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Abstract
In this article, we presented the solutions of the following recursive sequences

xn+1 =
xn−2xn−3

xn(±1± xn−2xn−3)
,

where the initial conditions x−3 ,x−2 ,x−1 and x0 are arbitrary real numbers. Also, we studied some dynamic
behavior of these equations.
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1. Introduction
Recently, there has been an increasing interest in the study of global behavior of rational difference equations. The reason
behind that is because difference equations appear naturally as discrete analogues and as numerical solutions of differential and
delay differential equations having applications in biology, ecology, physics, etc. See [1]. Rational difference equations is an
important class of difference equations where they have many applications in real life, for example, the difference equation
xn+1 =

a+bxn
c+xn

, which is known by Riccati Difference Equation has an application in optics and mathematical biology. For more
results of the investigation of the rational difference equation see ([2]-[36]) and the references therein.

Karatas [37] examined the global behavior of higher order difference equation

xn+1 =
axn−(2k+1)

b+ cxn−2kxn−(2k+1)
.

In [38] Gumus et al. studied behavior of a third order difference equation

xn+1 =
αxn

β + γxp
n−1xq

n−2
.

Elsayed [39] investigated the global of a higher order rational difference equation
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xn+1 = a+
bxn−l + cxn−k

dxn−l + exn−k
.

In [40], Kulenovic has got the global stability, periodic nature and gave the solution of non-linear difference equation

xn+1 =
αxn +βxn−1

A+Bxn−1
.

Elsayed [41] obtained periodic solution of period two and three of the difference equation

xn+1 = α +
βxn

xn−1
+

γxn−1

xn
.

Al-Shabi and Abo-Zeid [42] studied the global stability, periodic and boundedness of the positive solutions of the difference
equation

xn+1 =
Axn−2r−1

B+Cxn−2lxn−2k
.

Amleh and Drymonis [43] investigated the global character of solution of a certain rational difference equation

xn+1 =
(αxn +βxnxn−1 + γxn−1)xn

Axn +Bxnxn−1 +Cxn−1
.

Nirmaladevi and Karthikeyan [44] studied periodicity solution and the global stability of nonlinear difference equation

yn+1 = Pyn +Qyn−k +Ryn−l +
byn−k

dyn−k− eyn−l
.

Elsayed and El-Dessoky [45] investigated behavior of the rational difference equation of the fourth order

xn+1 = axn +
bxnxn−2

cxn−2 +dxn−3
.

In this paper we investigate the global asymptotic behavior and the form of the solutions of the solutions of the following
recursive sequences

xn+1 =
xn−2xn−3

xn(±1± xn−2xn−3)
,

where the initial conditions x−3, x−2 ,x−1 and x0 are arbitrary real numbers.
Here, we will review some of the definitions and theorems used in solving special cases of difference equations:

Definition 1.1. Let I be some interval of real numbers and let

F : Ik+1→ I,

be a continuously differentiable function. Then for every set of initial condition x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = F(xn,xn−1,xn−2, ...,xn−k), n = 0,1, ..., (1.1)

has a unique solution {xn}∞
n=−k.
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Definition 1.2. A point x∗ ∈ I is called an equilibrium point of (1.1) if

x∗ = F(x∗),

that is,

xn = x∗ f or all n≥−k.

is a solution of (1.1), or equivalently, x∗ is a fixed point of F.

Definition 1.3. (Stability)
Let x∗ be an equilibrium point of (1.1).
(i) The equilibrium point x∗ of (1.1) is called locally stable if for every ε > 0, there exists δ > 0 such that for all {xn}∞

n=−k
is a solution of (1.1) and

|x−k− x∗|+ |x1−k− x∗|+ ...+ |x0− x∗|< δ ,

then

|xn− x∗|< ε f or all n≥ 0.

(ii) The equilibrium point x∗ of (1.1) is called locally asymptotically stable if it is locally stable, and if there exists γ > 0
such that if {xn}∞

n=−k is a solution of (1.1) and

|x−k− x∗|+ |x−k+1− x∗|+ ...+ |x0− x∗|< γ,

then

lim
n→∞

xn = x∗.

