A Unified Family of Generalized q-Hermite Apostol Type Polynomials and its Applications

Subuhi Khan ${ }^{1 *}$ and Tabinda Nahid ${ }^{1}$

Abstract

The intended objective of this paper is to introduce a new class of generalized q-Hermite based Apostol type polynomials by combining the q-Hermite polynomials and a unified family of q-Apostol-type polynomials. The generating function, series definition and several explicit representations for these polynomials are established. The q-Hermite-Apostol Bernoulli, q-Hermite-Apostol Euler and q-Hermite-Apostol Genocchi polynomials are studied as special members of this family and corresponding relations for these polynomials are obtained.

Keywords: q-Hermite polynomials, Generalized q-Apostol type polynomials, Generalized q-Hermite Apostol type polynomials, Explicit representation
2010 AMS: 11B73, 11B83, 11B68
${ }^{1}$ Department of Mathematics, Aligarh Muslim University, Aligarh, India
*Corresponding author: subuhi2006@gmail.com
Received: 28 October 2018, Accepted: 12 November 2018, Available online: 22 March 2019

1. Introduction and preliminaries

The q-calculus has been extensively studied for a long time by many mathematicians, physicists and engineers. The q-calculus is a generalization of many subjects, like the hypergeometric series, complex analysis and particle physics. The q-analogues of many orthogonal polynomials and functions assume a very pleasant form reminding directly of their classical counterparts. The q-calculus is mostly being used by physicists at a high level. In short, q-calculus is quite a popular subject today.

Throughout the present paper, \mathbb{C} indicates the set of complex numbers, \mathbb{N} denotes the set of natural numbers and \mathbb{N}_{0} indicates the set of non-negative integers. Further, the variable $q \in \mathbb{C}$ such that $|q|<1$. The following q-standard notations and definitions are taken from [1].

The q-analogue of the shifted factorial $(a)_{n}$ is defined by

$$
(a ; q)_{0}=1,(a ; q)_{n}=\prod_{m=0}^{n-1}\left(1-q^{m} a\right), n \in \mathbb{N}
$$

The q-analogues of a complex number a and of the factorial function are defined by

$$
\begin{aligned}
& {[a]_{q}=\frac{1-q^{a}}{1-q}, q \in \mathbb{C}-\{1\} ; \quad a \in \mathbb{C}} \\
& {[n]_{q}!=\prod_{m=1}^{n}[m]_{q}=\frac{(q ; q)_{n}}{(1-q)^{n}}, q \neq 1 ; n \in \mathbb{N},[0]_{q}!=1, q \in \mathbb{C} .}
\end{aligned}
$$

The q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, \quad k=0,1, \ldots, n .
$$

The q-exponential function is defined as:

$$
\begin{equation*}
e_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q}!}=\frac{1}{((1-q) x ; q)_{\infty}}, \quad|x|<|1-q|^{-1} \tag{1.1}
\end{equation*}
$$

The q-Hermite polynomials are special or limiting cases of the orthogonal polynomials as they contain no parameter other than q and appears to be at the bottom of a hierarchy of the classical q-orthogonal polynomials [2]. The q-Hermite polynomials constitute a 1-parameter family of orthogonal polynomials, which for $q=1$ reduce to the well known Hermite polynomials. We recall that the q-Hermite polynomials $H_{n, q}(x)$ is defined by the following generating function [3]:

$$
\begin{align*}
& F_{q}(x, t):=F_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty} H_{n, q}(x) \frac{t^{n}}{[n]_{q}!}, \tag{1.2}\\
& F_{q}(t):=\sum_{n=0}^{\infty}(-1)^{n} q^{n(n-1) / 2} \frac{t^{2 n}}{[2 n]_{q}!!}, \quad[2 n]_{q}!!=[2 n]_{q}[2 n-2]_{q} \ldots[2]_{q} . \\
& D_{q, x} H_{n, q}(x)=[n]_{q} H_{n-1, q}(x) .
\end{align*}
$$

Recently, many mathematicians studied the unification of the Bernoulli and Euler polynomials. Luo and Srivastava [4,5] introduced the generalized Apostol-Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ of order α. Further, the generalized Apostol-Euler polynomials $E_{n}^{(\alpha)}(x)$ of order α and the generalized Apostol-Genochhi polynomials $G_{n}^{(\alpha)}(x)$ of order α are investigated by Luo [6,7]. Thereafter, in 2014 Ernst [8] defined the q-analogues of the generalized Apostol type polynomials.

