Analytical and Solutions of Fourth Order Difference Equations

Marwa M. Alzubaidi1,2* and E. M. Elsayed1,3

Abstract
In this article, we presented the solutions of the following recursive sequences

\[x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n (\pm 1 \pm x_{n-2}x_{n-3})}, \]

where the initial conditions \(x_{-3}, x_{-2}, x_{-1}\) and \(x_0\) are arbitrary real numbers. Also, we studied some dynamic behavior of these equations.

Keywords: Difference equation, Stability, Global attractor, Linearized stability, Periodicity

2010 AMS: P39A10

1. Introduction

Recently, there has been an increasing interest in the study of global behavior of rational difference equations. The reason behind that is because difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations having applications in biology, ecology, physics, etc. See \[1\]. Rational difference equations is an important class of difference equations where they have many applications in real life, for example, the difference equation \(x_{n+1} = a + bx_n c + x_{n-2}\), which is known by Riccati Difference Equation has an application in optics and mathematical biology. For more results of the investigation of the rational difference equation see ([2]-[36]) and the references therein.

Karatas [37] examined the global behavior of higher order difference equation

\[x_{n+1} = \frac{a x_{n-(2k+1)} + b + c x_{n-2k} x_{n-(2k+1)}}{b + c x_{n-2k} x_{n-(2k+1)}}. \]

In [38] Gumus et al. studied behavior of a third order difference equation

\[x_{n+1} = \frac{\alpha x_n}{b + \gamma x_{n-1} x_{n-2}}. \]

Elsayed [39] investigated the global of a higher order rational difference equation

\[x_{n+1} = \frac{a x_n}{b + c x_{n-1} x_{n-2}}. \]
\[x_{n+1} = a + \frac{bx_n + cx_n - l}{dx_n - k}. \]

In [40], Kulenovic has got the global stability, periodic nature and gave the solution of non-linear difference equation

\[x_{n+1} = \frac{\alpha x_n + \beta x_{n-1}}{A + Bx_{n-1}}. \]

Elsayed [41] obtained periodic solution of period two and three of the difference equation

\[x_{n+1} = \alpha + \frac{\beta x_n}{x_{n-1}} + \frac{\gamma y_{n-1}}{x_{n-1}}. \]

Al-Shabi and Abo-Zeid [42] studied the global stability, periodic and boundedness of the positive solutions of the difference equation

\[x_{n+1} = \frac{Ax_{n-2r-1}}{B + Cx_{n-2i}x_{n-2k}}. \]

Amleh and Drymonis [43] investigated the global character of solution of a certain rational difference equation

\[x_{n+1} = \frac{(\alpha x_n + \beta x_n x_{n-1} + \gamma x_{n-1}) x_n}{Ax_n + Bx_n x_{n-1} + Cx_{n-1}}. \]

Nirmaladevi and Karthikeyan [44] studied periodicity solution and the global stability of nonlinear difference equation

\[y_{n+1} = Py_n + Qy_{n-k} + Ry_{n-l} + \frac{by_{n-k}}{dy_{n-k} - ey_{n-l}}. \]

Elsayed and E-Dessoky [45] investigated behavior of the rational difference equation of the fourth order

\[x_{n+1} = \alpha x_n + \frac{bx_n x_{n-2}}{cx_{n-2} + dx_{n-3}}. \]

In this paper we investigate the global asymptotic behavior and the form of the solutions of the solutions of the following recursive sequences

\[x_{n+1} = \frac{x_{n-2x_{n-3}}}{x_{n}(\pm 1 \pm x_{n-2x_{n-3}})}, \]

where the initial conditions \(x_{-3}, x_{-2}, x_{-1}\) and \(x_0\) are arbitrary real numbers.

Here, we will review some of the definitions and theorems used in solving special cases of difference equations:

Definition 1.1. Let \(I\) be some interval of real numbers and let

\[F: I^{k+1} \rightarrow I, \]

be a continuously differentiable function. Then for every set of initial conditions \(x_{-k}, x_{-k+1}, \ldots, x_0 \in I\), the difference equation

\[x_{n+1} = F(x_n, x_{n-1}, x_{n-2}, \ldots, x_{n-k}), \quad n = 0, 1, \ldots, \]

has a unique solution \(\{x_n\}_{n=-k}^{\infty}\).
Definition 1.2. A point $x^* \in I$ is called an equilibrium point of (1.1) if
\[x^* = F(x^*), \]
that is,
\[x_n = x^* \text{ for all } n \geq -k. \]
is a solution of (1.1), or equivalently, x^* is a fixed point of F.