(iii) The equilibrium point x∗ of (1.1) is called a global attractor if for every solution {xn}∞
n=−k of (1.1) we have

lim
n→∞

xn = x∗

(iv) The equilibrium point x∗ of (1.1) is called globally asymptotically stable if it is locally stable and global attractor of
(1.1).

(v) The equilibrium point x∗ of (1.1) is called unstable if x∗ is not locally stable.

2. Linearized stability analysis
Suppose that the function F is continuously differentiable in some open neighborhood of an equilibrium point x∗. Let

pi =
∂F
∂ui

(x∗,x∗, ...,x∗) f or i = 0,1, ...,k,

denote the partial derivatives of F(u0,u1, ....uk) evaluated at the equilibrium x∗ of (1.1).
Then the equation

yn+1 = p0yn + p1yn−1 + ...+ pkyn−k , n = 0,1, ..., (2.1)

is called the linearized equation associated of (1.1) about the equilibrium point x∗ and the equation

λ
k+1− p0λ

k− ...− pk−1λ − pk = 0, (2.2)

is called the characteristic equation of (2.1) about x∗.
The following result known as the Linear Stability Theorem is very useful in determining the local stability character of the

equilibrium point x∗ of (1.1).

Theorem 2.1. [46] Assume that p0, p2, ..., pk are real numbers such that

|p0|+ |p1|+ ...+ |pk|< 1,

or
k

∑
i=1
|pi|< 1.

Then all roots of (2.2) lie inside the unit disk.
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3. Qualitative behavior of solutions of xn+1=
xn−2xn−3

xn(1+xn−2xn−3)

In this part, we study the some qualitative properties for the recursive equation in the form:

xn+1 =
xn−2xn−3

xn(1+ xn−2xn−3)
, (3.1)

where the initial values x−3, x−2, x−1 and x0 are arbitrary positive real numbers.

Theorem 3.1. Let {xn}∞
n=−3 be a solution of difference equation (3.1). Then for n = 0,1, ...

x6n−3 = d
n−1

∏
i=0

(1+2icd)
(1+(2i+1)cd)

(1+2iab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+2ibc)

,

x6n−2 = c
n−1

∏
i=0

(1+(2i+1)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+2iab)

(1+2ibc)
(1+(2i+1)bc)

,

x6n−1 = b
n−1

∏
i=0

(1+(2i+2)cd)
(1+(2i+1)cd)

(1+2iab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+(2i+2)bc)

,

x6n = a
n−1

∏
i=0

(1+(2i+1)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+(2i+2)ab)

(1+(2i+2)bc)
(1+(2i+1)bc)

,

x6n+1 =
cd

a(1+ cd)

n−1

∏
i=0

(1+(2i+2)cd)
(1+(2i+3)cd)

(1+(2i+2)ab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+(2i+2)bc)

,

x6n+2 =
ab(1+ cd)
d(1+bc)

n−1

∏
i=0

(1+(2i+3)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+(2i+2)ab)

(1+(2i+2)bc)
(1+(2i+3)bc)

,

where x−3 = d,x−2 = c,x−1 = b,x0 = a.

Proof. For n = 0, the result holds. Now, assume that n > 0 and that our assumption holds for n−1. That is,

x6n−9 = d
n−2

∏
i=0

(1+2icd)
(1+(2i+1)cd)

(1+2iab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+2ibc)

,

x6n−8 = c
n−2

∏
i=0

(1+(2i+1)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+2iab)

(1+2ibc)
(1+(2i+1)bc)

,

x6n−7 = b
n−2

∏
i=0

(1+(2i+2)cd)
(1+(2i+1)cd)

(1+2iab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+(2i+2)bc)

,

x6n−6 = a
n−2

∏
i=0

(1+(2i+1)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+(2i+2)ab)

(1+(2i+2)bc)
(1+(2i+1)bc)

,

x6n−5 =
cd

a(1+ cd)

n−2

∏
i=0

(1+(2i+2)cd)
(1+(2i+3)cd)

(1+(2i+2)ab)
(1+(2i+1)ab)

(1+(2i+1)bc)
(1+(2i+2)bc)

,

x6n−4 =
ab(1+ cd)
d(1+bc)

n−2

∏
i=0

(1+(2i+3)cd)
(1+(2i+2)cd)

(1+(2i+1)ab)
(1+(2i+2)ab)

(1+(2i+2)bc)
(1+(2i+3)bc)

.

