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Abstract

Let a be an ideal of a commutative Noetherian ring R, M a finitely
generated R-module with finite projective dimension and N an arbi-
trary R-module with finite Cohen-Macaulay injective dimension. In
this paper, we show that the generalized local cohomology Hia(M,N)

is zero for every i larger than the Cohen-Macaulay injective dimension
of N . As applications, we obtain new characterizations of Gorenstein
and regular local rings.
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Local cohomology is an important tool in algebraic geometry and in commutative
algebra. A generalization of local cohomoloy was first introduced in the local case by
Herzog in his habilitation [14] and then continued by many authors. One basic theme
of local cohomology theory is investigating vanishing and nonvanishing properties of
(generalized) local cohomology (e.g. [1, 3, 5, 14, 21, 25, 26, 29]).

Sazeedeh in [25, Theorem 3.1] proved that if N is a Gorenstein injective R-module
over a Gorenstein ring R, then Hia(N) = 0 for all i > 0. Also, by using the notion of
strongly cotorsion modules, he in [26, Corollary 3.6] improved this result by showing
that if R is a commutative Noetherian ring with finite Krull dimension, M is a finitely
generated R-module with finite projective dimension and N is an R-module of finite
Gorenstein injective dimension t, then the generalizing local cohomology Hia(M,N) = 0
for all i > t. Recently, by employing the tool of spectral sequences, K. Divaani-Aazar and
A. Hajikarimi in [5, Lemma 2.9] have given a similar result without the assumption that
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R has finite Krull dimension. Motivated by these results, we provide a new vanishing
result for generalized local cohomology for modules with finite Cohen-Macaulay injective
dimension and find some applications of this result.

Throughout this article, R is a commutative Noetherian ring with identity, a is an
ideal of R and C is a fixed semidualizing R-module (see Definition 2.1). For unexplained
concepts and notations, we refer the reader to [4] and [22]. For two R-modulesM and N ,
the i-th generalized local cohomology ofM and N with respect to a is defined by Hia(M,N)

= lim−→n
ExtiR(M/anM,N). Clearly, when M = R we get the usual local cohomology

functor Hia(−). It should be noted that if M is finitely generated and N → E is an
injective resolution of N , then the i-th generalized local cohomology module ofM and N
with respect to a is the i-th cohomology module of the complex HomR(M,Γa(E)), where
Γa(−) = H0

a(−) denotes the a-torsion functor. M is a-torsion precisely when Γa(M) =
M , that is, if and only if each element of M is annihilated by some power of a.

Let X be a class of R-modules and M an R-module. An X-coresolution of M is an
exact sequence of the form X+ = 0→M → X0 → · · · → Xn−1 → Xn → · · · , where Xi

is in X for i > 0. Furthermore, we call this exact sequence a coproper X-coresolution of
M if HomR(X+, X) is exact for all X ∈ X. The X-injective dimension of M is defined
as X-idRM = inf{sup{n | Xn 6= 0} | X+ is an X-coresolution of M}. For each positive
integer i, we denote X⊥i := {M | ExtiR(X,M) = 0 for any X ∈ X}, X⊥ := ∩i>0X

⊥i .
The structure of the paper is summarized below. In Section 2, we mainly present a

vanishing theorem for generalized local cohomology (see Theorem 2.7). Section 3 consists
of three applications. One of them, Theorem 3.1, states that a local ring R having a
dualizing module is regular if and only if Hia(M,N) = 0 for every finitely generated
R-module M and every i > CMidRN if and only if any a-torsion R-module has finite
injective dimension. The second, Corollary 3.3, shows that a local ring R is Gorenstein
if and only if its residue field k has copure injective dimension at most dimR if and
only if every m-torsion module has a coproper Gorenstein injective coresolution of length
dimR in which each term is m-torsion. The third, Theorem 3.5, claims that a local ring
R is Cohen-Macaulay provided that there exists a non-zero cofinite R-module N with
CMidRN finite and dimRN = dimR.

1. Vanishing of generalized local cohomology

We begin with the notion of a semidualizing module, which is a common generalization
of a dualizing module and a free module of rank one. The following definitions are taken
from [18].