Definition 1.3. (Stability)

Let x^* be an equilibrium point of (1.1).

(i) The equilibrium point x^* of (1.1) is called locally stable if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $\{x_n\}_{n=-k}^\infty$ is a solution of (1.1) and
\[|x_n - x^*| < \varepsilon \text{ for all } n \geq 0. \]

(ii) The equilibrium point x^* of (1.1) is called locally asymptotically stable if it is locally stable, and if there exists $\gamma > 0$ such that if $\{x_n\}_{n=-k}^\infty$ is a solution of (1.1) and
\[|x_n - x^*| + |x_{n-1} - x^*| + \ldots + |x_0 - x^*| < \gamma, \]
then
\[\lim_{n \to \infty} x_n = x^*. \]

(iii) The equilibrium point x^* of (1.1) is called a global attractor if for every solution $\{x_n\}_{n=-k}^\infty$ of (1.1) we have
\[\lim_{n \to \infty} x_n = x^*. \]

(iv) The equilibrium point x^* of (1.1) is called globally asymptotically stable if it is locally stable and global attractor of (1.1).

(v) The equilibrium point x^* of (1.1) is called unstable if x^* is not locally stable.

2. Linearized stability analysis

Suppose that the function F is continuously differentiable in some open neighborhood of an equilibrium point x^*. Let
\[p_i = \frac{\partial F}{\partial u_i}(x^*, x^*, \ldots, x^*) \text{ for } i = 0, 1, \ldots, k, \]
denote the partial derivatives of $F(u_0, u_1, \ldots, u_k)$ evaluated at the equilibrium x^* of (1.1).

Then the equation
\[y_{n+1} = p_0 y_n + p_1 y_{n-1} + \ldots + p_k y_{n-k}, \quad n = 0, 1, \ldots, \]
(2.1)
is called the linearized equation associated of (1.1) about the equilibrium point x^* and the equation
\[\lambda^{k+1} - p_0 \lambda^k - \ldots - p_{k-1} \lambda - p_k = 0, \]
(2.2)
is called the characteristic equation of (2.1) about x^*.

The following result known as the Linear Stability Theorem is very useful in determining the local stability character of the equilibrium point x^* of (1.1).

Theorem 2.1. [46] Assume that p_0, p_2, \ldots, p_k are real numbers such that
\[|p_0| + |p_1| + \ldots + |p_k| < 1, \]
or
\[\sum_{i=1}^{k} |p_i| < 1. \]

Then all roots of (2.2) lie inside the unit disk.
3. Qualitative behavior of solutions of $x_{n+1} = \frac{x_{n-2} - x_{n-3}}{x_n(1 + x_n - x_{n-3})}$

In this part, we study the some qualitative properties for the recursive equation in the form:

$$x_{n+1} = \frac{x_{n-2} - x_{n-3}}{x_n(1 + x_n - x_{n-3})},$$ \hspace{1cm} (3.1)

where the initial values x_{-3}, x_{-2}, x_{-1} and x_0 are arbitrary positive real numbers.

Theorem 3.1. Let $\{x_n\}_{n=-3}^\infty$ be a solution of difference equation (3.1). Then for $n = 0, 1, \ldots$

\[
x_{6n-3} = d \prod_{i=0}^{n-1} \frac{(1 + 2icd)}{(1 + (2i+1)cd)} \frac{(1 + 2iab)}{(1 + (2i+1)ab)} \frac{(1 + (2i+1)bc)}{(1 + 2ibc)},
\]

\[
x_{6n-2} = c \prod_{i=0}^{n-1} \frac{(1 + (2i+1)cd)}{(1 + (2i+1)ab)} \frac{(1 + 2iab)}{(1 + (2i+1)bc)},
\]

\[
x_{6n-1} = b \prod_{i=0}^{n-1} \frac{(1 + (2i+1)cd)}{(1 + (2i+1)ab)} \frac{(1 + 2iab)}{(1 + (2i+2)bc)},
\]

\[
x_{6n} = a \prod_{i=0}^{n-1} \frac{(1 + (2i+1)cd)}{(1 + (2i+2)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)ab)} \frac{(1 + (2i+1)bc)}{(1 + (2i+2)bc)},
\]

\[
x_{6n+1} = \frac{cd}{a(1+cd)} \prod_{i=0}^{n-1} \frac{(1 + (2i+2)cd)}{(1 + (2i+3)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)bc)},
\]

\[
x_{6n+2} = \frac{ab(1+cd)}{d(1+bc)} \prod_{i=0}^{n-1} \frac{(1 + (2i+2)cd)}{(1 + (2i+3)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)ab)} \frac{(1 + (2i+3)bc)}{(1 + (2i+2)bc)},
\]

where $x_{-3} = d, x_{-2} = c, x_{-1} = b, x_0 = a$.