From (3.1) that
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x6n−3 =
x6n−6x6n−7

x6n−4 (1+ x6n−6x6n−7)

=

ab
n−2

∏
i=0

(
1+2iab

1+(2i+2)ab

)
ab(1+cd)
d(1+bc)

n−2

∏
i=0

(
1+(2i+3)cd
1+(2i+2)cd

)(
1+(2i+1)ab
1+(2i+2)ab

)(
1+(2i+2)bc
1+(2i+3)bc

)(
1+ab

n−2

∏
i=0

(
1+2iab

1+(2i+2)ab

))

=
d(1+bc)
(1+ cd)

[
(1+2ab)(1+4ab)...(1+(2n−6)ab)(1+2(n−2)ab)
(1+2ab)(1+4ab)...(1+(2n−4)ab(1+(2n−2)ab)

]
n−2

∏
i=0

(
1+(2i+3)cd
1+(2i+2)cd

)(
1+(2i+1)ab
1+(2i+2)ab

)(
1+(2i+2)bc
1+(2i+3)bc

)(
1+ ab

1+(2n−2)ab

)

= d

(
1

1+(2n−2)ab

)
n−1

∏
i=0

(
1+(2i+1)cd

1+2icd

)(
1+2ibc

1+(2i+1)bc

)n−2

∏
i=0

(
1+(2i+1)ab
1+(2i+2)ab

)(
1+(2n−1)ab
1+(2n−2)ab

)
=

d

(1+(2n−1)ab)
n−1

∏
i=0

(
1+(2i+1)cd

1+2icd

)(
1+2ibc

1+(2i+1)bc

)n−2

∏
i=0

(
1+(2i+1)ab
1+(2i+2)ab

)
=

d
n−1

∏
i=0

(
1+(2i+1)cd

1+2icd

)(
1+2ibc

1+(2i+1)bc

)(
1+(2i+1)ab

1+2iab

) .
Consequently, we have

x6n−3 = d
n−1

∏
i=0

(
1+2icd

1+(2i+1)cd

)(
1+2iab

1+(2i+1)ab

)(
1+(2i+1)bc

1+2ibc

)
.

Similarly, other relations can be obtained and thus, the proof has been proved.

Theorem 3.2. The difference equation (3.1) has a unique equilibrium point which is 0 and it is not locally asymptotically
stable.

Proof. For the equilibrium points of (3.1), is given by

x∗ =
x∗

2

x∗
(
1+ x∗2

) ,
1+ x∗

2
= 1,

or

x∗
2
= 0.

Then the unique equilibrium point is x∗ = 0.
Let F be function defined by

F(u,v,w) =
vw

u(1+ vw)
.

Therefore it follows that

Fu(u,v,w) =
−vw

u2(1+ vw)
, Fv(u,v,w) =

w
u(1+ vw)2 , Fw(u,v,w) =

v
u(1+ vw)2 ,

we see that

Fu(x∗,x∗,x∗) =−1, Fv(x∗,x∗,x∗) = 1, Fw(x∗,x∗,x∗) = 1.

This completes the proof by using Theorem 2.1.
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Figure 3.1. Plot of x(n+1) = x(n−2)x(n−3)
x(n)(1+x(n−2)x(n−3))

Numerical Examples
For statement the results of this part, we take into account numerical examples which illustrate different types of solutions

to (3.1).

Example 3.3. See Figure 3.1, since x−3 = 0.12, x−2 = 0.16, x−1 = 0.9 and x0 = 0.6.

4. Qualitative behavior of solutions of xn+1 =
xn−2xn−3

xn(−1+xn−2xn−3)

Here, we obtain the solution of the following difference equation

xn+1 =
xn−2xn−3

xn(−1+ xn−2xn−3)
, n = 0,1, ..., (4.1)

where the initial conditions x−3, x−2, x−1 and x0.are arbitrary real numbers with x−2x−3 6= 1, x−1x−2 6= 1 and x0x−1 6= 1.