1.1. Definition. A finitely generated R-module C is semidualzing if the natural homo-
thety homomorphism R → HomR(C,C) is an isomorphism and Ext>1

R (C,C) = 0. Fur-
thermore, C is dualizing if it has finite injective dimension. We set IC(R) = {HomR(C, I)

| I is injective}. Modules in IC(R) are called C-injective.

Next, we recall from [16] the definition of a C-Gorenstein injective R-module.



1.2. Definition. An R-module M is called C-Gorenstein injective if:

(I1) Ext>1
R (HomR(C, I),M) = 0 for all injective R-modules I.

(I2) There exist injective R-modules I0, I1, · · · together with an exact sequence:

· · · → HomR(C, I1)→ HomR(C, I0)→M → 0,

and also, this sequence stays exact when we apply to it HomR(HomR(C, J),−)

for any injective R-module J .

1.3. Remark. Injective and C-injective modules are C-Gorenstein injective. The R-
Gorenstein injective modules are just Gorenstein injective modules defined by E. E.
Enochs and O. M. G. Jenda in [7]. We write GIC(R) for the class of all C-Gorenstein
injective modules. For convenience, we set GIC-idRM = GIC(R)-idRM , and GidRM =
GIR-idRM if C = R. Following [15], the Cohen-Macaulay injective dimension of an R-
module M is defined as CMidRM = inf{GidRnCM | C is a semidualizing R-module},
where RnC denotes the trivial extension of R by C (see [16, Definition 1.2]). Holm and
Jrgensen in [16, Theorem 2.16] proved that GIC-idRM = GidRnCM for any R-module
M . So CMidRM 6 GidRM . However, the inequality may be strict (see Example 3.6
below).

1.4. Definition. The Auslander class AC(R) with respect to a semidualizing module C
consists of all R-modules M satisfying

(A1) TorR>1(C,M) = 0,

(A2) Ext>1
R (C,C ⊗RM) = 0, and

(A3) The natural evaluation homomorphism µM : M → HomR(C,C ⊗R M) is an
isomorphism.

1.5. Lemma. Let U be an C-injective R-module. Then Γa(U) is C-injective and Hia(U)

= 0 for all i > 0.

Proof. Since U is C-injective, U = HomR(C,E) for some injective R-module E by defi-
nition. Then we have

Γa(HomR(C,E)) = lim−→n
HomR(R/an,HomR(C,E))

∼= lim−→n
HomR(R/an ⊗R C,E)

∼= lim−→n
HomR(C,HomR(R/an, E))

∼= HomR(C, lim−→n
HomR(R/an, E))

∼= HomR(C,Γa(E)).

Note that the module Γa(E) remains injective by [3, Proposition 2.1.4]. So Γa(U) is
C-injective. The second claim is evident from [1, Lemma 5.9]. �

The key to the proof of Theorem 2.7 below is given in the following proposition.

1.6. Proposition. LetM be a finitely generated R-module in AC(R) and U a C-injective
R-module. Then Hia(M,U) = 0 for all i > 0.

Proof. Let 0 → U → E0 → E1 → · · · be an injective resolution of U . Applying the
functor Γa(−) to this exact sequence, we get from [3, 1.2.2] and Lemma 2.5 the exact



sequence 0 → Γa(U) → Γa(E0) → Γa(E1) → · · · . Also, it is an injective resolution of
Γa(U). Thus, applying the functor HomR(M,−) to this exact sequence gives Hia(M,U)
∼= ExtiR(M,Γa(U)). SinceM is in AC(R), TorR>1(C,M) = 0 by definition. Therefore, the
result follows from Lemma 2.5. �

We are ready to present the main result of this section.

1.7. Theorem. Let M be a finitely generated R-module with finite projective dimension.
Let N be an R-module with CMidRN finite. Then Hia(M,N) = 0 for every i > CMidRN .

Proof. We proceed in a similar way as in the proof of [30, Lemma 1.1]. Suppose that
CMidRN = n. Then, by Remark 2.3, GIC-idRN = n for some semidualizing R-module
C. We prove by induction on n. First assume that n = 0. Then N is C-Gorenstein
injective. By the definition of C-Gorenstein injective modules, there are short exact
sequences 0→ N1 → U0 → N → 0 and 0→ Ni → Ui−1 → Ni−1 → 0 for all i > 1, where
Ui is C-injective and Ni is C-Gorenstein injective. By Proposition 2.6 and [18, Corollary
6.2 and Proposition 3.1], Hia(M,U) = 0 for any C-injective R-module U and any i > 0.
Hence [23, Theorem 6.26] implies that Hia(M,N) ∼= Hi+1

a (M,N1) ∼= Hi+2
a (M,N2) ∼= · · ·

for all i > 0. But by [29, Theorem 2.5] we know that Hia(X,Y ) = 0 for all i > ara(a) +
pdRX, where the arithmetic rank ara(a) of the ideal a is the least number of elements
of R required to generate an ideal which has the same radical as a. So Hia(M,N) = 0 for
all i > 0.