The generalized q-Apostol-Bernoulli polynomials $B_{n, q, \lambda}^{(\alpha)}(x)$ of order $\alpha \in \mathbb{N}_{0}$ are defined by the following generating function [8]:

$$
\begin{equation*}
\left(\frac{t}{\lambda e_{q}(t)-1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} B_{n, q, \lambda}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \tag{1.3}
\end{equation*}
$$

The generalized q-Apostol-Euler polynomials $E_{n, q, \lambda}^{(\alpha)}(x)$ of order $\alpha \in \mathbb{N}_{0}$ are defined by the following generating function [8]:

$$
\begin{equation*}
\left(\frac{2}{\lambda e_{q}(t)+1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} E_{n, q, \lambda}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \tag{1.4}
\end{equation*}
$$

The generalized q-Apostol-Genocchi polynomials $G_{n, q, \lambda}^{(\alpha)}(x)$ of order $\alpha \in \mathbb{N}_{0}$ are defined by the following generating function [8]:

$$
\begin{equation*}
\left(\frac{2 t}{\lambda e_{q}(t)+1}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} G_{n, q, \lambda}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \tag{1.5}
\end{equation*}
$$

In view of equations (1.3)-(1.5), the generalized q-Apostol type polynomials $\mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \quad\left(\alpha \in \mathbb{N}_{0}, \lambda, a, b \in \mathbb{C}\right)$ of order α are defined by the following generating function:

$$
\begin{equation*}
\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} e_{q}(x t)=\sum_{n=0}^{\infty} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!}, \tag{1.6}
\end{equation*}
$$

where $\mathscr{P}_{n, q, \beta}^{(\alpha)}(k, a, b)=\mathscr{P}_{n, q, \beta}^{(\alpha)}(0 ; k, a, b)$ are the q-Apostol type numbers of order α.
If we take the limit $q \rightarrow 1$, the generalized q-Apostol type polynomials defined by equation (1.6) reduces to the unified Apostol type polynomials [9]. In fact, the following special cases hold:

$$
\lim _{q \rightarrow 1} \mathscr{P}_{n, q, \lambda}^{(\alpha)}(x ; 1,1,1)=B_{n, \lambda}^{(\alpha)}(x)
$$

$$
\begin{aligned}
& \lim _{q \rightarrow 1} \mathscr{P}_{n, q, \lambda}^{(\alpha)}(x ; 0,-1,1)=E_{n, \lambda}^{(\alpha)}(x) \\
& \lim _{q \rightarrow 1} \mathscr{P}_{n, q, \frac{\lambda}{2}}^{(\alpha)}(x ; 1,-1 / 2,1)=G_{n, \lambda}^{(\alpha)}(x)
\end{aligned}
$$

where $B_{n, \lambda}^{(\alpha)}(x), E_{n, \lambda}^{(\alpha)}(x)$ and $G_{n, \lambda}^{(\alpha)}(x)$ are the generalized forms of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials.

In the current article, the q-Hermite-Apostol type polynomials are introduced and their explicit relations are proved. The corresponding results for the q-Hermite-Apostol Bernoulli, q-Hermite-Apostol Euler and q-Hermite-Apostol Genocchi polynomials are established.

2. Generalized q-Hermite Apostol type polynomials

In this section, a new hybrid class of the generalized q-Hermite-Apostol type polynomials (GqHATyP), denoted by ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ is introduced by convoluting the q-Hermite polynomials and generalized q-Apostol type polynomials. In order to establish the generating function for the these polynomials, the following result is proved:
Theorem 2.1. The following generating function for the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)(\alpha \in$ $\left.\mathbb{N}_{0}, \lambda, a, b \in \mathbb{C}\right)$ holds true:

$$
\begin{equation*}
\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!}, \tag{2.1}
\end{equation*}
$$

Proof. Expanding the exponential function $e_{q}(x t)$ and then replacing the powers of x, i.e. $x^{0} ; x^{1} ; x^{2} ; \cdots ; x^{n}$ by the correlating q-Hermite polynomials $H_{0, q}(x) ; H_{1, q}(x) ; \cdots ; H_{n, q}(x)$ in the l.h.s. of equation (1.6) and after summing up the terms of the resultant equation and denoting the resultant GqHATyP in the r.h.s. by ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$, assertion (2.1) is proved.