Theorem 4.1. Let {xn}∞
n=−3 be a solution of difference equation of (4.1). Then the equation (4.1) has unboundedness solutions

and for n = 0,1, ...

x6n−3 =
d (−1+bc)n

(−1+ cd)n (−1+ab)n , x6n−2 =
c(−1+ cd)n (−1+ab)n

(−1+bc)n , (4.2)

x6n−1 =
b(−1+bc)n

(−1+ cd)n (−1+ab)n , x6n =
a(−1+ cd)n (−1+ab)n

(−1+bc)n ,

x6n+1 =
cd (−1+bc)n

a(−1+ab)n (−1+ cd)n+1 , x6n+2 =
ab(−1+ cd)n+1 (−1+ab)n

d (−1+bc)n+1 ,

where x−3 = d, x−2 = c, x−1 = b and x0 = a.

Proof. For n = 0 the conclusion holds. Now, assume that n > 0 and that our assumption holds for n−1. That is,

x6n−9 =
d (−1+bc)n−1

(−1+ cd)n−1 (−1+ab)n−1 , x6n−8 =
c(−1+ cd)n−1 (−1+ab)n−1

(−1+bc)n−1 ,

x6n−7 =
b(−1+bc)n−1

(−1+ cd)n−1 (−1+ab)n−1 , x6n−6 =
a(−1+ cd)n−1 (−1+ab)n−1

(−1+bc)n−1 ,

x6n−5 =
cd (−1+bc)n−1

a(−1+ab)n−1 (−1+ cd)n , x6n−4 =
ab(−1+ cd)n (−1+ab)n−1

d (−1+bc)n .

Now we proof some of relations of (4.2).
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x6n−2 =
x6n−5x6n−6

x6n−3 (−1+ x6n−5x6n−6)
=

(cd)(−1+ cd)−1

d(−1+bc)n

(−1+cd)n(−1+ab)n

(
−1+ cd (−1+ cd)−1

)
=

c(−1+ cd)n−1 (−1+ab)n

(−1+bc)n
(
−1+ cd

(−1+cd)

) =
c(−1+ cd)n (−1+ab)n

(−1+bc)n .

Also,

x6n−1 =
x6n−4x6n−5

x6n−2 (−1+ x6n−4x6n−5)

=

(
bc(−1+bc)n−1

)
l (−1+bc)n

(c(−1+ cd)n(−1+ab)n/(−1+bc)n)
(
−1+ bc

−1+bc

)
=

b(−1+bc)n−1

(−1+ cd)n (−1+ab)n ( 1
−1+bc

) = b(−1+bc)n

(−1+ cd)n (−1+ab)n .

Similarly, other relations can be obtained and thus, the proof has been proved.

Theorem 4.2. The difference equation (4.1) has a periodic solution of periodic six iff ab = 2 and b = d and we will take the
form:

{
d,c,b,a,

cd
a(−1+ cd)

,
ab
d
,d,c,b,a,

cd
a(−1+ cd)

,
ab
d
, ...

}
.

Proof. Assume that there exists a prime period six solution of (4.1):

d,c,b,a,
cd

a(−1+ cd)
,

ab
d
,d,c,b,a,

cd
a(−1+ cd)

,
ab
d
, ... .

From (4.2), we get

x6n−3 = d =
d (−1+bc)n

(−1+ cd)n (−1+ab)n , x6n−2 = c =
c(−1+ cd)n (−1+ab)n

(−1+bc)n ,

x6n−1 = b =
b(−1+bc)n

(−1+ cd)n (−1+ab)n , x6n = a =
a(−1+ cd)n (−1+ab)n

(−1+bc)n ,

x6n+1 =
cd

a(−1+ cd)
=

cd (−1+bc)n

a(−1+ab)n (−1+ cd)n+1 ,

x6n+2 =
ab
d

=
ab(−1+ cd)n+1 (−1+ab)n

d (−1+bc)n+1 .