Now assume that n > 0. By definition, one gets a short exact sequence 0 → N →
G→ N ′ → 0 where G is C-Gorenstein injective and GIC-idRN ′ = n− 1. The inductive
hypothesis gives that Hia(M,N ′) = 0 for i > n− 1. Then we see from the exact sequence
Hi−1

a (M,N ′)→ Hia(M,N)→ Hia(M,G) that Hia(M,N) = 0 for i > CMidRN , completing
the proof. �

We then have the following immediate corollaries.

1.8. Corollary. LetM be a finitely generated R-module and G a C-Gorenstein injective
R-module. Then Hia(M,G) ∼= ExtiR(M,Γa(G)) for all i.

Proof. By virtue of Theorem 2.7, we have Hia(G) = 0 for any i > 0 and any C-Gorenstein
injective R-module G. Therefore, a similar proof of Proposition 2.6 gives the assertion.

�

1.9. Corollary. LetM be a finitely generatedR-module with finite projective dimension.
If N is any R-module, then for each i, Hia(M,N) can be computed by applying the functor
H0

a(M,−) to any GIC(R)-coresolution of N .

Proof. Observe that H0
a(M,−) ∼= HomR(M,Γa(−)) and Hia(M,G) = 0 for any i > 0 and

any C-Gorenstein injective R-module G. So the assertion follows from [12, Chapter III,
Proposition 1.2A]. �

Now, we will study the effect of the 0-th generalized local cohomology H0
a(−,−) on

C-Gorenstein injective modules. In the proof of Proposition 2.11 below, we will use the
following lemma.



1.10. Lemma. Assume that R admits a dualizing R-module ω. Then GIω-idRM 6 idRω
for all R-modules M .

Proof. This is a consequence of [8, Theorem 12.3.1], [10, Theorem 4.32] and Remark
2.3. �

1.11. Proposition. Assume that R admits a dualizing R-module ω. Let N be a ω-
Gorenstein injective R-module. Then H0

a(P,N) is ω-Gorenstein injective for any finitely
generated projective R-module P .

Proof. Suppose that idRω = n. Since N is ω-Gorenstein injective, one has an exact
sequence

· · · → Ui+1 → Ui → · · · → U1 → U0 → N → 0,

where Ui is ω-injective and Ki = Coker(Ui+1 → Ui) is ω-Gorenstein injective for i > 1.
Let P be a finitely generated projective R-module. By Lemma 2.5 there is an injective
R-module Ei such that Γa(Ui) ∼= HomR(ω,Ei), and so H0

a(P,Ui) ∼= HomR(P,Γa(Ui)) ∼=
HomR(P,HomR(ω,Ei)) ∼= HomR(ω,HomR(P,Ei)). Hence, H0

a(P,Ui) is also ω-injective
for all i > 0. Consider the short exact sequences 0 → K1 → U0 → N → 0 and
0 → Ki → Ui−1 → Ki−1 → 0 for all i > 1. Now applying the functor H0

a(P,−) to
these short exact sequences and using Theorem 2.7, we have the following short exact
sequences

0 → H0
a(P,K1) → H0

a(P,U0) → H0
a(P,N) → 0,

0 → H0
a(P,Ki) → H0

a(P,Ui−1) → H0
a(P,Ki−1) → 0.

Pasting these short exact sequences together, we have the following exact sequence

· · · → H0
a(P,Ui+1)→ H0

a(P,Ui)→ · · · → H0
a(P,U1)→ H0

a(P,U0)→ H0
a(P,N)→ 0,

where Hia(P,Ui) is ω-injective for all i > 0. Thus it is easily seen from the exact se-
quence that H0

a(P,N) is the n-th ω-Gorenstein injective cosyzygy of Ker(H0
α(P,Un−1)→

H0
a(P,Un−2)). So the dual form of [28, Proposition 2.12] and Lemma 2.10 imply that

H0
a(P,N) is ω-Gorenstein injective. �

It should be pointed that the special case where ω = P = R is appeared in [25,
Theorem 3.2].