Taking $x=0$ in equation (2.1), we get

$$
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(k, a, b)={ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(0 ; k, a, b),
$$

where ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(k, a, b)$ are the q-Hermite Apostol type numbers of order α.
Next, the series expansions for the $\operatorname{GqHATyP}_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ is obtained by proving the following result:
Theorem 2.2. The following series expansions for the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ hold true:

$$
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{2.2}\\
r
\end{array}\right]_{q} \mathscr{P}_{r, q, \beta}^{(\alpha)}(k, a, b) H_{n-r, q}(x),
$$

${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)=\sum_{r=0}^{n}\left[\begin{array}{l}n \\ r\end{array}\right]_{q}{ }_{H} \mathscr{P}_{r, q, \beta}^{(\alpha)}(k, a, b) x^{n-r}$.
Proof. Utilizing equations (1.2) and (1.6) in the l.h.s. of generating function (2.1) and then using Cauchy-product rule in the l.h.s. of the resultant equation, it follows that

$$
\sum_{n=0}^{\infty} \sum_{r=0}^{n}\left[\begin{array}{c}
n \tag{2.4}\\
r
\end{array}\right]_{q} \mathscr{P}_{r, q, \beta}^{(\alpha)}(k, a, b) H_{n-r, q}(x) \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty} H_{n, q, \beta} \mathscr{P}_{n}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!}
$$

Equating the coefficients of identical powers of t in both sides of equation (2.4), assertion (2.2) follows.
Utilizing equation (1.1) in the l.h.s. of generating function (2.1), it follows that

$$
\sum_{n=0}^{\infty} H \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{[n]_{q}!} \sum_{r=0}^{\infty} H_{r, q, \beta}^{(\alpha)}(k, a, b) \frac{t^{r}}{[n]_{r}!}
$$

which on applying the Cauchy product rule in the r.h.s. and then comparing the coefficients of same powers of t in both sides of resultant equation yields assertion (2.3).
S. No. $k ; a ; b ; \beta \quad$ Generating function Name of the polynomials
I. $\quad k=1 ; a=1 ; \quad\left(\frac{t}{\lambda e_{q}(t)-1}\right)^{(\alpha)} F_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty} H_{n, q, \lambda} B_{n}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \quad$ The generalized q-Hermite- $b=1 ; \beta=\lambda$

Apostol Bernoulli polynomials (GqHABP)
II. $\quad k=0 ; \quad a=-1 ; \quad\left(\frac{2}{\lambda e_{q}(t)+1}\right)^{(\alpha)} F_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty} H_{n, q, \lambda}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \quad$ The generalized q-Hermite-

$$
b=1 ; \beta=\lambda
$$

Apostol Euler polynomials (GqHAEP)
III. $\quad k=1 ; a=-1 / 2 ; \quad\left(\frac{2 t}{\lambda e_{q}(t)+1}\right)^{(\alpha)} F_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty}{ }_{H} G_{n, q, \lambda}^{(\alpha)}(x) \frac{t^{n}}{[n]_{q}!} \quad$ The generalized q-Hermite$b=1 ; \beta=\lambda / 2$

Apostol Genocchi polynomials (GqHAGP)
Table 1. Certain members belonging to the generalized q-Hermite-Apostol family

Different members of the generalized q-Hermite-Apostol family can be obtained by making suitable selections of the parameters k, a, b and β in generating relation (2.1). Some of these members are listed in Table 1.

