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Abstract
In this paper, a new additive randomized response model has been proposed. The properties of the proposed
model have been studied. It has been shown theoretically that the suggested additive model is better than the
one envisaged by [1] under very realistic conditions. Numerical illustrations are also given in support of the
present study.
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1. Introduction
One problem with research on high – risk behavior is that respondents may consciously or unconsciously provide incorrect
information. In psychological surveys, a social desirability bias has been observed as a major cause of distortion in standardized
personality measures.. Survey researchers have similar concerns about the truth of survey results findings of such topics as
drunk driving, use of marijuana, tax evasion, illicit drug use, induced abortion, shop lifting, child abuse, family disturbances,
cheating in exams, HIV/AIDS, and sexual behavior. The most serious problem in studying certain social problems that are
sensitive in nature (e.g. induced abortion, drug usage, tax evasion, etc.) is the lack of reliable measure of their incidence or
prevalence. Thus to obtain trustworthy data on such confidential matters, especially the sensitive ones, instead of open surveys
alternative procedures are required. Such an alternative procedure known as “randomized response technique” (RRT) was first
introduced by [2]. It provides the opportunity of reducing response biases due to dishonest answers to sensitive questions. As a
result, the technique assures a considerable degree of privacy protection in many contexts. Following the pioneering work of
[2], many modifications are proposed in the literature. A good exposition of developments on randomized response techniques
could refer to [3]-[18]. We below give the description of the model due to [1]

1.1 Additive model[1]:

Let there be k scrambling variables denoted by S j, j = 1,2, . . . ,k whose mean θ j(i.e.E(S j)= θ j) and variance γ2
j (i.e.V (S j)= γ2

j )
are known. In [1] proposed optimal new orthogonal additive model named as (POONAM), each respondent selected in the
sample is requested to rotate a spinner, as shown in Fig. 1.1, in which the proportion of the k shaded areas, say P1,P2, . . .Pk are
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Figure 1.1. Spinner of POONAM[1]

orthogonal to the means of the k scrambling variables, say θ1,θ2, ...θk such that:

k

∑
i=1

Pjθ j = 0

and

k

∑
i=1

Pj = 1

Now if the pointer stops in the jth shaded area, then the ith respondent with the value of the sensitive variable, say Yi, is
requested report the scrambled response Zi as:

Zi = Yi +Si

Assuming that the sample of size n is drawn from the population using simple random sampling with replacement (SRSWR).
[1] suggested an unbiased estimator of the population mean µY as

µ̂Y =
1
n

n

∑
i=1

Zi

with variance

V (µ̂Y ) =
1
n
[σ2

y +
n

∑
i=1

Pj(θ
2
j + γ

2
j )],

2. The proposed procedure:

Let S j, j = 1,2, . . . ,k be k scrambling variables such that their distribution are known. In brief, let E(S j) = θ j) and variance
V (S j) = γ2

j ) are known. Then, in the proposed additive model, each respondent selected in the sample is requested to rotate a
spinner, as depicted in Fig. 2.1, in which the proportion of the kshaded areas, say P1,P2, . . .Pk are orthogonal to the means of
the k scrambling variables, say θ1,θ2, ...θk such that:

k

∑
i=1

Pjθ j = 0

and

k

∑
i=1

Pj = 1

If the pointer stops in the jth shaded area, then the ith respondent with the value of the sensitive variable, say Yi, is requested
report the scrambled response Z∗i as:

Z∗i = Yi +S∗j
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where S∗j =
(a jS j +b jθ j)

(a j +b j)
and (a j,b j) being suitably chosen constants which may take real values and the functions of known

parameters of scrambling variable S j such as γ j,θ j, C j(= γ j/θ j),β2(S j) =
µ4(S j)

γ4
j

(coefficient of kurtosis), G1(S j) =
µ3(S j)

γ3
j

is the Fisher’s measure of skewness, µ3(S j) and µ4(S j) are third and fourth central moments of the scrambling variable S j etc.
Let a sample of size n be drawn from the population using the simple random sampling with replacement (SRSWR). Then we
prove the following theorems.