2. Applications

Let (R,m, k) be a local ring. We say that R is Cohen-Macaulay if depthR = dimR.
R is Gorenstein if it has finite self-injective dimension. R is regular if it has finite global
dimension. In fact, every regular ring is Gorenstein, and every Gorenstein ring is Cohen-
Macaulay (see [4, Proposition 3.1.20]). Based on Sazeedeh’s idea in [26], we first bring a
new characterization of regular local rings among Cohen-Macaulay rings with dualizing
modules. The theorem below establishes a relationship between the vanishing properties
of generalized local cohomology and the regularity of a local ring.



2.1. Theorem. Let (R,m, k) be a local ring with a dualizing module ω. Then the fol-
lowing statements are equivalent.

(1) For every finitely generated R-module M and every R-module N with CMidRN
finite, Hia(M,N) = 0 for all i > CMidRN .

(2) For every ideal I and every R-module N with CMidRN finite, Hia(R/I,N) = 0

for all i > CMidRN .
(3) For every ideal I and every ω-Gorenstein injective R-module G, Hia(R/I,G) = 0

for all i > 0.

(4) Any a-torsion R-module has finite injective dimension.
(5) R is regular.

Proof. (1) ⇒ (2) ⇒ (3) are trivial.
(3) ⇒ (4). Given an a-torsion R-module N . Since ω is dualizing, we may by Lemma

2.10 assume that GIω-idRN = n < ∞. Due to [3, Corollary 2.1.6], we know that there
exists an injective resolution 0 → N → E0 → E1 → · · · of N such that Ei is a-
torsion. Moreover, the n-th cosyzygy Ωn(N) of N is a-torsion and ω-Gorenstein injective
by the dual result of [28, Proposition 2.12]. Thus, by Corollary 2.8, it follows that
ExtiR(R/I,Ωn(N)) ∼= ExtiR(R/I,Γa(Ωn(N)) ∼= Hia(R/I,Ωn(N)) = 0 for any ideal I and
any i > 0. This means that Ωn(N) is injective. Therefore idRN <∞.

(4) ⇒ (5) follows from [20, Theorem 5.82], as the residue field k is m-torsion.
(5) ⇒ (1) can be derived directly from Theorem 2.7, since any finitely generated

R-module has finite projective dimension over a regular ring. �

Next, we turn to the second main result of this section. E. E. Enochs and O. M. G.
Jenda in [6, Theorem 4.1] gave a characterization of Gorenstein rings by the finiteness of
copure injective dimension of all modules. Sazeedeh in [26, Theorem 3.8] proved that the
Gorensteiness of a local ring just depends on the finiteness of copure injective dimension
of all m-torsion modules. By using the results obtained in Section 2, we present an even
more simple criterion for a local ring to be Gorenstein.

2.2. Theorem. Let (R,m, k) be a local ring. Then the following statements are equiva-
lent.

(1) IC(R)⊥-idRN 6 dimR for any m-torsion R-module N .
(2) IC(R)⊥-idRk 6 dimR.
(3) For any m-torsion R-module N , there exists a coproper GIC(R)-coresolution 0→

N → G0 → · · · → Gn → 0 with n = dimR and Gi m-torsion.
(4) idRC 6 dimR.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (4). Suppose that dimR = n, and let 0→ k → I0 → I1 → · · · → In−1 → In →

0 be an IC(R)⊥-coresolution of k, then Extn+iR (U, k) ∼= ExtiR(U, In) = 0 for all i > 1 and
all U ∈ IC(R), as Ii ∈ IC(R)⊥. In particular, we have Extn+iR (HomR(C,E(k)), k) = 0
for i > 1. But by [8, Corollary 3.4.4], HomR(C,E(k)) is Artinian. Thus we conclude that
fdRHomR(C,E(k)) < ∞ by a similar argument as in [2, Corollary 5.1.2]. Since E(k) is
an injective cogenerator, idRC is finite and hence idRC 6 dimR by [8, Corollary 9.2.17].