Proof. For $n = 0$, the result holds. Now, assume that $n > 0$ and that our assumption holds for $n - 1$. That is,

\[
x_{6n-3} = d \prod_{i=0}^{n-2} \frac{(1 + 2icd)}{(1 + (2i+1)cd)} \frac{(1 + 2iab)}{(1 + (2i+1)ab)} \frac{(1 + (2i+1)bc)}{(1 + 2ibc)},
\]

\[
x_{6n-2} = c \prod_{i=0}^{n-2} \frac{(1 + (2i+1)cd)}{(1 + (2i+1)ab)} \frac{(1 + 2iab)}{(1 + (2i+1)bc)},
\]

\[
x_{6n-1} = b \prod_{i=0}^{n-2} \frac{(1 + (2i+1)cd)}{(1 + (2i+1)ab)} \frac{(1 + 2iab)}{(1 + (2i+2)bc)},
\]

\[
x_{6n} = a \prod_{i=0}^{n-2} \frac{(1 + (2i+1)cd)}{(1 + (2i+2)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)ab)} \frac{(1 + (2i+1)bc)}{(1 + (2i+2)bc)},
\]

\[
x_{6n+1} = \frac{cd}{a(1+cd)} \prod_{i=0}^{n-2} \frac{(1 + (2i+2)cd)}{(1 + (2i+3)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)bc)},
\]

\[
x_{6n+2} = \frac{ab(1+cd)}{d(1+bc)} \prod_{i=0}^{n-2} \frac{(1 + (2i+2)cd)}{(1 + (2i+3)cd)} \frac{(1 + (2i+1)ab)}{(1 + (2i+2)ab)} \frac{(1 + (2i+3)bc)}{(1 + (2i+2)bc)},
\]

From (3.1) that
we see that

\[
\frac{x_{6n-3}}{x_{6n-4} - x_{6n-6}x_{6n-7}} = ab \prod_{i=0}^{n-2} \left(\frac{1+2i+2+2ab}{1+(2i+3)ab} \right)
\]

or

\[
\frac{x_{6n-3}}{x_{6n-4} - x_{6n-6}x_{6n-7}} = d(1+bc) \prod_{i=0}^{n-2} \left(\frac{1+(2i+1)cd}{1+(2i+2)cd} \right) \prod_{i=0}^{n-2} \left(\frac{1+2i+1+2ab}{1+(2i+3+3)ab} \right)
\]

Therefore it follows that

\[
F_u(u,v,w) = \frac{-vw}{u(1+vw)}, \quad F_v(u,v,w) = \frac{w}{u(1+vw)^2}, \quad F_w(u,v,w) = \frac{v}{u(1+vw)^2},
\]

we see that

\[
F_u(x^*,x^*,x^*) = -1, \quad F_v(x^*,x^*,x^*) = 1, \quad F_w(x^*,x^*,x^*) = 1.
\]

This completes the proof by using Theorem 2.1.

\[\square\]
where the initial conditions

\[x = \begin{cases}
\text{Let } & \text{where } x \\
\text{Numerical Examples} &
\end{cases} \]

Proof. For statement the results of this part, we take into account numerical examples which illustrate different types of solutions to (3.1).

Example 3.3. See Figure 3.1, since \(x_{-3} = 0.12, x_{-2} = 0.16, x_{-1} = 0.9 \) and \(x_0 = 0.6 \).

4. Qualitative behavior of solutions of

\[x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(-1+x_{n-2}x_{n-3})} \]

Here, we obtain the solution of the following difference equation

\[x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(-1+x_{n-2}x_{n-3})}, \quad n = 0, 1, \ldots, \quad (4.1) \]

where the initial conditions \(x_{-3}, x_{-2}, x_{-1} \) and \(x_0 \) are arbitrary real numbers with \(x_{-2}x_{-3} \neq 1, x_{-1}x_{-2} \neq 1 \) and \(x_0x_{-1} \neq 1 \).