Proposition 2.3. The following relations for the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ holds true:

$$
\begin{aligned}
D_{q, t} e_{q}(x t) & =x e_{q}(x t) \\
D_{q, x}\left({ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)\right) & =[n]_{q}{ }_{H} \mathscr{P}_{n-1, q, \beta}^{(\alpha)}(x ; k, a, b) .
\end{aligned}
$$

Theorem 2.4. For each $n \in \mathbb{N}$ and for the q-commuting variables x and u such that $x u=q u x$, the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{k, q, \beta}^{(\alpha)}(x ; k, a, b)$ satisfy the following relations:

$$
\begin{array}{r}
H_{H} \mathscr{P}_{n, q, \beta}^{(\alpha+\gamma)}(x ; k, a, b)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H^{\prime}} \mathscr{P}_{r, q, \beta}^{(\alpha)}(x ; k, a, b) \mathscr{P}_{n-r, q, \beta}^{(\gamma)}(k, a, b) . \\
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha+\gamma)}(x+u ; k, a, b)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H} \mathscr{P}_{r, q, \beta}^{(\alpha)}(x ; k, a, b) \mathscr{P}_{n-r, q, \beta}^{(\gamma)}(u ; k, a, b) . \tag{2.6}
\end{array}
$$

Proof. Replacing α by $\alpha+\gamma$ in definition (2.1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha+\gamma)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha+\gamma} F_{q}(t) e_{q}(x t) \\
& =\left(\sum_{r=0}^{\infty} H_{r, q, \beta} \mathscr{P}^{(\alpha)}(x ; k, a, b) \frac{t^{r}}{[r]_{q}!}\right)\left(\sum_{n=0}^{\infty} \mathscr{P}_{n, q, \beta}^{(\gamma)}(k, a, b) \frac{t^{n}}{[n]_{q}!}\right) .
\end{aligned}
$$

Using Cauchy-product rule in the r.h.s. of above equation, it follows that

$$
\sum_{n=0}^{\infty} H_{n, q, \beta} \mathscr{P}_{n, k}^{(\alpha+\gamma)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty} \sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{2.7}\\
r
\end{array}\right]_{q}{ }_{H} \mathscr{P}_{r, q, \beta}^{(\alpha)}(x ; k, a, b) \mathscr{P}_{n-r, q, \beta}^{(\gamma)}(k, a, b) \frac{t^{n}}{[n]_{q}!}
$$

Equating the coefficients of identical powers of t in both sides of equation (2.7), assertion (2.5) follows. Further, replacing α by $\alpha+\gamma$ and x by $x+u$ in Definition 2.1 and proceeding on the same lines of proof as above, assertion (2.6) follows.

Theorem 2.5. For each $n \in \mathbb{N}$ and for the q-commuting variables x and u such that $x u=q u x$, the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{k, q, \beta}^{(\alpha)}(x ; k, a, b)$ satisfy the following relation:

$$
\begin{equation*}
\beta_{H}^{b} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x+1 ; k, a, b)-a_{H}^{b} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)=\frac{2^{1-k}[n]_{q}!}{[n-k]_{q}!} H_{H} \mathscr{P}_{n-k, q, \beta}^{(\alpha-1)}(x ; k, a, b) . \tag{2.8}
\end{equation*}
$$

S. No. Special polynomials Results

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q} B_{r, q, \lambda}^{(\alpha)} H_{n-r, q}(x)
$$

I. GqHABP

$$
{ }_{H} B_{n, q, \lambda}(\alpha)(x)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} H_{r, q, \lambda}^{(\alpha)} x^{n-r}
$$

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x)
$$

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha+\gamma)}(x)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H} B_{r, q, \lambda}^{(\alpha)}(x) B_{n-r, q, \lambda}^{(\gamma)}
$$

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha+\gamma)}(x+u)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q}{ }_{H} B_{r, q, \lambda}^{(\alpha)}(x) B_{n-r, q, \lambda}^{(\gamma)}(u)
$$

$$
\beta^{b}{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x+1)-a^{b}{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x)=\frac{2^{1-k}[n]_{q}!}{[n-k]_{q}!}{ }_{H} B_{n-k, q, \lambda}^{(\alpha-1)}(x)
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
{ }_{r}
\end{array}\right]_{q} E_{r, q, \lambda}^{(\alpha)} H_{n-r, q}(x)
$$