(4) ⇒ (3). Since C is dualizing, it follows from [17, Theorem B] that GIC(R)

is preenveloping. Let N be an m-torsion R-module. Then N has a monic GIC(R)-
preenvelope f : N → G. Applying the left exact functor Γm(−) yields a monomor-
phism Γm(f) : N → Γm(G). Because Γm(G) is C-Gorenstein injective by Proposi-
tion 2.11, it is straightforward to check that Γm(f) : N → Γm(G) is also a GIC(R)-
preenvelope of N . Doing continuously in the same way, we can construct an exact
sequence 0→ N → G0 → · · · → Gn → 0 with desired properties by Lemma 2.10.

(3) ⇒ (1) is trivial, as Exti>1
R (U,G) = 0 for all U ∈ IC(R) and G ∈ GIC(R). �

When C = R, for an R-module N , IR(R)⊥-idRN is exactly the copure injective
dimension of N , which is usually denoted by cidRN . Therefore we have the following
corollary.

2.3. Corollary. Let (R,m, k) be a local ring. Then the following statements are equiv-
alent.

(1) cidRN 6 dimR for any m-torsion R-module N .
(2) cidRk 6 dimR.
(3) For any m-torsion R-module N , there exists a coproper Gorenstein injective

coresolution 0→ N → G0 → · · · → Gn → 0 with n = dimR and Gi m-torsion.
(4) R is Gorenstein.

As a final application of Theorem 2.7, we provide a sufficient condition for testing the
Cohen-Macaulayness of a local ring. This result in fact extends a theorem of L.Khatami
et al. in [19, Theorem 2.7]. We adopt some of their ideas in the proof of Theorem 3.5
below. Following [13], an R-module M is cofinite if there exists an ideal a of R such that
M is a-cofinite (i.e., SuppR(M) ⊆ V (a) and all ExtiR(R/a,M) are finitely generated). If
M is finitely generated, then it is easy to see that M is Ann(M)-cofinite.

2.4. Proposition. Let (R,m, k) be a local ring. If N is a non-zero cofinite R-module
with CMidRN finite, then dimRN 6 CMidRN . In particular, if N is finitely generated
and CMidRN = 0, then N is of finite length.

Proof. By Theorem 2.7, Him(N) = 0 for all i > CMidRN . On the other hand, we have
HdimN

m (N) 6= 0 by [21, Theorem 2.9]. Hence dimRN 6 CMidRN follows. Now, assume
that N is finitely generated. If CMidRN = 0, then dimRN = 0. So N has finite length
by [22, Theorem 13.4]. �

With the aid of Proposition 3.4, we are now able to prove the following theorem, which
partially answers a question of R. Takahashi in [27]: Is a local ring Cohen-Macaulay if it
admits a non-zero finitely generated module of finite Gorenstein injective dimension?

2.5. Theorem. Let (R,m, k) be a local ring. If R admits a non-zero cofinite R-module
N with CMidRN finite and dimRN = dimR, then R is Cohen-Macaulay.

Proof. Since CMidRN is finite, it follows from Remark 2.3 that CMidRN = GidRnCN

is finite for some semidualizing R-module C. By [19, Theorem 2.3], there exists a prime
ideal q of R n C in SuppRnCN with GidRnCN 6 depth(RnC)q (R n C)q. Note the fact



that depthRnC = depthR and dimRnC = dimR by [15]. Then Proposition 3.4 implies
that

dimR n C = dimN 6 GidRnCN 6 depth(RnC)q
(R n C)q 6 dim(R n C)q = htq.

Hence q must be the maximal ideal of R n C. Therefore we have

dimR 6 depthR n C = depthR.

This means that R is Cohen-Macaulay. �

Since dimRC = dimR and CMidRC ≤ IC-idR(C), a special case of Theorem 3.5 has
been given by S. Sather-Wagstaff and S. Yassemi in [24, Lemma 2.11]. Finally, we end
this paper with an example showing that the Cohen-Macaulay injective dimension is
strictly less than the Gorenstein injective dimension.

2.6. Example. Let k be a field and R = k[[x3, x4, x5]]. From [9, Example 3.3], R is a
non-Gorenstein Cohen-Macaulay ring with a dualizing module. By [15, Theorem 5.1],
CMidRk <∞. But R is not Gorenstein, we know from [11, Theorem A] that GidRk =∞.
So CMidRk < GidRk.
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