F, written as $f \prec F$ or

 $f(z) \prec F(z)$, if there exists a Schwarz function

 $\omega: \Delta \rightarrow \Delta$ with $\omega(0) = 0$ and $|\omega(z)| < 1$ satisfying $f(z) = F(\omega(z))$. In particular, if *F* is univalent in Δ , we have the following equivalence:

$$f(z) \prec F(z) \iff [f(0) = F(0) \land f(\Delta) = F(\Delta)].$$

The Hadamard product or convolution of two functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{A}$ and

 $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A}$, denoted by f * g, is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$$

for $z \in \Delta$.

In 1975, Ruscheweyh [5] introduced a linear operator $\mathcal{D}^{\delta} : \mathcal{A} \longrightarrow \mathcal{A}$ defined by

$$\mathcal{D}^{\delta} f(z) = \frac{z}{(1-z)^{\delta+1}} * f(z)$$
$$= z + \sum_{n=2}^{\infty} \varphi_n(\delta) a_n z^n$$

with

$$\varphi_n(\delta) = \frac{(\delta+1)_{n-1}}{(n-1)!}$$

^{*} Corresponding Author

¹ Baskent University, Statistics and Computer Science Program, Ankara, Turkey ORCID: 0000-0003-4209-9320

for $\delta > -1$ and $(a)_n$ is Pochhammer symbol defined by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}$$
$$= \begin{cases} 1 & \text{if } n = 0\\ a(a+1)\cdots(a+n-1) & \text{if } n \in \mathbb{N} \end{cases}$$

for $a \in \mathbb{C}$ and $\mathbb{N} = \{1, 2, 3, \dots\}$.

Notice that

$$\mathcal{D}^0 f(z) = f(z),$$

$$\mathcal{D}^1 f(z) = zf'(z)$$

and

$$D^{m} f(z) = \frac{z(z^{m-1}f(z))^{m}}{m!}$$
$$= z + \sum_{n=2}^{\infty} \frac{\Gamma(n+m)}{\Gamma(m+1)(n-1)!} a_{n} z^{n}$$

for all $\delta = m \in \mathbb{N}_0 = \{0, 1, 2, ... \}.$

In geometric function theory, various subclasses defined by Ruscheweyh derivative operator were studied.

Let S^* and C be the usual subclasses of functions which members are univalent, starlike and convex in Δ , respectively. We also denote $S^*(\alpha)$ and $C(\alpha)$ the class of starlike functions of order α and the class of convex functions of order α , for $0 \le \alpha <$ 1, respectively. Note that $S^* = S^*(0)$ and C =C(0).

In 1973, Janowski [2] introduced the classes by $S^*(A, B)$ and C(A, B)

$$\mathcal{S}^*(A,B) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} < \frac{1+Az}{1+Bz} \right\}$$

and

$$\mathcal{C}(A,B) = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} < \frac{1+Az}{1+Bz} \right\}$$

for $-1 \le B < A \le 1$, $z \in \Delta$. Note that

 $\mathcal{S}^*(\alpha) = \mathcal{S}^*(1 - 2\alpha, -1), \quad \mathcal{S}^* = \mathcal{S}^*(1, -1) \text{ and } \mathcal{C}(\alpha) = \mathcal{C}(1 - 2\alpha, -1), \quad \mathcal{C} = \mathcal{C}(1, -1).$

A function $f \in \mathcal{A}$ is said to be close-to-star if and only if there exists $g \in S^*$ such that $\Re\{f(z)/g(z)\} > 0$ for all $z \in \Delta$. Also, a function

 $f \in \mathcal{A}$ is said to be close-to-convex if and only if there exists $g \in \mathcal{C}$ such that $\Re\{f'(z)/g'(z)\} > 0$ for all $z \in \Delta$. The classes of close-to-star and close-to-convex functions denote by \mathcal{CS}^* and \mathcal{CC} , respectively. The class of close-to-star functions was introduced by Reade in [4] and the class of close-to-convex functions was introduced by Kaplan in [3]. Similarly, we denote by $\mathcal{CS}^*(\gamma)$ and $\mathcal{CC}(\gamma)$ the classes of close-to-star functions of order γ and close-to-convex functions of order γ , for $0 \leq \gamma < 1$, respectively. Note that $\mathcal{CS}^* = \mathcal{CS}^*(0)$ and $\mathcal{CC} = \mathcal{CC}(0)$.

The class of Janowski type close-to-starlike functions in Δ , denoted by $CS^*(A, B)$, is defined by

$$\mathcal{CS}^*(A,B) = \left\{ f \in \mathcal{A} : \frac{f(z)}{g(z)} < \frac{1+Az}{1+Bz}, g \in S^* \right\}$$

for $-1 \le B < A \le 1$, $z \in \Delta$. Similarly, the class of Janowski type close-to-convex functions in Δ , denoted by CC(A, B), is defined by

$$\mathcal{CC}(A,B) = \left\{ f \in \mathcal{A} : \frac{f'(z)}{g'(z)} < \frac{1+Az}{1+Bz}, \ g \in \mathcal{C} \right\}$$

for $-1 \le B < A \le 1$, $z \in \Delta$. The classes are introduced by Reade [4] in 1955.

Definition 1.1. The class of Janowski type functions defined by Ruscheweyh derivative operator in Δ , denoted by $\mathcal{J}_{\mathcal{R}}(\delta, \beta, A, B)$, is defined by

$$\begin{aligned} \mathcal{J}_{\mathcal{R}}(\delta,\beta,A,B) &= \left\{ f \in \mathcal{A} : \frac{\mathcal{D}^{\delta} f(z)}{\mathcal{D}^{\beta} g(z)} < \frac{1 + Az}{1 + Bz}, \\ g \in \mathcal{S}^{*} \right\} \end{aligned}$$

for $\delta, \beta > -1$, $-1 \le B < A \le 1$, $z \in \Delta$.