II. GqHAEP

$$
{ }_{H} E_{n, q, \lambda}(\alpha)(x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q} H E_{r, q, \lambda}^{(\alpha)} x^{n-r}
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha+\gamma)}(x)=\sum_{r=0}^{n}\left[\begin{array}{l}
n=0 \\
r
\end{array}\right]_{q} H E_{r, q, \lambda}^{(\alpha)}(x) E_{n-r, q, \lambda}^{(\gamma)}
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha+\gamma)}(x+u)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q} H E_{r, q, \lambda}^{(\alpha)}(x) E_{n-r, q, \lambda}^{(\gamma)}(u)
$$

$$
\beta^{b}{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x+1)-a^{b}{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)=\frac{2^{1-k}[n]_{q}!}{[n-k]_{q}!}{ }_{H} E_{n-k, q, \lambda}^{(\alpha-1)}(x)
$$

II. GqHAGP

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q} G_{r, q, \lambda}^{(\alpha)} H_{n-r, q}(x)
$$

$$
{ }_{H} G_{n, q, \lambda}(\alpha)(x)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H} G_{r, q, \lambda}^{(\alpha)} x^{n-r}
$$

${ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)$

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha+\gamma)}(x)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H} G_{r, q, \lambda}^{(\alpha)}(x) G_{n-r, q, \lambda}^{(\gamma)}
$$

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha+\gamma)}(x+u)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}{ }_{H} G_{r, q, \lambda}^{(\alpha)}(x) G_{n-r, q, \lambda}^{(\gamma)}(u)
$$

$$
\beta_{H}^{b} G_{n, q, \lambda}^{(\alpha)}(x+1)-a_{H}^{b} G_{n, q, \lambda}^{(\alpha)}(x)=\frac{2^{1-k}[n]_{q}!}{[n-k]_{q}!}{ }_{H} G_{n-k, q, \lambda}^{(\alpha-1)}(x)
$$

Table 2. Certain results for the $\operatorname{GqHABP}_{H} B_{n, q, \lambda}^{(\alpha)}(x), \operatorname{GqHAEP}_{H} E_{n, q, \lambda}^{(\alpha)}(x)$ and $\operatorname{GqHAGP}_{H} G_{n, q, \lambda}^{(\alpha)}(x)$

Proof. From generating relation (2.1), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \beta^{b}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x+1 ; k, a, b) \frac{t^{n}}{[n]_{q}!}-\sum_{n=0}^{\infty} a^{b}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!} \\
& \quad=\beta^{b}\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}((x+1) t)-a^{b}\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t) \\
& =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t)\left(\beta^{b} e_{q}(t)-a^{b}\right) \\
& \sum_{n=0}^{\infty}\left(\beta^{b}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x+1 ; k, a, b)-a^{b}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)\right) \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty} 2^{1-k}{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha-1)}(x ; k, a, b) \frac{t^{n+k}}{[n]_{q}!} .
\end{aligned}
$$

Equating the coefficients of same powers of t in both sides of the above equation, assertion (2.8) follows.
In view of Table 1 , ceratin results for the $\operatorname{GqHABP}_{H} B_{n, q, \lambda}^{(\alpha)}(x), \operatorname{GqHAEP}_{H} E_{n, q, \lambda}^{(\alpha)}(x)$ and $\operatorname{GqHAGP}_{H} G_{n, q, \lambda}^{(\alpha)}(x)$ are established and are given in Table 2.

In the next section, certain explicit representations for the $\operatorname{GqHATyP}_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ are established.

3. Explicit representations

In order to derive the explicit representations for the $\operatorname{GqHATyP}_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$, we recall the following definition:
Definition 3.1. The generalized q-Stirling numbers $S_{q}(n, v, a, b, \beta)$ of the second kind of order v is defined as [10]:

$$
\sum_{n=0}^{\infty} S_{q}(n, v, a, b, \beta) \frac{t^{n}}{[n]_{q}!}=\frac{\left(\beta^{b} e_{q}(t)-a^{b}\right)^{v}}{[v]_{q}!}
$$