Then we can see that

ab = 2 and b = d.
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Conversely, suppose that ab = 2 and b = d. Then we see that

x6n−3 =
d (−1+bc)n

(−1+ cd)n (−1+ab)n =
d (−1+ cd)n

(−1+ cd)n (−1+2)n = d,

x6n−2 =
c(−1+ cd)n (−1+ab)n

(−1+bc)n =
c(−1+ cd)n (−1+2)n

(−1+ cd)n = c,

x6n−1 =
b(−1+bc)n

(−1+ cd)n (−1+ab)n =
b(−1+ cd)n

(−1+ cd)n (−1+2)n = b,

x6n =
a(−1+ cd)n (−1+ab)n

(−1+bc)n = a,

x6n+1 =
cd (−1+bc)n

a(−1+ab)n (−1+ cd)n+1 =
cd

a(−1+ cd)
,

x6n+2 =
ab(−1+ cd)n+1 (−1+ab)n

d (−1+bc)n+1 =
ab
d
.

Thus we obtained a periodic solution of period six.

Theorem 4.3. Equation (4.1) has a periodic solution of period two iff ab = bc = cd = 2 ( It also means a = c, b = d) and we
will take the form:

{d,c,d,c, ...} .

Proof. First assume that there exists a prime period two solution of (4.1):

d,c,d,c, ... .

We see from the form of the solutions of (4.1) that

x6n−3 = d =
d (−1+bc)n

(−1+ cd)n (−1+ab)n , x6n−2 = c =
c(−1+ cd)n (−1+ab)n

(−1+bc)n ,

x6n−1 = d =
b(−1+bc)n

(−1+ cd)n (−1+ab)n , x6n = c =
a(−1+ cd)n (−1+ab)n

(−1+bc)n ,

x6n+1 = d =
cd (−1+bc)n

a(−1+ab)n (−1+ cd)n+1 , x6n+2 = c =
ab(−1+ cd)n+1 (−1+ab)n

d (−1+bc)n+1 .

Thus we see that ab = bc = cd = 2.
Second suppose that ab = bc = cd = 2. Then we obtain

x6n−3 =
d (−1+bc)n

(−1+ cd)n (−1+ab)n =
d (−1+2)n

(−1+2)n (−1+2)n = d,

x6n−2 =
c(−1+ cd)n (−1+ab)n

(−1+bc)n =
c(−1+2)n (−1+2)n

(−1+2)n = c,

x6n−1 =
b(−1+bc)n

(−1+ cd)n (−1+ab)n =
b(−1+2)n

(−1+2)n (−1+2)n = d,

x6n =
a(−1+ cd)n (−1+ab)n

(−1+bc)n = c,

x6n+1 =
cd (−1+bc)n

a(−1+ab)n (−1+ cd)n+1 = d,

x6n+2 =
ab(−1+ cd)n+1 (−1+ab)n

d (−1+bc)n+1 = c.

Thus we obtained a periodic solution of period two.
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Figure 4.1. Plot of x(n+1) = x(n−2)x(n−3)
x(n)(−1+x(n−2)x(n−3))

Theorem 4.4. Difference equation (4.1) has equilibrium points which are 0,±
√

2 such that they are not locally asymptotically
stable.

Proof. We can write

x∗ =
x∗

2

x∗
(
−1+ x∗2

) , or x∗2
(
x∗2−2

)
= 0,

consequently 0,±
√

2 are the equilibrium points.
Suppose that F : (0,∞)3→ (0,∞) be function defined by

F(u,v,w) =
vw

u(−1+ vw)
,

then

Fu(u,v,w) =
−vw

u2(−1+ vw)
, Fv(u,v,w) =

−w
u(−1+ vw)2 , Fw(u,v,w) =

−v
u(−1+ vw)2 ,

we see that,

Fu(x∗,x∗,x∗) =−1, Fv(x∗,x∗,x∗) =−1, Fw(x∗,x∗,x∗) =−1.

This completes the proof by using Theorem 2.1.

Numerical Examples
We put some numerical examples which illustrate different types of solutions of (4.1).

Example 4.5. When we put x−3 = 5, x−2 = 2/5, x−1 = 5 and x0 = 2/5. See Figure 4.1.

5. Qualitative behavior of solutions of xn+1=
xn−2xn−3

xn(1−xn−2xn−3)

In this section, we get the expressions of the solution of the difference equation in the form:

xn+1 =
xn−2xn−3

xn(1− xn−2xn−3)
, n = 0,1, ..., (5.1)

where the initial conditions x−3, x−2, x−1 and x0 are arbitrary real numbers.