Theorem 4.1. Let \(\{x_n\}_{n=-3}^{\infty} \) be a solution of difference equation of (4.1). Then the equation (4.1) has unboundedness solutions and for \(n = 0, 1, \ldots \)

\[x_{6n-3} = \frac{d(-1+bc)^n}{(-1+cd)^n\quad (-1+ab)^n}, \quad x_{6n-2} = \frac{c(-1+cd)^n\quad (-1+ab)^n}{(-1+bc)^n}, \quad (4.2) \]

\[x_{6n-1} = \frac{b(-1+bc)^n}{(-1+cd)^n\quad (-1+ab)^n}, \quad x_{6n} = \frac{a(-1+cd)^n\quad (-1+ab)^n}{(-1+bc)^n}, \]

\[x_{6n+1} = \frac{cd(-1+bc)^n}{a(-1+ab)^n\quad (-1+cd)^{n+1}}, \quad x_{6n+2} = \frac{ab(-1+cd)^{n+1}\quad (-1+ab)^n}{d(-1+bc)^{n+1}}, \]

where \(x_{-3} = d, x_{-2} = c, x_{-1} = b \) and \(x_0 = a \).

Proof. For \(n = 0 \) the conclusion holds. Now, assume that \(n > 0 \) and that our assumption holds for \(n - 1 \). That is,

\[x_{6n-9} = \frac{d(-1+bc)^{n-1}}{(-1+cd)^{n-1}\quad (-1+ab)^{n-1}}, \quad x_{6n-8} = \frac{c(-1+cd)^{n-1}\quad (-1+ab)^{n-1}}{(-1+bc)^{n-1}}, \]

\[x_{6n-7} = \frac{b(-1+bc)^{n-1}}{(-1+cd)^{n-1}\quad (-1+ab)^{n-1}}, \quad x_{6n-6} = \frac{a(-1+cd)^{n-1}\quad (-1+ab)^{n-1}}{(-1+bc)^{n-1}}, \]

\[x_{6n-5} = \frac{cd(-1+bc)^{n-1}}{a(-1+ab)^{n-1}\quad (-1+cd)^n}, \quad x_{6n-4} = \frac{ab(-1+cd)^n\quad (-1+ab)^{n-1}}{d(-1+bc)^n}. \]

Now we proof some of relations of (4.2).
Also, \[x_{6n-1} = \frac{x_{6n-4}x_{6n-5}}{x_{6n-2} (1 + x_{6n-3}x_{6n-4})} = \frac{c (-1 + cd)^{n-1} (-1 + ab)^n}{(1 + bc)^n (-1 + cd)^{-1} (1 + ab)^n}. \]

Similarly, other relations can be obtained and thus, the proof has been proved.

\[\square \]

Theorem 4.2. The difference equation (4.1) has a periodic solution of periodic six iff \(ab = 2 \) and \(b = d \) and we will take the form:

\[\{ d, c, b, a, \frac{cd}{a(1 + cd)}, \frac{ab}{d}, \frac{ab}{d}, \frac{ab}{d}, \ldots \}. \]

Proof. Assume that there exists a prime period six solution of (4.1):

\[d, c, b, a, \frac{cd}{a(1 + cd)}, \frac{ab}{d}, \frac{cd}{a(1 + cd)}, \frac{ab}{d}, \ldots. \]

From (4.2), we get

\[\begin{align*}
 x_{6n-3} &= \frac{d (-1 + bc)^n}{(1 + cd)^n (-1 + ab)^n}, & x_{6n-2} &= c = \frac{c (-1 + cd)^n (-1 + ab)^n}{(1 + cd)^n}, \\
 x_{6n-1} &= \frac{b (-1 + bc)^n}{(1 + cd)^n (-1 + ab)^n}, & x_{6n} &= a = \frac{a (-1 + cd)^n (-1 + ab)^n}{(1 + cd)^n}, \\
 x_{6n+1} &= \frac{cd}{a(1 + cd)} = \frac{cd (-1 + bc)^n}{a(-1 + ab)^n (-1 + cd)^{n+1}}, & x_{6n+2} &= \frac{ab}{d} = \frac{ab (-1 + cd)^{n+1} (-1 + ab)^n}{d(-1 + bc)^{n+1}}.
\end{align*} \]