We need the following lemma to obtain our results. Lemma 1.2. [1] If the function p(z) of the form

Öznur Özkan Kılıç

Coefficient İnequalities For Janowski Type Close-To-Convex Functions Associated With Ruscheweyh Deriv...

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$$

is analytic in Δ and

$$p(z) \prec \frac{1 + Az}{1 + Bz}$$

then $|p_n| \le A - B$, for $n \in \mathbb{N}, -1 \le B < A \le 1$.

2. MAIN RESULTS AND THEIR CONSEQUENCES

We begin by finding the estimates on the coefficient $|a_n|$ for functions in the class $\mathcal{J}_{\mathcal{R}}(\delta,\beta,A,B)$.

Theorem 2.1. If the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{J}_{\mathcal{R}}(\delta, \beta, A, B)$, then

$$|a_n| \le \frac{n \,\varphi_n(\beta) + (A-B) \sum_{m=1}^{n-1} m \,\varphi_m(\beta)}{\varphi_n(\delta)} \,. \tag{2.1}$$

Proof. Let $f(z) \in \mathcal{J}_{\mathcal{R}}(\delta, \beta, A, B)$. Then, there are analytic functions $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*$, ω is a Schwarz function and

 $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ as in Lemma 1.2 such that

$$\frac{\mathcal{D}^{\delta} f(z)}{\mathcal{D}^{\beta} g(z)} = \frac{1 + A\omega(z)}{1 + B\omega(z)} = p(z)$$
(2.2)

for $z \in \Delta$. Then (2.2) can be written as

$$\mathcal{D}^{\delta} f(z) = p(z) . \mathcal{D}^{\beta} g(z)$$

or

$$z + \sum_{n=2}^{\infty} \varphi_n(\delta) a_n z^n$$

= $z + \sum_{n=2}^{\infty} \sum_{m=1}^n \varphi_{n-m+1}(\beta) b_{n-m+1} p_{m-1}$

Equating the coefficients of like powers of z, we obtain

$$\varphi_2(\delta) a_2 = \varphi_2(\beta) b_2 + p_{1,}$$
$$\varphi_3(\delta) a_3 = \varphi_2(\beta) b_2 p_1 + \varphi_3(\beta) b_3 + p_{2,}$$

and

$$\varphi_n(\delta) a_n = \varphi_n(\beta) b_n + \varphi_{n-1}(\beta) b_{n-1} p_1 + \varphi_{n-2}(\beta) b_{n-2} p_{2+\dots+} p_{n-1}.$$

By using Lemma 1.2 and $g \in S^*$, we get

$$\varphi_n(\delta)|a_n| \le n \varphi_n(\beta) + (A - B) \sum_{m=1}^{n-1} m \varphi_m(\beta)$$

and this inequality is equivalent to (2.1).

Corollary 2.2. If the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{CS}^*(A, B)$, then

$$|a_n| \le n + \frac{(A-B)(n-1)n}{2}.$$

Proof. In Theorem 2.1, we take $\delta = 0$, $\beta = 0$.

Corollary 2.3. If the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{CS}^*(\gamma)$, then

 $|a_n| \le n + (1 - \gamma)(n - 1)n.$

Proof. In Theorem 2.1, we take $\delta = 0$, $\beta = 0$,

$$A = 1 - 2\gamma, B = -1.$$

Corollary 2.4. If the function $f(z) \in \mathcal{A}$ be in the class \mathcal{CS}^* , then

$$|a_n| \le n^2$$

Proof. In Theorem 2.1, we take $\delta = 0$, $\beta = 0$,

$$A=1, B=-1.$$

Corollary 2.5. If the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{CC}(A, B)$, then

$$|a_n| \le 1 + \frac{(A-B)(n-1)}{2}.$$

Proof. In Theorem 2.1, we take $\delta = 1$, $\beta = 0$.

Corollary 2.6. If the function $f(z) \in \mathcal{A}$ be in the class $\mathcal{CC}(\gamma)$, then

$$|a_n| \le 1 + (1 - \gamma)(n - 1).$$

Proof. In Theorem 2.1, we take $\delta = 1$, $\beta = 0$,

 $A = 1 - 2\gamma, B = -1.$

Corollary 2.7. If the function $f(z) \in \mathcal{A}$ be in the class \mathcal{CC} , then

$$|a_n| \le n$$

Proof. In Theorem 2.1, we take $\delta = 1$, $\beta = 0$,

A = 1, B = -1.

We note that Results in Corollary 2.4 and Corollary 2.7 were proved by Reade in 1955.

(See [4])

REFERENCES

- R. M. Goel, B. C. Mehrok, "A subclass of starlike functions with respect to symmetric points," Tamkang Journal of Mathematics, vol. 13, no. 1, pp. 11–24, 1982.
- W. Janowski, "Some extremal problems for certain families of analytic functions," Annales Polonici Mathematici, 28, pp. 297-326, 1973.
- [3] W. Kaplan, "Close-to-convex schlicht functions," The Michigan Mathematical Journal, vol.1, no.2, pp. 169-185, 1952.
- [4] M. O. Reade, "On close-to-convex univalent functions," The Michigan Mathematical Journal, vol. 3, no. 1, pp. 59-62, 1955.
- [5] S. Ruscheweyh, "New criteria for univalent functions," Proceedings of the American Mathematical Society, vol. 49, no. 1, pp. 109-115, 1975.