Theorem 5.1. Let {xn}∞
n=−3 be a solution of the difference equation of (5.1). Then for n = 0,1, ...
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Figure 5.1. Plot of x(n+1) = x(n−2)x(n−3)
x(n)(1−x(n−2)x(n−3))

x6n−3 = d
n−1

∏
i=0

(1−2icd)
(1− (2i+1)cd)

(1−2iab)
(1− (2i+1)ab)

(1− (2i+1)bc)
(1−2ibc)

,

x6n−2 = c
n−1

∏
i=0

(1− (2i+1)cd)
(1− (2i+2)cd)

(1− (2i+1)ab)
(1−2iab)

(1−2ibc)
(1− (2i+1)bc)

,

x6n−1 = b
n−1

∏
i=0

(1− (2i+2)cd)
(1− (2i+1)cd)

(1−2iab)
(1− (2i+1)ab)

(1− (2i+1)bc)
(1− (2i+2)bc)

,

x6n = a
n−1

∏
i=0

(1− (2i+1)cd)
(1− (2i+2)cd)

(1− (2i+1)ab)
(1− (2i+2)ab)

(1− (2i+2)bc)
(1− (2i+1)bc)

,

x6n+1 =
cd

a(1− cd)

n−1

∏
i=0

(1− (2i+2)cd)
(1+(2i+3)cd)

(1− (2i+2)ab)
(1+(2i+1)ab)

(1− (2i+1)bc)
(1+(2i+2)bc)

,

x6n+2 =
ab(1− cd)
d(1−bc)

n−1

∏
i=0

(1− (2i+3)cd)
(1− (2i+2)cd)

(1− (2i+1)ab)
(1− (2i+2)ab)

(1− (2i+2)bc)
(1− (2i+3)bc)

.

Theorem 5.2. Equation (5.1) has a unique equilibrium point which is 0 and it is not locally asymptotically stable.

Example 5.3. See Figure 5.1, we let x−3 = 5, x−2 = 1.8, x−1 = 9 and x−0 = 2.5.

6. Qualitative behavior of solutions of xn+1=
xn−2xn−3

xn(−1−xn−2xn−3)

In this part, we obtain the form of solution of the following difference equation

xn+1 =
xn−2xn−3

xn(−1− xn−2xn−3)
, n = 0,1, ..., (6.1)

where the initial conditions x−3, x−2, x−1 and x0 are arbitrary real numbers with x−2x−3 6=−1, x−1x−2 6=−1 and x0x−1 6=−1.

Theorem 6.1. Let {xn}∞
n=−3 be a solution of (6.1). Then (6.1) has the following solution for n = 0,1, ...

x6n−3 =
d (−1−bc)n

(−1− cd)n (−1−ab)n , x6n−2 =
c(−1− cd)n (−1−ab)n

(−1−bc)n ,

x6n−1 =
b(−1−bc)n

(−1− cd)n (−1−ab)n , x6n =
a(−1− cd)n (−1−ab)n

(−1−bc)n ,

x6n+1 =
cd (−1−bc)n

a(−1−ab)n (−1− cd)n+1 , x6n+2 =
ab(−1− cd)n+1 (−1−ab)n

d (−1−bc)n+1 .

Theorem 6.2. Difference equation (6.1) has a periodic solution of period six iff ab =−2 and b = d and we will take the form:{
d,c,b,a,

cd
a(−1− cd)

,
ab
d
,d,c,b,a,

cd
a(−1− cd)

,
ab
d
, ...

}
.
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Figure 6.1. Plot of x(n+1) = x(n−2)x(n−3)
x(n)(−1−x(n−2)x(n−3))

Theorem 6.3. Equation (6.1) has a periodic solution of period two iff ab = bc = cd =−2 and takes the form: {d,c,d,c, ...} .

Theorem 6.4. Difference equation (6.1) has equilibrium point which is 0 and it is not locally asymptotically stable.

Example 6.5. Figure 6.1 shows the period six solutions of (6.1) since x−3 =−8, x−2 = 5, x−1 =−8 and x0 = 1/4.
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