Theorem 3.2. The following explicit formula for the generalized q-Hermite based Apostol type polynomials $H_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ in terms of the generalized q-Stirling numbers of the second kind $S_{q}(n, v, a, b, \beta)$ holds true:

$$
{ }_{H} \mathscr{P}_{n-v k, q, \beta}^{(\alpha)}(x ; k, a, b)=2^{v(k-1)} \frac{[v]_{q}![n-v k]_{q}!}{[n]_{q}!} \sum_{l=0}^{n}\left[\begin{array}{l}
n \tag{3.1}\\
l
\end{array}\right]_{q} H \mathscr{P}_{l, q, \beta}^{(v-\alpha)}(x ; k, a, b) S_{q}(n-l, v, a, b, \beta) .
$$

Proof. From generating relation (2.1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} H \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t) \frac{\left(\beta^{b} e_{q}(t)-a^{b}\right)^{v}}{[v]_{q}!}\left(\frac{[v]_{q}!}{\left(\beta^{b} e_{q}(t)-a^{b}\right)^{v}}\right) \\
& =\frac{[v]_{q}!}{\left(2^{1-k} t^{k}\right)^{v}} \sum_{l=0}^{\infty} H_{l, q} \mathscr{P}_{l, \beta}^{(\alpha-v)}(x ; k, a, b) \frac{t^{l}}{[l]_{q}!}\left(\sum_{n=0}^{\infty} S_{q}(n, v, a, b, \beta) \frac{t^{n}}{[n]_{q}!}\right) .
\end{aligned}
$$

Applying the Cauchy-product rule on the r.h.s. of the above equation, it follows that

$$
\begin{align*}
\sum_{n=0}^{\infty} H \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n+v k}}{[n]_{q}!}= & {[v]_{q}!2^{(k-1) v} \sum_{n=0}^{\infty}\left\{\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}{ }_{q} \mathscr{P}_{l, q, \beta}^{(\alpha-v)}(x ; k, a, b)\right.} \\
& \left.\times S_{q}(n-l, v, a, b, \beta)\right\} \frac{t^{n}}{[n]_{q}!} \tag{3.2}
\end{align*}
$$

Equating the coefficients of identical powers of t in both sides of equation (3.2) yields assertion (3.1).
Theorem 3.3. The following explicit relation for the generalized q-Hermite based Apostol type polynomials $H_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ in terms of the generalized q-Apostol Bernoulli polynomials $B_{n, q, \lambda}(x)$ holds true:

$$
\begin{align*}
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)= & \frac{1}{[n+1]_{q}}\left\{\lambda \sum_{r=0}^{n+1}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{c}
r \\
m
\end{array}\right]_{q} B_{n+1-r, q, \lambda}(x)\right. \tag{3.3}\\
& \left.-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} B_{n+1-m, q, \lambda}(x)\right\}_{H} \mathscr{P}_{m, q, \beta}^{(\alpha)}(k, a, b) .
\end{align*}
$$

Proof. Consider generating function (2.1) in the following form:

$$
\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t)=\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t)\left(\frac{t}{\lambda e_{q}(t)-1}\right) \frac{\lambda e_{q}(t)-1}{t} e_{q}(x t)
$$

which on simplifying and rearranging the terms becomes

$$
\begin{align*}
\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t) e_{q}(x t) & =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t)\left(\frac{t}{\lambda e_{q}(t)-1} e_{q}(x t)\right) \frac{\lambda}{t} e_{q}(t) \\
& -\frac{1}{t}\left(\frac{2^{1-k} t^{k}}{\beta^{b} e_{q}(t)-a^{b}}\right)^{\alpha} F_{q}(t)\left(\frac{t}{\lambda e_{q}(t)-1} e_{q}(x t)\right) \tag{3.4}
\end{align*}
$$