Theorem 2.1. An unbiased estimator of the population mean µY is given by

µ̂ST =
1
n

n

∑
i=1

Z∗i

Proof. Let E1 and E2 denote the expectation over the sampling design and the randomization device respectively, we have

E(µ̂ST ) = E1E2[
1
n

n

∑
i=1

Z∗i ] = E1[
1
n

n

∑
i=1

E2(Z∗i )] = E1[
1
n

n

∑
i=1

(Yi

n

∑
i=1

Pj +
n

∑
i=1

Pjθ j)]

E1[
1
n

n

∑
i=1

Yi] = µY ,

since

k

∑
i=1

Pjθ j = 0

and

k

∑
i=1

Pj = 1

which completes the theorem. The variance of the proposed estimator µ̂ST is given in the following theorem.

Theorem 2.2. The variance of the proposed estimator µ̂ST is given by

V (µ̂ST ) =
1
n
[σ2

y +
k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )],

where η j = a j/(a j +b j) and C j = γ j/θ j; j = 1,2, ...k.

Proof. Let V1 and V2 denote the variance over the sampling design and over the proposed randomization device, respectively,
then we have

V (µ̂Y ) = E1V2(µ̂Y )+V1E2(µ̂Y ) = E1[V2[
1
n

n

∑
i=1

(Z∗i )]+V1[E2(
1
n

n

∑
i=1

(Z∗i ))]

= E1[
1
n2

n

∑
i=1

V2(Z∗i )]+V1[(
1
n

n

∑
i=1

E2(Z∗i ))] = [
σ2

y

n
+E1[

1
n2

n

∑
i=1

V2(Z∗i )].

Note that

V2(Z∗i ) =
k

∑
j=1

PjE2(Yi +S∗j)
2−Y 2

i = Y 2
i +

k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )−Y 2

i ;

since

k

∑
i=1

Pjθ j = 0
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Figure 2.1. Spinner of Proposed Procedure

and

k

∑
i=1

Pj = 1

V2(Z∗i ) =
k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )

where η j = a j/(a j +b j) and C j = γ j/θ j; j = 1,2, ...k.
Solving the above equations , we get

V (µ̂ST ) =
1
n
[σ2

y +
k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )],

This completes the proof of the theorem.

3. Efficiency comparison
The proposed estimator µ̂(ST ) will be more efficient than the estimator µ̂(Y ) if

V (µ̂ST )<V (µ̂Y ), i f

i.e. if

1
n
[σ2

y +
k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )]<

1
n
[σ2

y +
k

∑
j=1

Pjθ
2
j (1+C2

j )]

i.e. if

[
k

∑
j=1

Pjθ
2
j (1+η

2
j C

2
j )]< [

k

∑
j=1

Pjθ
2
j (1+C2

j )]

i.e. if

[
k

∑
j=1

Pjθ
2
j (η

2
j −1)]C2

j < 0

i.e. if

|η2
j |< 1∀ j = 1,2, ...k

It follows from the above equation that we should choose the value of (a j,b j) such a way that

|
a j

a j +b j
|< 1
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σ2
Y θ1 θ2 θ3 θ4 a j =

b j

4
andη j =

1
5

25 1 5 10 -10.25 538.02
25 5 10 15 -17.50 310.22
25 10 15 20 -25.00 215.74
25 15 20 25 -32.50 171.97
125 1 5 10 -10.25 343.28
125 5 10 15 -17.50 251.87
125 10 15 20 -25.00 195.53
125 15 20 25 -32.50 163.61

Table 1. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) .

σ2
Y a j =

b j

4
andη j =

1
5

25 1244.77
125 470.23
225 320.82
325 257.33
425 222.20
525 199.89
625 184.47
725 173.17
825 164.54

Table 2. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) for θ j, j = 0,1,2...k.