Then we can see that

\[ab = 2 \text{ and } b = d. \]
Conversely, suppose that \(ab = 2 \) and \(b = d \). Then we see that

\[
\begin{align*}
 x_{6n-3} &= \frac{d(-1+bc)^n}{(-1+cd)^n(-1+ab)^n} = \frac{d(-1+cd)^n}{(-1+cd)^n(-1+2)^n} = d, \\
 x_{6n-2} &= \frac{c(-1+cd)^n(-1+ab)^n}{(-1+bc)^n} = \frac{c(-1+cd)^n(-1+2)^n}{(-1+cd)^n} = c, \\
 x_{6n-1} &= \frac{b(-1+bc)^n}{(-1+cd)^n(-1+ab)^n} = \frac{b(-1+cd)^n}{(-1+cd)^n(-1+2)^n} = b, \\
 x_{6n} &= \frac{a(-1+cd)^n(-1+ab)^n}{(-1+bc)^n} = a, \\
 x_{6n+1} &= \frac{cd(-1+bc)^n}{a(-1+ab)^n(-1+cd)^n+1} = \frac{cd}{a(-1+cd)} = c, \\
 x_{6n+2} &= \frac{ab(-1+cd)^n+1(-1+ab)^n}{d(-1+bc)^n+1} = \frac{ab}{d}.
\end{align*}
\]

Thus we obtained a periodic solution of period six.

Theorem 4.3. Equation \((4.1)\) has a periodic solution of period two if and only if \(ab = bc = cd = 2 \) (It also means \(a = c, b = d \)) and we will take the form:

\[\{d, c, d, c, \ldots \}. \]

Proof. First assume that there exists a prime period two solution of \((4.1)\):

\[d, c, d, c, \ldots. \]

We see from the form of the solutions of \((4.1)\) that

\[
\begin{align*}
 x_{6n-3} &= d = \frac{d(-1+bc)^n}{(-1+cd)^n(-1+ab)^n}, \\
 x_{6n-2} &= c = \frac{c(-1+cd)^n(-1+ab)^n}{(-1+bc)^n}, \\
 x_{6n-1} &= b = \frac{b(-1+bc)^n}{(-1+cd)^n(-1+ab)^n}, \\
 x_{6n} &= a = \frac{a(-1+cd)^n(-1+ab)^n}{(-1+bc)^n}, \\
 x_{6n+1} &= \frac{cd(-1+bc)^n}{a(-1+ab)^n(-1+cd)^n+1}, \\
 x_{6n+2} &= \frac{ab(-1+cd)^n+1(-1+ab)^n}{d(-1+bc)^n+1}.
\end{align*}
\]

Thus we see that \(ab = bc = cd = 2 \).

Second suppose that \(ab = bc = cd = 2 \). Then we obtain

\[
\begin{align*}
 x_{6n-3} &= \frac{d(-1+bc)^n}{(-1+cd)^n(-1+ab)^n} = \frac{d(-1+2)^n}{(-1+2)^n(-1+2)^n} = d, \\
 x_{6n-2} &= \frac{c(-1+cd)^n(-1+ab)^n}{(-1+bc)^n} = \frac{c(-1+2)^n(-1+2)^n}{(-1+2)^n} = c, \\
 x_{6n-1} &= \frac{b(-1+bc)^n}{(-1+cd)^n(-1+ab)^n} = \frac{b(-1+2)^n}{(-1+2)^n(-1+2)^n} = d, \\
 x_{6n} &= \frac{a(-1+cd)^n(-1+ab)^n}{(-1+bc)^n} = a, \\
 x_{6n+1} &= \frac{cd(-1+bc)^n}{a(-1+ab)^n(-1+cd)^n+1} = d, \\
 x_{6n+2} &= \frac{ab(-1+cd)^n+1(-1+ab)^n}{d(-1+bc)^n+1} = c.
\end{align*}
\]

Thus we obtained a periodic solution of period two.
Theorem 4.4. Difference equation (4.1) has equilibrium points which are $0, \pm \sqrt{2}$ such that they are not locally asymptotically stable.

Proof. We can write

$$x^* = \frac{x^2}{x^* (-1 + x^2)}, \quad \text{or} \quad x^2 (x^2 - 2) = 0,$$

consequently $0, \pm \sqrt{2}$ are the equilibrium points.

Suppose that $F : (0, \infty)^3 \rightarrow (0, \infty)$ be function defined by

$$F(u, v, w) = \frac{vw}{u(-1 + vw)},$$

then

$$F_u(u, v, w) = \frac{-vw}{u^2(-1 + vw)}, \quad F_v(u, v, w) = \frac{-w}{u(-1 + vw)^2}, \quad F_w(u, v, w) = \frac{-v}{u(-1 + vw)^2},$$

we see that,

$$F_u(x^*, x^*, x^*) = -1, \quad F_v(x^*, x^*, x^*) = -1, \quad F_w(x^*, x^*, x^*) = -1.$$

This completes the proof by using Theorem 2.1.