Using equations (1.3) and (2.1) in equation (3.4), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} H \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b) \frac{t^{n}}{[n]_{q}!} & =\frac{1}{t}\left(\lambda \sum_{m=0}^{\infty} H_{m, q, \beta} \mathscr{P}_{m,}^{(\alpha)}(k, a, b) \frac{t^{m}}{[m]_{q}!} \sum_{n=0}^{\infty} B_{n, q}(x ; \lambda) \frac{t^{n}}{[n]_{q}!} \sum_{r=0}^{\infty} \frac{t^{r}}{[r]_{q}!}\right. \\
& \left.-\sum_{m=0}^{\infty} H \mathscr{P}_{m, q, \beta}^{(\alpha)}(k, a, b) \frac{t^{m}}{[m]_{q}!} \sum_{n=0}^{\infty} B_{n, q}(x ; \lambda) \frac{t^{n}}{[n]_{q}!}\right) . \tag{3.5}
\end{align*}
$$

S. No. Special Explicit representations
 polynomials

$$
{ }_{H} B_{n-v, q, \lambda}^{(\alpha)}(x)=\frac{[v]_{q}![n-v]_{q}!}{[n]_{q}!} \sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q}{ }_{H} B_{l, q, \lambda}^{v-\alpha}(x) S(n-l, v, 1,1, \lambda)
$$

I. GqHABP

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x) \quad{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2} \sum_{m=0}^{n}\left\{\lambda \sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} E_{n-r, q, \lambda}(x)+E_{n-m, q, \lambda}(x)\right\}{ }_{H} B_{m, q, \lambda}^{(\alpha)}
$$

$$
{ }_{H} B_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2[n+1]_{q}}\left\{\lambda \sum_{r=0}^{n+1}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{c}
r \\
m
\end{array}\right]_{q} G_{n+1-r, q, \lambda}(x)-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} G_{n+1-m, q, \lambda}(x)\right\}_{H} B_{m, q, \lambda}^{(\alpha)}
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)=\frac{[v]_{q}!}{2^{v}} \sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l_{l}
\end{array}\right]_{q}{ }_{H} E_{l, q, \lambda}^{v-\alpha}(x) S(n-l, \nu,-1,1, \lambda)
$$

II. GqHAEP

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x) \quad{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2} \sum_{m=0}^{n}\left\{\lambda \sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} E_{n-r, q, \lambda}(x)+E_{n-m, q, \lambda}(x)\right\}{ }_{H} E_{m, q, \lambda}^{(\alpha)}
$$

$$
{ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2[n+1]_{q}}\left\{\lambda \sum_{r=0}^{n+1}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{c}
r \\
m
\end{array}\right]_{q} G_{n+1-r, q, \lambda}(x)-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} G_{n+1-m, q, \lambda}(x)\right\}_{H} E_{m, q, \lambda}^{(\alpha)}
$$

$$
{ }_{H} G_{n-v, q, \lambda}^{(\alpha)}(x)=\frac{[v]_{q}![n-v]_{q}!}{[n]_{q}!} \sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q}{ }_{H} G_{l, q, \lambda}^{v-\alpha}(x) S(n-l, v,-1 / 2,1, \lambda / 2)
$$

III. GqHAGP

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{[n+1]_{q}}\left\{\lambda \sum_{r=0}^{n+1}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{c}
r \\
m
\end{array}\right]_{q} B_{n+1-r, q, \lambda}(x)-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} B_{n+1-m, q, \lambda}(x)\right\} H G_{m, q, \lambda}^{(\alpha)}
$$

${ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)$

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2} \sum_{m=0}^{n}\left\{\lambda \sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} E_{n-r, q, \lambda}(x)+E_{n-m, q, \lambda}(x)\right\}{ }_{H} G_{m, q, \lambda}^{(\alpha)}
$$

$$
{ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)=\frac{1}{2[n+1]_{q}}\left\{\lambda \sum_{r=0}^{r=0}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{l}
r \\
m
\end{array}\right]_{q} G_{n+1-r, q, \lambda}(x)-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} G_{n+1-m, q, \lambda}(x)\right\}{ }_{H} G_{m, q, \lambda}^{(\alpha)}
$$

Table 3. Explicit representations for the $\operatorname{GqHABP}_{H} B_{n, q, \lambda}^{(\alpha)}(x), \operatorname{GqHAEP}_{H} E_{n, q, \lambda}^{(\alpha)}(x)$ and $\operatorname{GqHAGP}_{H} G_{n, q, \lambda}^{(\alpha)}(x)$