We have computed the percent relative efficiency (PRE) of the proposed estimator µ̂(ST ) with respect to Singh’s estimator µ̂Y by
using the formula:

PRE(µ̂(ST ), µ̂(Y )) =

[σ2
y +

k
∑
j=1

Pj(θ
2
j + γ2

j )]

[σ2
y +

k
∑
j=1

Pj(θ 2
j +η2

j γ2
j )]

×100

By keeping the respondents cooperation in mind, we decided to choose γ = 40,γ1 = 30,γ2 = 40,γ3 = 20,γ4 = 10,P1 =
0.01,P2 = 0.02,P3 = 0.03,P4 = 0.04 with k = 4. In addition we choose different values σ2

y ,θ1,θ2,θ3,θ4.
It is observed that the values of PRE(µ̂(ST ), µ̂(Y )) are greater than 100. It follows that the proposed estimator µ̂(ST ) is more

efficient than the estimator µ̂(Y ) due to [1] with a substantial gain in efficiency. Thus, based on our simulation results, the use of
the proposed estimator µ̂(ST ) over [1] estimator µ̂(Y ) is recommended for all situations. We also consider a situation where
θ j = 0 f or j = 1,2,3,4, and rest of the parameters are kept the same.The percent relative efficiency of the proposed estimator
µ̂(ST ) over [1] estimators µ̂(Y ) has been shown. Numerical illustration clearly show that the percent relative efficiencies remain
higher if the value of σ2

y is small. We have further considered the case k = 2 and computed the PRE(µ̂(ST ), µ̂(Y )) for different
choices of parameters. Thus, based on our numerical findings, the proposed estimator µ̂(ST ) is to be preferred over [1] estimator
µ̂(Y ) is recommended for all situations in real practice. It should be noted here that the experience is must in real surveys while
making a choice of randomization device to be used in practice.

Discussion
In this article, we have suggested a new additive randomized response model and its properties are studied. We have proved
the superiority of the proposed randomized response model over [1] randomized response models both theoretically and
empirically.
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σ2
Y θ1 θ2 θ3 θ4 a j =

b j

4
andη j =

1
5

25 1 1 2 -2.25 728.03
25 1 2 2 -2.75 505.45
25 2 1 3 -3.25 340.55
25 2 2 3 -3.75 239.00

125 1 1 2 -2.25 383.36
125 1 2 2 -2.75 320.09
125 2 1 3 -3.25 253.68
125 2 2 3 -3.75 199.62

Table 3. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) .

σ2
Y PRE ′s

25 2380.00
125 556.00
225 353.33
325 275.38
425 234.12
525 208.57
625 191.20
725 178.62
825 169.09

Table 4. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) for θ j, j = 0,1,2...k.

σ2
Y θ1 θ2 θ3 θ4 a j =

b j

4
andη j =

1
5

25 1 5 10 -10.25 946.45
25 5 10 15 -17.50 715.96
25 10 15 20 -25.00 508.30
25 15 20 25 -32.50 373.52
125 1 5 10 -10.25 368.67
125 5 10 15 -17.50 340.15
125 10 15 20 -25.00 300.41
125 15 20 25 -32.50 261.38

Table 5. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) with k = 2 .

σ2
Y θ1 θ2 θ3 θ4 a j = θ jandb j = γ j with k = 2

25 1 1 2 -2.25 1676.13
25 1 2 2 -2.75 1599.26
25 2 1 3 -3.25 1587.15
25 2 2 3 -3.75 1518.21

125 1 1 2 -2.25 424.94
125 1 2 2 -2.75 421.12
125 2 1 3 -3.25 420.26
125 2 2 3 -3.75 416.53

Table 6. Percent relative efficiencies of the proposed estimator µ̂(ST ) over the Singh (2010) estimator µ̂(Y ) .
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