Numerical Examples

We put some numerical examples which illustrate different types of solutions of (4.1).

Example 4.5. When we put $x_{-3} = 5, x_{-2} = 2/5, x_{-1} = 5$ and $x_0 = 2/5$. See Figure 4.1.

5. Qualitative behavior of solutions of $x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(1-x_{n-2}x_{n-3})}$

In this section, we get the expressions of the solution of the difference equation in the form:

$$x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(1-x_{n-2}x_{n-3})}, \quad n = 0, 1, \ldots,$$

(5.1)

where the initial conditions x_{-3}, x_{-2}, x_{-1} and x_0 are arbitrary real numbers.

Theorem 5.1. Let $\{x_n\}_{n=-3}^\infty$ be a solution of the difference equation of (5.1). Then for $n = 0, 1, \ldots$
Theorem 5.2. Equation (5.1) has a unique equilibrium point which is 0 and it is not locally asymptotically stable.

Example 5.3. See Figure 5.1, we let \(x_{-3} = 5 \), \(x_{-2} = 1.8 \), \(x_{-1} = 9 \) and \(x_0 = 2.5 \).

6. Qualitative behavior of solutions of \(x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(-1-x_{n-2}x_{n-3})} \)

In this part, we obtain the form of solution of the following difference equation

\[
x_{n+1} = \frac{x_{n-2}x_{n-3}}{x_n(-1-x_{n-2}x_{n-3})}, \quad n = 0, 1, \ldots,
\]

where the initial conditions \(x_{-3}, x_{-2}, x_{-1} \) and \(x_0 \) are arbitrary real numbers with \(x_{-2}x_{-3} \neq -1, x_{-1}x_{-2} \neq -1 \) and \(x_0x_{-1} \neq -1 \).

Theorem 6.1. Let \(\{x_n\}_{n=-3}^{\infty} \) be a solution of (6.1). Then (6.1) has the following solution for \(n = 0, 1, \ldots \)

\[
x_{6n-3} = \frac{d(-1-bc)^n}{(-1-cd)(-1-ab)^n}, \quad x_{6n-2} = \frac{c(-1-bc)^n(-1-ab)^n}{(-1-cd)^n},
\]

\[
x_{6n-1} = \frac{b(-1-bc)^n}{(-1-cd)(-1-ab)^n}, \quad x_{6n} = \frac{a(-1-bc)^n(-1-ab)^n}{(-1-cd)^n},
\]

\[
x_{6n+1} = \frac{cd(-1-bc)^n}{a(-1-ab)^n(-1-cd)^n+1}, \quad x_{6n+2} = \frac{ab(-1-cd)^n(-1-ab)^n}{d(-1-bc)^{n+1}}.
\]

Theorem 6.2. Difference equation (6.1) has a periodic solution of period six iff \(ab = -2 \) and \(b = d \) and we will take the form:

\[
\left\{ \frac{cd}{a(-1-cd)} \cdot \frac{ab}{d}, \frac{cd}{a(-1-cd)} \cdot \frac{ab}{d}, \ldots \right\}.
\]
Theorem 6.3. Equation (6.1) has a periodic solution of period two iff \(ab = bc = cd = -2 \) and takes the form: \(\{d, c, d, c, \ldots\} \).

Theorem 6.4. Difference equation (6.1) has equilibrium point which is 0 and it is not locally asymptotically stable.

Example 6.5. Figure 6.1 shows the period six solutions of (6.1) since \(x_{-3} = -8 \), \(x_{-2} = 5 \), \(x_{-1} = -8 \) and \(x_0 = 1/4 \).

Acknowledgements

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University. The authors, therefore, acknowledge with thanks to DSR technical and financial support.

References

[20] M. Erdogan, K. Uslu, Behavior of a Nonlinear Difference Equation $x_{n+1} = \frac{1-x_n}{A + \sum_{i=1}^{k} x_{n-i}}$, Journal of Life Sciences, 10 (2016), 215-219.
[36] E. M. E. Zayed, Qualitative behavior of the rational recursive sequence $x_{n+1} = Ax_n + Bx_{n-k} + \frac{p + x_{n-k}}{q + x_{n-k}}$, Inter. J. Adv. Math., 1 (1) (2014), 44-55.