Comparing the coefficients of identical powers of t in both sides of equation (3.5) yields assertion (3.3).
Similarly, we can prove the following results:
Corollary 3.4. The following explicit relation for the generalized q-Hermite based Apostol type polynomials $H_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ in terms of the the generalized q-Apostol Euler polynomials $E_{n, q, \lambda}(x)$ holds true:

$$
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)=\frac{1}{2} \sum_{m=0}^{n}\left\{\lambda \sum_{r=0}^{n}\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q} E_{n-r, q, \lambda}(x)+E_{n-m, q, \lambda}(x)\right\}{ }_{H} \mathscr{P}_{m, q, \beta}^{(\alpha)}(k, a, b) .
$$

Corollary 3.5. The following explicit relation for the generalized q-Hermite based Apostol type polynomials ${ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)$ in terms of the generalized q-Apostol Genocchi polynomials $G_{n, q, \lambda}(x)$ holds true:

$$
\begin{aligned}
{ }_{H} \mathscr{P}_{n, q, \beta}^{(\alpha)}(x ; k, a, b)= & \frac{1}{2[n+1]_{q}}\left\{\lambda \sum_{r=0}^{n+1}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]_{q} \sum_{m=0}^{r}\left[\begin{array}{c}
r \\
m
\end{array}\right]_{q} G_{n+1-r, q, \lambda}(x)\right. \\
& \left.-\sum_{m=0}^{n+1}\left[\begin{array}{c}
n+1 \\
m
\end{array}\right]_{q} G_{n+1-m, q, \lambda}(x)\right\}_{H} \mathscr{P}_{m, q, \beta}^{(\alpha)}(k, a, b) .
\end{aligned}
$$

In view of Table 1, ceratin explicit representations for the $\operatorname{GqHABP}_{H} B_{n, q, \lambda}^{(\alpha)}(x), \operatorname{GqHAEP}_{H} E_{n, q, \lambda}^{(\alpha)}(x)$ and GqHAGP ${ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)$ are established and are given in Table 3.

Note. It is to be observed that for $\lambda=1$, the results derived above for the generalized q-Hermite-Apostol Bernoulli polynomials $H_{H} B_{n, q, \lambda}^{(\alpha)}(x)$, the generalized q-Hermite-Apostol Euler polynomials ${ }_{H} E_{n, q, \lambda}^{(\alpha)}(x)$ and generalized q-Hermite-Apostol Genocchi polynomials ${ }_{H} G_{n, q, \lambda}^{(\alpha)}(x)$ gives the analogous results for the generalized q-Hermite Bernoulli polynomials ${ }_{H} B_{n, q}^{(\alpha)}(x)$, the generalized q-Hermite Euler polynomials ${ }_{H} E_{n, q}^{(\alpha)}(x)$ and generalized q-Hermite Genocchi polynomials ${ }_{H} G_{n, q}^{(\alpha)}(x)$.

Acknowledgements

This work has been done under the Senior Research Fellowship (Award letter No. F./2014-15/NFO-2014-15-OBC-UTT-24168/(SA-III/Website)) awarded to the second author by the University Grants Commission, Government of India, New Delhi.

References

${ }^{[1]}$ G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
${ }^{[2]}$ G.E. Andrews, R. Askey, Classical orthogonal polynomials, C. Brenziniski et al. (editors), in "Polynômes Orthogonaux et Applications", Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1171 1984, pp 36-63.
${ }^{[3]}$ N. I. Mahmudov, Difference equations of q-Appell polynomials, Appl. Math. Comput., 245 (2014), 539-543.
${ }^{[4]}$ Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302.
${ }^{[5]}$ Q. M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51(3-4) (2006), 631-642.
${ }^{[6]}$ Q. M. Luo, Apostol Euler polynomials of higher orders and gaussian hypergeometric functions, Taiwanese J. Math., 10 (2006), 917-925.
${ }^{[7]}$ Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genochhi polynomials and the stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702-5728.
${ }^{[8]}$ T. Ernst, On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 68(2) (2015), 27-50.
${ }^{\text {[9] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62(6) (2011), 2452- }}$ 2462.
${ }^{[10]}$ B. Kurt, Notes on unified q-Apostol type polynomials, Filomat, 30 (2016), 921-927.

